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Weight based model for emotion recognition in a 

multimodal agent based architecture 

Ralitza Raynova 

Technical University of Sofia, Sofia, Bulgaria, ralitza.raynova@tu-sofia.bg 

Abstract: Expressing and perceiving emotions is a vital part of communication between 

people and an important advance in improving the human-machine interface. Efficient and 
robust recognition is based on input data from different modalities thus imposing the usage of 

multimodal recognition architecture and multimodal recognition frameworks. The paper 

presents a multimodal agent-based architecture for emotion recognition and suggests a weight 
based model for the influence of the input multimodal data on the output results and also 

defines the impact of several factors such as gender, age, ethic group and personality. The 

suggested weight based model considers the emotion detection as a complex non-linear 
system and can be used in a multimodal agent based architecture for empirical evaluation of 

the weight, errors and the unknown parameters. 

Keywords: emotion recognition, multimodal architecture, weight based model. 

1. INTRODUCTION 

Emotion is a mental experience, feeling or sensation caused by external influences. 
Due to their subjective nature, individuals as well as different ethnic groups have a 
specific and different way of expressing emotions. Expressing emotions refers to how 
a person communicates emotional experience through verbal and non-verbal behavior. 
According to Ray Birdwhistell in [1], the final message of a statement is affected only 
35% by actual words and 65% by non-verbal cues. Emotions are best treated as a 
multifaceted phenomenon consisting of:  

 behavioral reactions (body and gesture), 

 expressive reactions (voice and face), 

 psychological reactions (EGG, electro dermal activity, body temperature) 
and 

 subjective feelings (semantic voice channel, text). 
A recognition system based on multimodal architecture has to explore every one 

of this emotion faceted. Schematic representation of a multimodal system is given on 
fig. 1. 

The paper presents a multimodal architecture for emotion recognition and suggests 
a composition of the output signal. A weight based model that presents the influence 
of the input multimodal data on the output results is suggested. The model also defines 
the impact of several factors such as gender, age, ethic group and personality. The 
suggested weight based model considers the emotion detection as a complex 
nonlinear system and can be used in a multimodal agent based architecture for 
empirical evaluation of the weight, errors and the unknown parameters. 
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2. EMOTION MODELS 

To better conceptualize human emotions different emotion models are constructed. 
The theories presented throughout the first years of research in the field of human 
psychology have been unanimous in the minimalist idea of reducing the great range of 
emotions in a small group of mental states by calling them basic or fundamental. This 
presentation is known as discrete emotion model. A discrete emotion model is 
representation of emotions with categories. The Swedish anatomist Carl-Hermann 
Hjortsjö proposed one of the first discrete models, categorizing emotions based on the 
idea that there is a limited set of human emotions [2]. Later the idea was extended by 
the FACS system (Facial Action Coding System) developed by a group of scientists 
under the direction of Paul Ekman [3], where seven main categories are defined: 
happiness, sadness, surprise, fear, anger, disgust and contempt. 

Human emotions can generate data that can be recorded and quantified. The idea 
to represent these quantitative measurements in a multidimensional space are the 
basis of the dimensional emotion model. A dimensional emotion model is 
representation of emotions in a multidimensional space. Wundt [4], proposed the first 
dimensional model by decomposing the emotion space along three axes, namely: 
valence (positive– negative), arousal (calm–excited), and tension (tense–relaxed). The 
physiological model of the emotional state PAD [5] uses three dimensions to represent 
emotions: Pleasure– Arousal–Dominance. Instead of three dimensions Russell uses 
independent bipolar dimensions of emotion such as pleasure–displeasure and few 
years later present circumflex model (fig. 2) of affect where emotions are located in a 
two dimensional circular space containing arousal and valence [6]. 

A hybrid model of Plutchik uses psycho-evolutionary classification. According to 
Plutchik, there are four basic problems in life: identity, hierarchy, territory and 

Fig. 1 : Schematic representation of a multimodal system for emotion recognition 
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transience. Environmental stimuli are given a positive or negative valence, which 
triggers behavioral reactions that vary according to the evaluation and re-evaluation of 
the stimulus. 

Therefore, for every basic problem in life, there are two opposing primary emotions. 
Identity - the primary opposing emotions associated with identity are the functions of 
acceptance (admiration) and rejection (loathing). Hierarchy - related to the first access 
to food, sex, shelter and comfort. The primary antithetical emotions of the hierarchy 
have the functions of protection (terror) and destruction (rage). Territoriality - each 
animal must establish a territory. Thus the binary opposition exploration (vigilance) and 
orientation (amazement). Transience - the finite life span of all creatures ensures that 
the processes of life and death pose a problem for each animal species. Primary 
opposing emotions here are reproduction (ecstasy) and reintegration (grief). In 
Plutchik's multidimensional model of emotions the vertical dimension is the intensity 
with which each primary emotion is experienced.[7] The non-basic emotions are 
obtained from the mixture of the basic ones. This psycho-evolutionary classification is 
presented in fig. 3 [8]. 

 

 
Fig. 3: Plutchik hybrid model 

 

Fig. 2: Circumflex model 

3. MULTIMODAL AGENT BASED ARCHITECTURE FOR EMOTION 

RECOGNITION 

Multimodal and multiagent systems that process and use signals from various 
sensors are used to improve the accuracy and efficiency of emotion recognition results. 
The classification characteristics and the recognition of emotions derived from the use 
of verbal, visual and psychological signals. 

This type of system includes all stages of recovery and processing of the various 
aspects of human emotional state detection. The detectors correspond to the input 
sources: sensors, files, etc. that provide the input data for the agent-based system. 
The general framework of the multiagent system architecture is shown in fig. 4. 
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Fig. 4 General multi-agent system framework for multimodal human emotional state recognition 
 
The aim of AgencyProcessor (Agent Supervisor) is to combine the results of 

different emotion detection agents. It also combines the results with weights based on 
specific parameters such as gender, age, ethnic group, temperament. 

4. WEIGHT BASED MODEL FOR EMOTION DETECTION 

According to the detection sensors used the emotion detection technologies can 

be classified into the following groups: verbal, visual or physiological. Each of them has 

a different influence on the output signal. 

In a multimodal emotion recognition system the output function, i.e. the emotion 

(Et), depends on the input components (i) that can be attributed different weights (w). 

The components with the highest weight are the meaning components which represent 

one third of the result. 

(1) i(input)=
3

1 (meaning)+
3

1 (non verbal  signals) 

The rest of the inputs influence the final result in different ways. The voice, face 

and body signals are related to the arousal, this means that for input emotions such as 

fear or happiness the weight of this inputs will be greater. Face and body input signal 

will be more representative than others input signals including voice. Thus the face and 

body weight will be greater. The EEG and other physiological signals are related to the 

valence, in this case the weight of this input will increase if the input emotions are 

related to the valence. 

A multimodal emotion recognition system is not completely determinant. The state 

of the moment can never be measured with certainty and therefore the input signals 

will always carry integrated errors () which will affect the output signal that determines 

the emotion itself: 
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(2) )])...([( 000 nnnt wiwiFE    

where ik, k = 0  n, is input signal equal to the output signal from a simple modal, wk 

denotes the weight and k is an error. 

Several studies states that women report more negative affect than men but equal 

happiness as men, and revel that gender accounted for less than 1% of the variance 

in happiness but over 13% in affect intensity [9, 10, 11]. 

Some studies have suggested that the intensity of subjective reactions to 

emotionarousing stimuli remains stable, whereas the magnitude of autonomic 

reactions declines with age. The authors in [11, 12] reported than greater self-reported 

sadness was found in older than in younger adults. When older people are exposed to 

stimuli featuring themes that are relevant to their age group, they show greater 

subjective and physiological reactions. 

Different researches has shown that cultures and ethnic affiliation exert 

considerable influence over emotion expression and perception [13, 14]. 

A wealth of cognitive and behavioral research has demonstrated that individual 

differences in people's personality can affect the manner in which they process 

emotional stimuli [15]. 

Consequently the factors such as gender, age, ethic group and personality need to 

be taken into consideration while studying emotions too: 

(3) )])...([( 000 nnnt wiwiFE   * P 

where parameters P are defined by individual characteristics like gender, age, ethic 

group and personality. 

5. CONCLUSION 

If the sensitivity of the input conditions is taken into account in determining the 

attributes that influence the emotion detected, we can observe that the mathematical 

definition is extremely complex, to the point that it compares to the difficulty in analyzing 

the accuracy of non-linear systems of weather forecasting and natural phenomena, 

considered one of the most complex systems. 

The incorporation of the initial errors and those arising during the process, together 

with the fact that it is a non-linear system, means that the system becomes much more 

complex, including unknown parameters that must be found empirically. 

Each detection module will obtain at the output a list of the emotions detected with 

their respective errors and percentage of correspondence. These outputs are the 

inputs for the Supervising Agent, whose task is to combine them. 

The suggested weight based model can be used in a multimodal agent based 

architecture for empirical evaluation of the weight, errors and the unknown parameters. 
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