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Weight based model for emotion recognition in a
multimodal agent based architecture

Ralitza Raynova

Technical University of Sofia, Sofia, Bulgaria, ralitza.raynova@tu-sofia.bg

Abstract: Expressing and perceiving emotions is a vital part of communication between
people and an important advance in improving the human-machine interface. Efficient and
robust recognition is based on input data from different modalities thus imposing the usage of
multimodal recognition architecture and multimodal recognition frameworks. The paper
presents a multimodal agent-based architecture for emotion recognition and suggests a weight
based model for the influence of the input multimodal data on the output results and also
defines the impact of several factors such as gender, age, ethic group and personality. The
suggested weight based model considers the emotion detection as a complex non-linear
system and can be used in a multimodal agent based architecture for empirical evaluation of
the weight, errors and the unknown parameters.

Keywords: emotion recognition, multimodal architecture, weight based model.

1. INTRODUCTION

Emotion is a mental experience, feeling or sensation caused by external influences.
Due to their subjective nature, individuals as well as different ethnic groups have a
specific and different way of expressing emotions. Expressing emotions refers to how
a person communicates emotional experience through verbal and non-verbal behavior.
According to Ray Birdwhistell in [1], the final message of a statement is affected only
35% by actual words and 65% by non-verbal cues. Emotions are best treated as a
multifaceted phenomenon consisting of:

e behavioral reactions (body and gesture),

e expressive reactions (voice and face),

e psychological reactions (EGG, electro dermal activity, body temperature)
and

e subjective feelings (semantic voice channel, text).

A recognition system based on multimodal architecture has to explore every one
of this emotion faceted. Schematic representation of a multimodal system is given on
fig. 1.

The paper presents a multimodal architecture for emotion recognition and suggests
a composition of the output signal. A weight based model that presents the influence
of the input multimodal data on the output results is suggested. The model also defines
the impact of several factors such as gender, age, ethic group and personality. The
suggested weight based model considers the emotion detection as a complex
nonlinear system and can be used in a multimodal agent based architecture for
empirical evaluation of the weight, errors and the unknown parameters.
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Fig. 1: Schematic representation of a multimodal system for emotion recognition

2. EMOTION MODELS

To better conceptualize human emotions different emotion models are constructed.
The theories presented throughout the first years of research in the field of human
psychology have been unanimous in the minimalist idea of reducing the great range of
emotions in a small group of mental states by calling them basic or fundamental. This
presentation is known as discrete emotion model. A discrete emotion model is
representation of emotions with categories. The Swedish anatomist Carl-Hermann
Hjortsjo proposed one of the first discrete models, categorizing emotions based on the
idea that there is a limited set of human emotions [2]. Later the idea was extended by
the FACS system (Facial Action Coding System) developed by a group of scientists
under the direction of Paul Ekman [3], where seven main categories are defined:
happiness, sadness, surprise, fear, anger, disgust and contempt.

Human emotions can generate data that can be recorded and quantified. The idea
to represent these quantitative measurements in a multidimensional space are the
basis of the dimensional emotion model. A dimensional emotion model is
representation of emotions in a multidimensional space. Wundt [4], proposed the first
dimensional model by decomposing the emotion space along three axes, namely:
valence (positive— negative), arousal (calm—excited), and tension (tense—relaxed). The
physiological model of the emotional state PAD [5] uses three dimensions to represent
emotions: Pleasure— Arousal-Dominance. Instead of three dimensions Russell uses
independent bipolar dimensions of emotion such as pleasure—displeasure and few
years later present circumflex model (fig. 2) of affect where emotions are located in a
two dimensional circular space containing arousal and valence [6].

A hybrid model of Plutchik uses psycho-evolutionary classification. According to
Plutchik, there are four basic problems in life: identity, hierarchy, territory and
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transience. Environmental stimuli are given a positive or negative valence, which
triggers behavioral reactions that vary according to the evaluation and re-evaluation of
the stimulus.

Therefore, for every basic problem in life, there are two opposing primary emotions.
Identity - the primary opposing emotions associated with identity are the functions of
acceptance (admiration) and rejection (loathing). Hierarchy - related to the first access
to food, sex, shelter and comfort. The primary antithetical emotions of the hierarchy
have the functions of protection (terror) and destruction (rage). Territoriality - each
animal must establish a territory. Thus the binary opposition exploration (vigilance) and
orientation (amazement). Transience - the finite life span of all creatures ensures that
the processes of life and death pose a problem for each animal species. Primary
opposing emotions here are reproduction (ecstasy) and reintegration (grief). In
Plutchik's multidimensional model of emotions the vertical dimension is the intensity
with which each primary emotion is experienced.[7] The non-basic emotions are
obtained from the mixture of the basic ones. This psycho-evolutionary classification is
presented in fig. 3 [8].

High-Arousal, Arveal High-Arousal,
Negative-Valence hich Positive-Valence
11 I |
Tense Excited
Angry Delighted
Frustrated Happy

<-negative neutral positive=¥ Valence
Depressed Content
Bored Relaxed
11 Tired Calm IV
Low-Arousal, low Low-Arousal,
Negative-Valence v Positive-Valence
Fig. 3: Plutchik hybrid model Fig. 2: Circumflex model

3. MULTIMODAL AGENT BASED ARCHITECTURE FOR EMOTION
RECOGNITION

Multimodal and multiagent systems that process and use signals from various
sensors are used to improve the accuracy and efficiency of emotion recognition results.
The classification characteristics and the recognition of emotions derived from the use
of verbal, visual and psychological signals.

This type of system includes all stages of recovery and processing of the various
aspects of human emotional state detection. The detectors correspond to the input
sources: sensors, files, etc. that provide the input data for the agent-based system.
The general framework of the multiagent system architecture is shown in fig. 4.
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Fig. 4 General multi-agent system framework for multimodal human emotional state recognition

The aim of AgencyProcessor (Agent Supervisor) is to combine the results of
different emotion detection agents. It also combines the results with weights based on
specific parameters such as gender, age, ethnic group, temperament.

4. WEIGHT BASED MODEL FOR EMOTION DETECTION

According to the detection sensors used the emotion detection technologies can
be classified into the following groups: verbal, visual or physiological. Each of them has
a different influence on the output signal.

In a multimodal emotion recognition system the output function, i.e. the emotion
(Ev), depends on the input components (i) that can be attributed different weights (w).
The components with the highest weight are the meaning components which represent
one third of the result.

(1) i(input)= % (meaning)+ % (non verbal signals)

The rest of the inputs influence the final result in different ways. The voice, face
and body signals are related to the arousal, this means that for input emotions such as
fear or happiness the weight of this inputs will be greater. Face and body input signal
will be more representative than others input signals including voice. Thus the face and
body weight will be greater. The EEG and other physiological signals are related to the
valence, in this case the weight of this input will increase if the input emotions are
related to the valence.

A multimodal emotion recognition system is not completely determinant. The state
of the moment can never be measured with certainty and therefore the input signals
will always carry integrated errors (g) which will affect the output signal that determines
the emotion itself:
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@ E, = FL(ow, +&)...(1,W, +&,)]

where ik, k = 0 + n, is input signal equal to the output signal from a simple modal, wk
denotes the weight and ek is an error.

Several studies states that women report more negative affect than men but equal
happiness as men, and revel that gender accounted for less than 1% of the variance
in happiness but over 13% in affect intensity [9, 10, 11].

Some studies have suggested that the intensity of subjective reactions to
emotionarousing stimuli remains stable, whereas the magnitude of autonomic
reactions declines with age. The authors in [11, 12] reported than greater self-reported
sadness was found in older than in younger adults. When older people are exposed to
stimuli featuring themes that are relevant to their age group, they show greater
subjective and physiological reactions.

Different researches has shown that cultures and ethnic affiliation exert
considerable influence over emotion expression and perception [13, 14].

A wealth of cognitive and behavioral research has demonstrated that individual
differences in people's personality can affect the manner in which they process
emotional stimuli [15].

Consequently the factors such as gender, age, ethic group and personality need to
be taken into consideration while studying emotions too:

3 E, = F[(I,W +&)-..(,W, +&,)]<p

where parameters P are defined by individual characteristics like gender, age, ethic
group and personality.

5. CONCLUSION

If the sensitivity of the input conditions is taken into account in determining the
attributes that influence the emotion detected, we can observe that the mathematical
definition is extremely complex, to the point that it compares to the difficulty in analyzing
the accuracy of non-linear systems of weather forecasting and natural phenomena,
considered one of the most complex systems.

The incorporation of the initial errors and those arising during the process, together
with the fact that it is a non-linear system, means that the system becomes much more
complex, including unknown parameters that must be found empirically.

Each detection module will obtain at the output a list of the emotions detected with
their respective errors and percentage of correspondence. These outputs are the
inputs for the Supervising Agent, whose task is to combine them.

The suggested weight based model can be used in a multimodal agent based
architecture for empirical evaluation of the weight, errors and the unknown parameters.
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