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Abstract. In this study a common mathematical model of a two-step stochastic problem of the optimal risk-

free route from the starting point to the final destination for e-bike cycling. Under risk in this study is 

considered any obstacle in the route (potholes or bad terrain, pedestrians, pets, hooligans, incompetent 

drivers etc.). The aim of this paper is the implementation a mathematical model and approach for solving 

the problem and not particularly the type of hazards taken into account by the risk assessment. For this 

reason, the input is based on ungrouped statistical data with periodical and stochastic condition in time and 

space. The mathematical model is expressed as a stochastic problem with two stages. In the first stage, the 

problem of finding the average risk during e-bike cycling for each section of the route is solved. The input 

parameter is the number of obstacles in each branch. In the second stage, the problem of finding the optimal 

risk-free route is solved. A network optimization model of the problem is constructed and the solution is 

found by application of the Bellman's Principle of optimality. 

This research is carried out as part of the project ‘Optimal Control of the Energy Flows in Electric 

Vehicles by means of Artificial Intelligence’, contract № 191ПР0018-07, funded by the Research and 

Development sector of the Technical University of Sofia. 

 

Keywords: e-bike cycling, risk assessment, optimal risk-free route, Bellman's Principle of optimality, 
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1 Introduction 
 

In recent years, there has been considerable scientific interest in the assessment of risk and 

route optimization of various types of vehicles. The technological developments from the last 

years have given a new look to classical paradigms, such as the route optimization of personal 

vehicles. There is growing trend of electric and pedal-assisted bicycles usage as an 

environment-friendly and healthy alternative for urban mobility. These personal vehicles are 

becoming an interesting subject for scientific research in various fields of transportation, 

logistics and traffic safety. Therefore, by application of various mathematical methods and tools 

the risk assessment and route optimization for this newly emerged category of personal vehicles 

and their interaction with the urban environment and all the other actors in city traffic should 

be considered. Electric-powered cars are typically much more energy-efficient than fossil-

fueled fuels. The increasing use of electric vehicles, and in particular those powered by 

renewable energy sources, can play an important role in achieving the EU's goal of reducing 

greenhouse gas emissions and moving towards a low carbon future. 

Along with the growing trend of electric and pedal-assisted bicycles usage as an 

environment-friendly and healthy alternative for urban mobility, these personal vehicles are 
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becoming an interesting subject for scientific research in various fields of transportation, 

logistics and traffic safety. Therefore, by application of various mathematical methods and tools 

the risk assessment and route optimization for this newly emerged category of personal vehicles 

and their interaction with the urban environment and all the other actors in city traffic should 

be considered. In [8] and [9] are detailed the factors that led to the present state and issues 

related to urban and suburban traffic in the modern world. The research in [9] is focused on the 

Braess paradox and the Nash theory of traffic equilibrium in simple two-way road branches. 

The transport modalities include pedestrians, bicycle, mass urban transport, transit traffic etc. 

In order to optimize the energy consumed by the vehicle, the authors of [6] have also predicted 

the vehicle speed by using neural network (NN) and deep learning. After generation of the route 

checkpoints the input data is passed to an “ordinary” NN (usually with one or two hidden 

layers). After this the data is treated by a deep learning NN (with more than two hidden layers). 

At the NN output, the predicted speed along the route is obtained. After the initial analysis of 

the route are determined the stretches available for optimization. The overall efficiency gains 

by using the proposed optimization is around 4%. The result is further processed by a 5th order 

filter for noise reduction. In [1] an analysis is presented, and the performance of linear models 

is compared for two types of adaptive Neural networks. For specific conditions the improved 

Neural network hybrid model using the look-up table has the best performance. The improved 

parameters are average absolute voltage error and maximum peak power on test tracks. The 

authors in [7] have described the development of a useful tool for agencies and researchers for 

clustering of similar transportation patterns with respect to time-based events. The proposed 

supervision algorithm is conceived to take advantage of background knowledge of the dataset 

along with the similarity. Compared to analogous methods, this one stands out with 

scalarization and low computational complexity along with its other advantages. In [9] several 

types of stability are introduced and analyzed (average, mean-squared, almost-sure stability 

etc.) with the aim of widening the optimization scope. After numerous iterations of the 

optimization, the stability conditions are expressed with several levels of conservatism and 

feasibility. [5] presents cutting-edge predictive techniques that can be used in shared bicycle 

use systems. As a major drawback in the work, the large RMSE value due to the choice of a 

scale for the individual input parameters and the sensitivity of the applied method to the input 

data can be indicated. Various approaches to finding optimal routes by different criteria are 

described in [10]. For the purposes of this paper, a network optimization model is proposed to 

find the most risk-free path for several categories of obstacles: road quality, moving obstacles, 

etc. The mathematical model is expressed as a stochastic problem with two stages. In the first 

stage, the problem of finding the average risk during e-bike cycling for each section of the route 

is solved. The input parameter is the number of obstacles in each branch. In the second stage, 

the problem of finding the optimal risk-free route is solved. A network optimization model of 

the problem is constructed and the solution is found by application of the Bellman's Principle 

of optimality. 

The similar problems are analyzed and solved in [8] by using a multi-objective optimization 

approach. Various approaches to finding optimal routes by different criteria are described in 

[2], [3], [4], [11], etc. 

In the article the research done is specific because it is another point of view of the the 

assigned problems. The problems arise from the increasing number of people in urban areas 

(urbanization) and the corresponding increase in human density. On the other hand, transport 

needs in the urban environment are specific (generally speaking). This means: 

 A wide variety of vehicles (from e-bike to stand-alone trucks); 

 Extensive amounts of data, such as vehicle technical information, travel profiles (route 

+ driving style + vehicle); 
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 Share Common Resource - Road infrastructure is used simultaneously by objects that 

are different in size, weight and speed. Accordingly, the interaction between road users 

is different from the point of view of the vehicle. 

The significance of the research is that the benefit is maximum for cyclists who have to make 

a decision (related to the route) in an environment of uncertainty. Decision makers would like 

to assess the risks before they decide to understand the scope of the possible outcomes and the 

significance of the unwanted consequences. 

 

2 Description and Aim of the two-stage problem 
 

1st stage: Description of problem 1 

 

A cyclist is riding a pedal-assisted electric bicycle and is travelling from a certain point of 

departure to his destination. This can be performed via a number of routes including 

combination of their sections The routes can be represented by a network model of an oriented 

graph 𝑉(𝐺, 𝐷), where 𝐺 = {𝐺𝑖}𝑖=1
𝑘  are the nodes and 𝐷 = 𝑑𝑖𝑗 , 𝑖 = 1, … , 𝑘 − 1; 𝑗 = 2, … , 𝑘; 𝑖 <

𝑗, are the graph arcs (figure 1). 
 

 

Figure 1: Network model of the oriented graph 𝑉(𝐺, 𝐷) 

 

The risk to the life and health of the cyclist during the driving of an electric bicycle is directly 

dependent on the number of obstacles on the bike path and the quality of the road surface. 

 

Aim of problem 1 

 

To determine the probability of occurrence of risk 𝑄𝑖𝑗 ∈ [0; 1], 𝑖 = 1, … , 𝑘 − 1; 𝑗 =

2, … , 𝑘; 𝑖 < 𝑗, for each arc 𝑑𝑖𝑗, 𝑖 = 1, … , 𝑘 − 1; 𝑗 = 2, … , 𝑘; 𝑖 < 𝑗, from the possible routes of 

the cyclist in depending on the number of obstacles and the quality of the road surface. 

 

2nd stage: Description of problem 2 

 

Each of the arcs 𝑑𝑖𝑗, 𝑖 = 1, … , 𝑘 − 1; 𝑗 = 2, … , 𝑘; 𝑖 < 𝑗, is associated with a given risk of 

encountering obstacles and bad road surfaces and vice-versa with the probability of risk-free 

travel over the arc: 𝑝𝑖𝑗 = 1 − 𝑄𝑖𝑗, 𝑝𝑖𝑗 ∈ [0; 1], 𝑖 = 1, … , 𝑘 − 1; 𝑗 = 2, … , 𝑘; 𝑖 < 𝑗. 

 

Aim of problem 2 

 

The aim of the optimization problem is to determine a route from the departure to the final 

destination exposing the cyclist to a minimal the risk of encountering obstacles and bad road 

surfaces. 
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3 Solution of the two-stage problem 
 

Solution of problem 1 

 

Input data and processing: 

Let 𝑋 be a discrete random value characterizing the hourly number of obstacles, counted by 

discrete observations for S days, in each arc of the route: 𝑑𝑖𝑗 , 𝑖 = 1, … , 𝑘 − 1; 𝑗 = 2, … , 𝑘; 𝑖 < 𝑗 

(table 1). 

 
Table 1: Data obtained by observation 

 

 
 

Day 

 

Hour 

00:00 01:00 … 23:00 

Number of obstacles 

1 𝒙𝟏,𝟏 𝒙𝟏,𝟐 … 𝒙𝟏,𝟐𝟒 

2 𝒙𝟐,𝟏 𝒙𝟐,𝟐 … 𝒙𝟐,𝟐𝟒 

... … … … … 

𝑺 𝒙𝑺,𝟏 𝒙𝑺,𝟐 … 𝒙𝑺,𝟐𝟒 

𝑬𝑿𝒕 → 

 𝒕 = 𝟏, … , 𝟐𝟒 
𝑬𝑿𝟏 = 

=
𝟏

𝑺
∑ 𝒙𝒔,𝟏

𝑺

𝒔=𝟏

 

𝑬𝑿𝟐 = 

=
𝟏

𝑺
∑ 𝒙𝒔,𝟐

𝑺

𝒔=𝟏

 

… 𝑬𝑿𝟐𝟒 = 

=
𝟏

𝑺
∑ 𝒙𝒔,𝟐𝟒

𝑺

𝒔=𝟏

 

 

Then for each arc 𝑑𝑖𝑗, 𝑖 = 1, … , 𝑘 − 1; 𝑗 = 2, … , 𝑘; 𝑖 < 𝑗, the average number of obstacles is: 

𝐸𝑋𝑖𝑗 =
1

24
∑ 𝐸𝑋𝑡

24
𝑡=1 =

1

24.𝑆
∑ ∑ 𝒙𝒔,𝒕

𝑺
𝒔=𝟏

𝟐𝟒
𝒕=𝟏 .    (1) 

And for each arc of the route the average number of obstacles 𝐸𝑥𝑖𝑗 , 𝑖 = 1, … , 𝑘 − 1; 𝑗 =

2, … , 𝑘; 𝑖 < 𝑗, is associated to the probability of being risky due to the number of obstacles that 

can appear by cycling through it. Therefore, the probability is expressed by 𝑞𝑖𝑗 ∈ [0; 1], 𝑖 =

1, … , 𝑘 − 1; 𝑗 = 2, … , 𝑘; 𝑖 < 𝑗 , where 

𝑞𝑖𝑗 =
𝐸𝑥𝑖𝑗

∑ ∑ 𝐸𝑥𝑖𝑗
𝑘
𝑗=2

𝑘−1
𝑖=1

, 𝑖 = 1, … , 𝑘 − 1; 𝑗 = 2, … , 𝑘; 𝑖 < 𝑗.    (2) 

For each arc of the route 𝑑𝑖𝑗 the road quality (for cycling) 𝑏𝑖𝑗 , 𝑖 = 1, … , 𝑘 − 1; 𝑗 =

2, … , 𝑘; 𝑖 < 𝑗, is rated by 𝑏𝑖𝑗 = 1, … , 𝑈. A higher value of 𝑏𝑖𝑗 means a worse quality of the 

pavement. The value of 𝑑𝑖𝑗, is associated with a corresponding weight 𝑤𝑖𝑗, 𝑖 = 1, … , 𝑘 − 1; 𝑗 =

2, … , 𝑘; 𝑖 < 𝑗, characterizing the road pavement: 

𝑤𝑖𝑗 =
𝑏𝑖𝑗

𝑈
, 𝑖 = 1, … , 𝑘 − 1; 𝑗 = 2, … , 𝑘; 𝑖 < 𝑗.     (3) 

Generally speaking, risk occurs when certain decision has to be taken and the results are 

uncertain, at the contrary – there is no risk if no uncertainty in the results of an action exist. The 

risk is more or less subjective, but the uncertainty is impartial. The lack of information (which 

is also objective and can be assessed) results in a risk. As the uncertainty is a source of risk it 

can be minimized by obtaining more information (and in an ideal case uncertainty could be 

eliminated at all). In practice it is rarely possible to reduce all uncertainty. As a result, every 

decision that has to be taken in an uncertain environment can be treated as a risk assessment 

problem. 

In decision theory risk can be used to quantify uncertainty and is often defined as a deviation 

from the expected result. Based on this, mathematical methods for estimation of the risk can be 

implemented. Therefore, the risk for an e-bike cyclist is proportional to the number of obstacles 

and depend from road surface on his route, in other words a route with higher average number 

of obstacles and bad road surface is riskier for the cyclist. 



5 

The risk to the life and health of the cyclist during the driving of an electric bicycle is directly 

dependent on the number of obstacles on the bike path and the quality of the road surface, is 

characterized by probability 

𝑄𝑖𝑗 = 𝑞𝑖𝑗. 𝑤𝑖𝑗 =
𝐸𝑥𝑖𝑗

∑ ∑ 𝐸𝑥𝑖𝑗
𝑘
𝑗=2

𝑘−1
𝑖=1

.
𝑏𝑖𝑗

∑ 𝑢𝑈
𝑢=1

, 𝑖 = 1, … , 𝑘 − 1; 𝑗 = 2, … , 𝑘; 𝑖 < 𝑗.  (4) 

 

Solution of problem 2 

 

The probability of the absence of risk (the inverse of risk occurrence) for each arc of the 

route 𝑑𝑖𝑗 , 𝑖 = 1, … , 𝑘 − 1; 𝑗 = 2, … , 𝑘; 𝑖 < 𝑗, is 

𝑝𝑖𝑗 = 1 − 𝑄𝑖𝑗 = 1 − 𝑞𝑖𝑗 . 𝑤𝑖𝑗 =
𝐸𝑥𝑖𝑗

∑ ∑ 𝐸𝑥𝑖𝑗
𝑘
𝑗=2

𝑘−1
𝑖=1

.
𝑏𝑖𝑗

𝑈
, 𝑖 = 1, … , 𝑘 − 1; 𝑗 = 2, … , 𝑘; 𝑖 < 𝑗.  (5) 

A network model of the route is developed (figure 2) where each arc 𝑑𝑖𝑗, 𝑖 = 1, … , 𝑘 − 1; 𝑗 =

2, … , 𝑘; 𝑖 < 𝑗, is characterized by the probability 𝑝𝑖𝑗, 𝑖 = 1, … , 𝑘 − 1; 𝑗 = 2, … , 𝑘; 𝑖 < 𝑗. 

 

 
Figure 2: Network model of the oriented graph 𝑉(𝐺, 𝑃) 

 

The problem of finding the less risky route from the starting point to the final destination is 

modeled as a network problem, but in fact it is also a reliability problem. This complex problem 

can be solved by a dynamic programming method by decomposing it into sub-problems which 

are easier to solve. The decomposition consists in dividing the solution into stages and 

formulation of optimization problems for each stage that are less complex than the global 

problem. For each stage there is a scalar (control) variable whose value can be optimized and 

then the results are linked by a recursive algorithm. Therefore, the solution of the global 

problem is obtained finally after consecutive solution of a number of sub-problems. This 

method, based on recursive iterations relies on the Bellman optimality principle that states: ‘The 

optimal strategy is composed of optimal sub-strategies’. 

The objective function if a generalized characteristic of the decisions taken and the results 

obtained by solving the problem. It reflects the way in which the global problem is decomposed 

in less complex sub-problems. In the problem of optimal path, the objective function is 

multiplicative and the global result is a product of the results obtained each stage. It is similar 

to the reliability of a system built by consecutive addition of a number of elements (building 

blocks). 

The number of stages after decomposition of the main problem is 𝑘. At each stage 𝐸𝑛, 𝑛 =
1, … , 𝑘, the problem of finding the less risky path between nodes 𝐺1 and 𝐺𝑛, 𝑛 = 1, … , 𝑘. A 

Bellman’s function 𝑓𝑁 , 𝑁 = 0,1, … , 𝑘, is introduced. It gives a quantitative measure of the less 

risky way from the initial point to the nth (𝑛 = 1, … , 𝑘) and is defined by a recursive 

dependence: 

𝑓𝑗 = max
𝑖<𝑗

{𝑝𝑖𝑗. 𝑓𝑖} , 𝑖 = 1, … , 𝑘 − 1; 𝑗 = 2, … , 𝑘; 𝑓0 ≡ 1, 𝑓1 = 1.   (6) 

The optimum is achieved at the final stage 𝐸𝑘: 

𝑓𝑘 = 𝑓𝑚𝑎𝑥 .       (7) 
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And then: 

𝑓𝑚𝑎𝑥 = ∏ 𝑝𝑚𝑉
𝑣
𝑉=1 .      (8) 

By the recursive Bellman method is obtained the altogether least risky route from the 

departure to the final destination, as depicted in figure 3. 

 

 
Figure 3: Optimal cycling route 

 

In the second stage of the problem, the optimal route is found. The objective function is 

minimization of the risk for the cyclist during his way from the starting point to the destination. 

Problem 2 is solved using an iterative method. Through the appropriate elements of the 

model, the complex problem is decomposed into simpler ones, which are solved almost 

independently. The solutions found at each stage are optimal and acceptable. This is due to the 

fact that the problem of the size of the problem is solved by being reduced in stages through the 

recurrent dependence. And this increases the capabilities of using this method to solve complex 

problems. 

 

4 Numerical example 
 

The proposed method is applied to this particular problem. In reality the e-bike cyclist is 

choosing his route just before or during the cycling, but when he arrives he can recapitulate his 

path and analyze if it has been the less risky from all possible routes. In order to assist the cyclist 

in choosing his route is developed the presented method for optimization of the risk for electric 

bike cyclists. In figure 4 is depicted an example of departure and destination of an e-bike cyclist 

and the possible routes that he can choose. The number of routes is finite and includes 

combinations of their arcs. 

 
Figure 4: Routes considered for the numerical example 
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Input numerical data and processing: 

 

After determination of the possible routes, input data of the hourly number of obstacles 

(entire number - integer) is collected for each arc of the routes. In this numerical example 

random data is generated and each section of the routes includes an hourly number of obstacles 

in the range from 0 to 120 (table 2). 

 
Table 2: Randomly generated distribution of the number of obstacles in some arcs 

ABD _00:00 _01:00 _02:00 _03:00 _04:00 _05:00 _06:00 _07:00 

1 12 85 109 64 99 15 1 113 

2 72 83 6 6 112 31 35 92 

3 120 27 1 89 52 23 66 70 

4 82 114 35 54 51 15 38 9 

5 12 98 76 84 44 56 46 40 

6 59 72 115 74 34 67 115 119 

7 35 119 53 100 50 39 80 64 

8 98 75 69 3 108 111 116 23 

9 9 6 112 22 33 49 48 58 

10 97 36 4 5 106 58 54 36 

ABD _08:00 _09:00 _10:00 _11:00 _12:00 _13:00 _14:00 _15:00 

1 23 97 108 100 110 111 95 109 

2 60 56 1 106 20 104 39 50 

3 33 87 22 12 31 66 29 49 

4 41 55 27 105 40 55 41 65 

5 95 29 105 27 12 24 59 119 

6 16 1 36 65 26 94 52 100 

7 103 40 57 33 9 78 56 78 

8 22 31 100 47 2 90 33 95 

9 43 59 23 3 91 53 114 30 

10 64 48 19 43 118 65 98 92 

ABD _16:00 _17:00 _18:00 _19:00 _20:00 _21:00 _22:00 _23:00 

1 3 89 97 62 4 39 80 87 

2 26 52 86 29 17 21 8 116 

3 36 29 101 6 49 45 61 105 

4 8 92 13 18 86 30 55 54 

5 12 103 37 53 62 27 74 24 

6 3 67 5 62 64 77 58 116 

7 119 52 113 90 57 14 6 93 

8 98 74 47 48 99 75 45 117 

9 34 54 91 56 10 57 25 74 

10 92 80 92 73 44 59 82 79 

FI _00:00 _01:00 _02:00 _03:00 _04:00 _05:00 _06:00 _07:00 

1 76 53 86 115 54 115 33 115 

2 49 47 65 40 29 106 97 58 

3 12 105 3 63 27 38 95 25 

4 39 112 108 22 47 28 29 15 

5 105 66 36 66 19 106 21 71 

6 57 81 5 39 91 44 59 15 

7 4 33 38 101 112 25 95 40 

8 41 27 11 93 4 24 105 13 

9 97 60 112 98 94 93 7 104 

10 112 43 57 99 48 52 99 56 

FI _08:00 _09:00 _10:00 _11:00 _12:00 _13:00 _14:00 _15:00 

1 2 103 20 25 43 112 51 118 

2 102 60 20 2 69 58 101 84 

3 12 113 98 118 114 103 55 105 

4 55 18 57 45 101 64 119 25 

5 58 120 66 36 5 61 56 54 

6 86 69 28 68 117 80 91 17 

7 4 27 72 71 97 59 103 66 

8 61 119 40 22 69 64 44 81 

9 2 75 54 40 25 90 6 4 

10 77 111 0 90 35 91 112 26 

FI _16:00 _17:00 _18:00 _19:00 _20:00 _21:00 _22:00 _23:00 

1 57 96 61 104 11 89 48 10 

2 76 87 109 26 15 58 95 24 

3 100 109 61 45 101 110 68 56 
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4 116 70 35 1 90 49 111 99 

5 76 110 95 86 95 14 102 67 

6 21 73 112 107 62 39 81 112 

7 44 65 93 77 23 24 39 61 

8 45 52 52 38 92 63 65 60 

9 98 26 62 83 118 20 51 21 

10 101 110 7 36 36 3 91 5 

 

For each arc of road, the average number of obstacles is associated with the probability of a 

risk area. Table 2 contains the average number of obstacles, the probability of risk and non-risk 

area. 

For each section of the road input data are processed according to the methodology described 

above, and the results are presented in table 3. 

 
Table 3: Results after input data processing: 𝑞𝑖𝑗  – probability for risky section because of an obstacle; 𝑤𝑖𝑗  – 

weight characterizing the quality of the road pavement; 𝑄𝑖𝑗  – probability for introducing an obstacle because of 

the pavement quality 
 𝒒𝒊𝒋 𝒘𝒊𝒋 𝑸𝒊𝒋 = 𝒒𝒊𝒋. 𝒘𝒊𝒋 𝒑𝒊𝒋 = 𝟏 − 𝑸𝒊𝒋 

ABD 0.08096 0.17560 0.01422 0.98578 

AD 0.08173 0.75345 0.06158 0.93842 

ACD 0.08170 0.56482 0.04615 0.95385 

DF 0.08187 0.67520 0.05528 0.94472 

DEF 0.08255 0.56892 0.04696 0.95304 

FGI 0.08453 0.27531 0.02327 0.97673 

FI 0.08680 0.87253 0.07574 0.92426 

FHI 0.08523 0.24567 0.02094 0.97906 

IK 0.08190 0.67289 0.05511 0.94489 

IJK 0.08550 0.34958 0.02989 0.97011 

KLN 0.08286 0.75987 0.06296 0.93704 

KN 0.08235 0.35746 0.02944 0.97056 

KMN 0.08453 0.68715 0.05809 0.94191 

 

5 Results 
 

The solution of the risk optimization problem is obtained according to a multiplicative 

objective function and the result is a product of the sub-problem solutions. It reflects the 

reliability of a system constructed by a number of separate elements. By using this method, the 

numerical solution of the problem is depicted in figure 5. 

 

 
Figure 5: The optimal route for cycling 

 

The most risk-free route is 87%, which is not very far from the hypothetical 100%, but taking 

into account the terrain and the obstacles, the result is very good. 

Problem 2 is solved using an iterative method. Through the appropriate elements of the 

model, the complex problem is decomposed into simpler ones, which are solved almost 

independently. The solutions found at each stage are optimal and acceptable. This is due to the 

fact that the problem of the size of the task is solved by being reduced in stages through the 

recurrent dependence. And this increases the capabilities of using this method to solve complex 

problems. 

The numerical example was implemented and solved by using the software environments 

MatLab and Maple. 
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6 Discussion of the results 
 

Regarding the results obtained by application of the Bellman’s optimization principle, the 

following observations can be made: 

The shortest path from the numerical example has a length of 5.15 km and the length of the 

least risky one is 5.75 km. This means that an 10% increase in the distance reduces the risk by 

9% (figure 6). 

 

a)  
 

b)  
 

c)  
Figure 6. a) The least risky route; b) Shortest route; 

c) Comparison between the length and the safety of these the routes 

 

The fastest route in this example has a duration of 39 min, and the least risky – е 43 min, 

which means that an increase of 4 min in the duration of the trip would decrease the risk by 7% 

(figure 7). 

a)  
 

b)  
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c)  
Figure 7. a) The least risky route; b) The fastest route; 

c) Comparative diagram of both routes 

 

7 Conclusion and future works 
 

The risk assessment and route optimization for electric bicycle in urban environment is 

presented in this paper. The route optimization in this study is based on a dynamic programming 

approach with the addition of supplementary factors characterizing the cycling of electric and 

pedal-assisted bicycles in urban environment. The capability of the implemented approach for 

solving the problem and the liability of the developed mathematical model are studied by a 

numerical example composed of random input data. Due to the considerable dynamics of urban 

traffic, the input data of the optimization problem is highly volatile in daily and hourly time 

scale. It is also influenced by the weather conditions and other factors or events. Based on this 

study, an even more detailed mathematical model and optimization approach can be 

implemented in future works. 
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