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Abstract: The paper presents a new approach for nonlinear adaptive state observer design for nonlinear systems in adaptive observer
canonical form. The adaptive observer and parameter estimator presented in the paper are globally uniformly exponentially stable. This
is achieved by introducing a data accumulation process for the unknown parameters of the objective nonlinear system. This process is
exponentially stable conditioned by the defined parametric identifiability criterion. The performance specifications of the nonlinear
adaptive observer, parameter estimator, and data accumulation dynamics introduced are controllable. The approach is applied to a

single-link flexible joint robot arm for illustration.

Keywords: nonlinear systems, nonlinear adaptive observers, parameter estimators, filtered transformation, exponential stability

INTRODUCTION

One of the earlier results solving the problem for joint state
and parameter estimation for nonlinear systems is presented in
[1] by defining adaptive observer canonical form (AOCF) for
nonlinear systems with time-varying parameters. The same
idea is utilized in [3] where conditions for transformation of
nonlinear systems with constant parameters into AOCF are
given. The filtered transformation [5] transforms linearly
reparameterized systems in nonlinear observer canonical form
into AOCF. The AOCF structure allows asymptotic nonlinear
adaptive observer design by applying the Mayer-Kalman-
Yakubovic lemma [9]. The asymptotic convergence of this
observer is improved in [4] to exponential convergence with
arbitrary rate. For systems with unmeasured but Lipschitz
nonlinearities an adaptive observer design task is investigated
in the works [17, 12] and solutions are given. All the above
results are unified in [2] by defining a new more general
AOCF. Recently the task for exact parameter estimation is
solved in [10, 11, 18] but these approaches use unstable
dynamics for some matrices. Exponential forgetting is utilized
in [13, 14], and [15] to deal with this problem. A disadvantage
of all methods introduced is the requirement for persistent
excitation of the objective systems in order to achieve
asymptotic state or parameter estimation which contradicts
with the control goals.

The paper considers a method for nonlinear adaptive observer
design in adaptive observer canonical form. The adaptive
observer and the parameter estimator are globally uniformly
exponentially stable without the unacceptable requirement for
persistency of excitation. The method is illustrated by a
dynamic simulation.

PROBLEM STATEMENT

The general multi-input multi-output nonlinear systems
considered are described by the equations

n=£f,(nu), n(0)=n,, (1a)
y=h(nu), (1b)
where neB, cR", ueB,cR"', yeB cR" are the
state, the control and the output vectors. The vector functions
f(n,u)eB; cR", h(n,u) e B, cR™ are sufficiently smooth
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in the considered domains of n and wu. It is assumed that
system (1) is locally observable with observability indices
n,>0, s=12,...,m, such that n,+n,+---+n,=n and
transformable into RGOCF [16]. The linearly reparameterized
RGOCF (RRGOCF) for system (1) reads

X=Ax+g(y,w)+G(y, w0, x(0)=x, (2a)
y=Cx. (2b)
where xeB, c R" is the state vector, ue By cR" is the
control input time derivative, u=[u",u"]", we R" , 0eRP
is the unknown parameter vector, g(y,u)eB,cR",
G(y,u) € B; < R™?, the matrix pairs (A,,C;) A ,eR™™,
C, e R™™ | s=1,2,...,m are in single-output Brunovski
form, and A =diag[A,A,,...,A,,], C=diag[C,,C,,....C,].
The model (2) is linear with respect to the unknown parameter
vector @ which is necessary condition for transformation into

AOCF. The filtered transformation for multi-input multi-
output systems in the form (2) is defined as

z=x-[T,T,,...T,]'0", (3a)
r lep _

T,=| ~"|,s=12,...m, (3b)
s M,

Ms = AbsMs + BbsGs(y’ﬁ) > Ms (O) = 0(ns—l)xp > (3C)

where ze B, c R" is the new state vector and the matrices of
the filtered transformation dynamics are

Gy, W =[G, (Y. W)".....G,(y.1)']" .G, eR™™,

A, = [_ b, !@;_2%;515_23}, B, =[-b,.L o]
s=12,...,m with Hurwitz polynomial coefficients vector
b, =[Lb/]", b, =[b, .b,,....b 1'. The transformation

2 S (g
(3) transforms the RRGOCF (2) into AOCF reading
z=Az+g(y,u)+Bo'0, z(0)=z,, (4a)
y=Cz, (4b)

where the vector @' =CAT+CG(y,u), o' e B, cR™?



and the matrix B =diag(b,,...,b,), BeR™™. The state of

system (4) is represented by the equation
z=Fz,+Q0+& 5)

where F, Q and & have the dynamics

F=(A-KO)F, F(0)=1_,, (6a)
Q=(A-KO)Q+Bo', Q0)=0, (6b)
E=(A-KOE+Ky +g(y.u), £0)=0. (60)

Since the signals of the vector @, y, and g(y,u) are
bounded by definition then the stability of the these dynamics
is provided by stabilization of the matrix (A —KC) via the

design matrix K. Considering equation (5) the output
equation (4b) reads
y=C(Q0+Fz,+&)

By defining the vector ¢ =y —Cg , the generalized parameter
vector a= [GT,ZOT]T and the regression matrix W = C[Q,F]
the last equation is transformed into regression form

¢=Wa. @)
Base on this form the following dynamic equations are defined
Q=4,Q. - QW'R,W+Q'R,Q), Q0)=0, (8a)
V=A,Q, ~Q(W'R,9+Q'Ryy), w(0)=0. (8b)

where QeRP*P | p =p+n is data accumulation matrix,
PaXPa ; ; : PuxP,
A eR » Ay > 0 is an eigenvalues matrix, Q, € R

is full rank reference matrix, and R, e R™™, R, € RP«*Pa
are positive definite weighting matrices. Equations (8a) and

(8b) are related by the equation y=Qa, yeRP hence,
algebraic prediction error can be defined as

v=y-Qa, (%9a)
v =Qa (9b)
where a= [éT ,201" is the generalized parameter estimation

vector with estimation error a =a—a . The nonlinear adaptive
observer in the AOCF (4) has the structure

Z=Ai+g(y,1)+Bo'0+N(y—y), 2(0)=7,, (10a)
§=Cz. (11b)
where NeR™™ is the observer gain matrix and the

parameter estimates 0 are generated by the adaptive gradient
parameter estimator

a=T(0"0,,,]"V+Q'T,¥), 4(0)=0, (12)

with matrix I'=T" >0 and weighting matrix I’ y=T $ >0.

STABILITY ANALYSIS

This section is devoted to stability analysis of the data
accumulation process, the nonlinear adaptive observer, and the
parameter estimator. In this context a special property of the
objective system is defined by the following definition.

Definition 1 — Parametric identifiability (PI)
The dynamic system (4) is parametrically identifiable if there
exist a finite time interval [t,,t,], t; <o in which

4
D(ty,1,) =@y + [WH(OW()dr >0, @) =WiW, >0 (13)
to
where W(t) = C[Q(t),F(t)] is the system regression matrix
defined by the dynamics (6). O

This property characterizes the possibility to exactly estimate
all the parameters of a given nonlinear system.

Theorem 1 — Global uniform exponential stability of the
matrix Q(t)

If the criterion (13) is met then the data accumulation matrix
Q(t) will be globally uniformly exponentially stable with

respect to the error E(t) =Q, —Q(t) and rankQ(t>t)=p,,
otherwise, Q(t) e L, and rankQ(t) <p, . O

Proof. See theorems 3.1 and 3.2 in [6].

The dynamics of the algebraic observer error Z=z—Z is
Z=(A-NC)Z+Bon'0 . (14a)
y=Cz (14b)
Stabilizing the matrix (A —NC) is not enough for asymptotic
stability of the error Z since the parameter estimation errors
0 are unknown. The stability of the adaptive observer is
investigated with the Lyapunov function candidate

V(z,a,t) = %ETpi +%5Trla , (15)
whose time derivative considering the dynamics (14) reads
V(Z,3,t)=-Z'S7 + 0"oB"PZ-a'T 4. (16)
where S=ST >0, and (A—NC)"P+P(A—NC) =-S is the

Lyapunov equation. The matrix B consists of the Hurwitz
polynomial coefficients vectors b,, s=12,...,m then, the

dynamics (14) has strictly positive real transfer function
W(s)=[C(sI - (A—-NC))'B]
as the matrix triple ((A—-NC),C,B) is observable. For such

systems the Mayer-Kalman-Yakubovic lemma states that there
exists a positive definite solution P of the Lyapunov equation

for which BTP=C . Applying this result and replacing the
adaptive parameter estimator dynamics (12) in (16) yields
V(z,3,0)=-2"S7-2"Q'T,,Qa =-W,(Z,2), V(t)) =V,
Depending on the parametric identifiability criterion (13) there

are two cases. The first case is when the objective nonlinear
system is not parametrically identifiable. In this case

rank Q(t) <p, hence, the matrix Q'r »Q20. This implies
that V(Z,a,t)<0 thus, ZeL,, acL, and ZeL, . Taking
the derivative of the function W,(z,a) yields

W, (z,7)=2%"5Z +3Q'T Q3 +3Q'T,,Qa

The boundedness of the matrix Q is proved by theorem 1, the
regression matrix WeL_ since, FeL,_ and Q€L hence,
the dynamics Q, and A are globally bounded. Therefore
We (z,2) is bounded because all its signals are bounded, thus

the function W,(z,a) is uniformly continuous. The Lyapunov

function (15) is decrescent and bounded from below by zero
hence it converges V(Zz(),a(),0) =V, as t — o therefore

jWe (z(7),a(r)) dr = —jV(i(r),ﬁ(r),r) dt=V,-V;,

to to
and lim _LI W, (z(1),a(1)) dr exists and is finite. Applying the
t—o0vto
Barbalat's lemma limW,(z,a)=0 and as a consequence
t—o0

limz =0, and 1imQa — 0. This means that the nonlinear
t—oo t—o0

adaptive observer error Z will be globally asymptotically
stable but the unknown parameters will be Lyapunov stable
only conditioned by rankQ < p, . The second case is when the

objective nonlinear system is parametrically identifiable. In
this case rank Q=p,, Vt=t,, the matrix QTFWQ >0 and
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the following inequalities hold

V(e t) < %x Sle'e, S =diag[P,I'"']

max[
V(e,t) <A, [Hle"e, H=diag[S,Q'T,Q]
where e=[Z',a"]" is generalized error vector. The time

derivative V(e,t) can be expressed as a linear equation with
respect to the Lyapunov function V(e,t) in the form
Vie,) <26()V(e,t), Vie(t),t) =V,

where o(t) = A, [H(t)]/ A, [S], with solution

ZJ“G(r)dI
Vi)<—e' V,

Since o(t)>0, Vt>t, then the integral in the above equation
tends to infinity when t — oo . The eigenvalues of the matrices
H and S can be chosen appropriately via the matrices I'
and TI,. The convergence specifications of the data

accumulation matrix Q(t) to the full rank reference matrix
Q,
o(t) can be appropriately chosen. This implies that the

can also be controlled. Therefore, the lower bound of

nonlinear adaptive observer (10) and the parameter estimator
(12) are globally uniformly exponentially stable.

APPLICATION OF THE APPROACH

The approach is applied to a single-link flexible joint robot
arm driven by a permanent magnet synchronous motor
controlled in current mode. The objective system model when
the flexible joint is modeled as a linear torsional spring is

J4q +mglsin(q) +£,q + k,q =kq,, , (17a)
J ool + Fnl + k(@ — ) =ku, (17b)
where q and q,, are the angular positions of the arm and the
motor shaft, u=i; is the torque current of the motor. The
system parameters are m, 1 — mass and length of the rotating
link, k, — spring constant, J, and J, — inertias of the link
and the motor shaft, f; and f,, — viscous friction coefficients,
k, — torque constant. The measured system variables are the
angular positions of the arm q and the motor shaft q, . By
choosing the state space vector

—m
Jm
the model (17) is transformed in RRGOCF (2) reading
X=X, -0,

£ .
x:[xl,xpx3,x4]T:[q,J—"q+q,qm, Qo + ]
d

. . (18a)

X, =—0,sin(x;) —05(x; —X3)

X3 =X, —0,x

€3 = X4 " Vaks (18b)

Xy =05(x; —x3)+04u

Y =X, Y =X3. (18¢c)

where the model parameters are

91 :f_d, 92 :m_gl, 93 25, 94 zh’ 95 — ks , 96 zﬁ
‘]d Jd Jd Jm Jm Jm

The system is single-input multi-output with one input u , two
outputs y,, y, and observability indices n, =2, n, =2 . The
matrices for the filtered transformation dynamics (3) are

M, =[m;;,m,, m 3, m,,my5,myc]

M, =[m,;,m,,,m,;, My, mMys, My ]

Abl =-by, Bb, =[-b;;.1], Ab2 =-by, Bbz =[-b,,.1]
G - -V 0 0 0 00
"Lo —sin(y) y,-y, 0 0 0]
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00 0 -y, 0 0
G, = .
000 0 y-y, u
The AOCEF (4) is defined by the vectors and matrices
b, =[Lb;; 1", b, =[L,by]", B=diag[b;,b,], g(y,u)=0,,,,

|:mll ~-Yi }
my,

1
with unknown parameter vector 8 =[0,,0,,6,,0,,0,,6,]". The

my; 1My my

My, =Y,

mys  Myg

T
oW =
m;, Mly; mjys Myg

0 01 .
Al: 0 0 > A2: 0 0 > A:dlag[AerZ]a

observer gain matrix N and the filters (6) matrix K are
T
n; =[n;;,n]

k, :[kmklz]T k, :[k21’k22]T , K=diag[k;.,k,].

n, = [n21>n22]Ts N = diag[n;,n,],

SIMULATION AND SYSTEM TIME RESPONSES

In this section the nonlinear adaptive system, including the
nonlinear adaptive observer and the parameter estimator is
dynamically simulated. The control input u(t) implements an

output feedback tracking closed-loop system and it follows the
example in [7]. The PMSM servomotor used is Lenze

MDSKS071-03 with shaft inertia J=6x10"* kg.m?, viscous
friction coefficient f =0.002 Nm.s rated current Iy =4.2 A,
rated angular speed ®y =356 rad/s, and torque constant
k, =1.37Nm/A. The link with length 1=0.5m and mass
m = 0.5 kg is attached to the motor shaft via a linear torsional
spring characterized by the constant k,=1.6. The attached
link viscous friction coefficient is f; =0.001 Nm.s and the
gravity constant is g=9.81 ms™. The initial conditions that
are not defined yet are x, =[-n,0,-7,0], z,=X,, Z, =0,,4,
a,=0,,,, and T'=I,,,,. The data accumulation process
performance specifying matrices and the full rank reference
matrix are A, =101, R, =diag (80,80), R, =801y,
I, =410, Q. =214, The vectors b,, b, coefficients

are b, =5, by, =5 . The elements of the matrices N, K are
n, =40, n,=400, n, =40, n,, =400, k, =10,
k,, =25, k,, =10, k,, =25 providing desired poles double
=-5 for
the two subsystems. The dynamic equations (4), (6), (8), (10),
(12) with the vector and the matrices defined in the previous
section are dynamically simulated. The nonlinear adaptive
state observer time evolution in adaptive observer canonical
form is displayed on figure 1. The parameter estimator
responses are depicted on figure 2. The box on figure 2 shows
the time evolution of the ® matrix rank that determines the

observer pole p.,., =—20 and double filters pole p;
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Figure 1: Nonlinear adaptive state observer responses



5
A )
0 — 0,
0,
-5
-10 \ ’
15 0.5 1 15 2 25 t[s]
20
0,
15
10 93 Ve
A 0
5 As /2
5
0 0.5 1 1.5 2 25 t[s]
3000
95
200006 i
esyes
1000 :
0
-10005 0.5 1 15 2 25 t[s]
100 ; ; !
12 H :z , H
8~ | ranktl)
12, | 4
20 010303040
_J
0
0 0.5 1 1.5 2 25 t[s]

Figure 2: Parameter estimator dynamics

parametric identifiability property of the objective nonlinear
system. The necessary condition for exponential estimation of
the state is the exponential parameter estimation which is
confirmed by the simulation. The overall adaptive system time
evolution has settling time 1.5s conditioned by the matrices
Ay, Q. Ry, R, I, T,,and N where bigger values

lead to faster responses.
CONCLUSIONS

The paper has presented a new approach for globally
exponentially stable nonlinear adaptive state observer design
in AOCF. The approach is based on stable data accumulation
process and the parametric identifiability property of the
objective nonlinear system. The performance specifications of
the nonlinear adaptive observer, parameter estimator and data
accumulation process is controllable via the design matrices
N,.K,I', T, A, Q, R, ,and R, where the bigger the

values the faster the responses. The exact parameter estimation
process does not require the unacceptable condition for
persistent excitation of the objective nonlinear system.

The method proposed for nonlinear adaptive observer design
can be applied to nonlinear systems which are transformable
in AOCF. The approach provides exponential state and
parameter estimation with controllable performance without
the inconsistent with the control goals persistency of
excitation condition and can be used in advanced high
performance nonlinear adaptive closed-loop systems design.
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