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PLASMA SURFACE TECHNOLOGY PROMOTING CAPILLARY 
IMPREGNATION OF WOOD: XPS ANALYSIS OF DIFFERENT 

PLASMA PRE-TREATED WOOD SURFACES 
 

Assist. Prof. Ivanov I. 1, Assoc. Prof. Gospodinova D. Ph.D. 1, Prof. Dineff P. Ph.D. 1, Prof. Veleva L. Ph.D. 2 
Faculty of Electrical Engineering - Technical University of Sofia, Bulgaria 1 

CINVESTAV - Merida, Yucatan, Mexico 2 

E-mail: dilianang@abv.bg 

Abstract: X-ray Photoelectron Spectroscopy (XPS) also referred to as Electron Spectroscopy for chemical analysis (ESCA) was used to 
characterize the surfaces of plasma-chemical treated wood in air by dielectric barrier discharge (DBD). The plasma-surface pre-treatment 
of wood, wooden products and cellulosic fibrous materials has been developed for promoting capillary impregnation and plasma-aided 
flame retardency. In this study, XPS has been used since it has proved to be suitable investigation method to characterize the composition of 
a plasma pre-treated material surface. This method is a powerful analytical and non-destructive technique which has already been used for 
the analysis of plasma modified wood surfaces and in the characterization of wood’s reactions. Changes due to the plasma-chemical process 
were identified from the survey large spectra as well as from the detailed C1s and O1s spectra. The oxidative changes were quantified with the 
atomic ratio of oxygen to carbon and with a detailed analysis of the contributions to the C1s and O1s peaks. 

Keywords: ATMOSPHERIC DIELECTRIC BARRIER DISCHARGE (DBD), FLAME RETARDANT, CAPILLARY 
IMPREGNATION, TROPICAL (RAIN-FOREST) WOOD, X-RAY PHOTOELECTRON SPECTROSCOPY (XPS).  

 

1. Introduction 
 
The plasma aided flame retardation of wood and wood 

products has been developed as a result of a new plasma-aided 
process of capillary impregnation that comprises a surface 
plasma pre-treatment for alteration of the chemical, electrical 
(ionic), and capillary activities of wood surface, in general for 
improvement the technological characteristics of the capillary 
impregnation process. This study has been developed as part of a 
large research on plasma-chemically activated wood surface and 
flame retardant treated rain-forest wood. 

A technological system of air plasma device and applicators 
has been created to produce cold technological plasma through 
dielectric barrier discharge (DBD) at atmospheric pressure and 
room temperature. The cold plasma pre-treatment by non-
equilibrium DBD of wood, like rain-forest woods - Tzalam, 
Caoba Mahogany, and Mexican White Cedar (Mexico, Yucatán), 
improves technological characteristics such as solution spreading 
and wicking speed, as well as specific amount of the sorbed 
flame retardant. Due to its fine-texture and surface inactivation it 
is difficult to apply flame retardants directly through capillary 
impregnation. In this way, the plasma pre-treatment of wood and 
wooden products improves its flame retardation. The plasma-
chemical surface pre-treatment by dielectric barrier air discharge 
at atmospheric pressure (DBD) was specified as a new good way 
for wood surface functionalization and activation [1, 2, 3, and 4]. 

Wood is a complex material constituted mainly of three 
biopolymers: lignin, cellulose and hemicelluloses. In addition to 
these polymeric components, wood may contain extractives in 
more or less large quantities including several classes of organic 
compounds like sugars, flavonoids, tannins, terpenes, fats or 
waxes. Well-suited for the study of surface chemistry of complex 
organic materials, X-ray photoelectron spectroscopy (XPS) also 
referred to as Electron Spectroscopy for chemical analysis 
(ESCA) has been widely used in order to investigate the surface 
chemical composition of numerous lignocellulosic materials 
especially in the field of pulp and paper, where the surface 
chemistry is of considerable importance for the properties of the 
final products. Similarly, some reported studies investigate the 
changes of surface chemistry after different wood transformation 
processes and processing [4 and 5]. 

X-ray photoelectron spectroscopy is a surface chemical 
analysis technique that can be used successfully to analyze the 
surface chemistry of a material in its "as received" state, or after 
some treatment such as plasma-chemical surface pre-treatment. 

The binding energy is a characteristic of the atoms, which can be 
used for elemental identification on the plasma chemically 
modified wood surface. 

The interpretation of the curve fit of the carbon C 1s peak 
after Kazayawoko (1998) was used to interpret the changes of 
wood surface chemistry after plasma DBD pre-treatment. To 
obtain a deeper insight into the various functional groups, the C 
1s signal is usually deconvoluted into four components according 
to the number of oxygen atoms bonded to C, [5]: 

□ The C1 class corresponds to carbon atoms bonded only with 
carbon or hydrogen atoms (C-C or C-H), and it is usually pointed 
out at a binding energy (BE) of 284.6 eV (some also use 
285.0 eV as the nominal value for the binding energy of carbon); 

□ The C2 class reveals the carbon atoms bonded with one 
oxygen atom (C-O or C-OH), and it appears at a higher binding 
energy compared to C1 (ΔBE = + 1.5 ± 0.2 eV) - 286.1 ± 0.2; 

□ The C3 class corresponds to carbon atoms bonded to a 
carbonyl (C=O) or two non-carbonyl oxygen atoms (O-C-O), and 
it appears at a higher binding energy compared to C1 (ΔBE = + 2.8 
± 0.2 eV) - 287.4 ± 0.2 .  

□ And finally, the C4 class is associated with carbon atoms 
bonded to a carbonyl and a non-carbonyl oxygen atom (O-C=O) - 
it appears at a higher binding energy compared to C1 (ΔBE = + 
3.75 ± 0.2 eV) - 288.35 ± 0.2. 

 
Fig. 1. Plasma-chemical surface pre-treatment of wood sample by 

non-equilibrium dielectric barrier air discharge at atmospheric pressure in 
asymmetric coplanar system with one glass barrier (a), technological 
regimes (A and B) of cathode directed streamers (b). 
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Table 1: Elemental surface composition of three heartwood species before (K) and 2 hours after plasma pre-treatment (DBD: 12/18 kV)  
determined from wide XPS-spectra. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
This is a necessary condition to get better knowledge of the 

chemical transformations occurring during plasma-chemical 
surface pre-treatment and to propose an interpretation in terms of 
existing and known mechanisms. 

The objective of this paper was to study the effect of plasma 
chemical surface pre-treatment of DBD in air (oxidative 
atmosphere) at atmospheric pressure and room temperature at 
industrial frequency (50 Hz) and two voltages - 12 and 18 kV 
(RMS), on the wood surface functionalization monitored by 
surface chemical composition change. Therefore, we focused 
mainly on the O/C ratio evolution and on the changes in the 
various components of the C (1s) and O (1s) lines. 

2. Experimental Investigation 
On basis of prior art, as well as on our own experience in 

plasma-aided impregnation of wood and wooden materials, [1, 
2], an oxidative surface plasma pre-treatment has been applied on 
the test samples for 60 sec in a non-equilibrium cold plasma of 
DBD at atmospheric pressure. Similar changes are the basis of 
the expected DBD-surface functionalization effect on the three 
species of rain-forest wood samples, plasma pre-treatment in two 
types of DBD in air was performed: i) A - DBD at industrial 
frequency (50 Hz) and relatively low voltage (12 kV RMS; 16.9 
kV PV) at which the discharge regime is transitionally from 
electron avalanche to cathode directed streamers; ii) B - DBD at 
industrial frequency and relatively high voltage (18 kV RMS; 
25.4 kV PV) characterizing the regime of cathode directed 
streamers, Fig. 1. 

X-ray photoelectron spectroscopy analysis was carried out by 
using a photoelectron spectrometer VGS ESCALAB Mk II with 
monochromatic AlKα radiation source (FWHM = 0.5 eV). XPS-
spectra were obtained by irradiating a wood sample with a beam 

of X-rays. The angle between the directions of the incident X-ray 
and that of the observations (fixed by analyzer entrance slit) was 
50.  

Studies of cold plasma functionalization phenomena on 
wood, i.e. interactions of oxidative cold plasma with wood 
surface, may add valuable information about the capillary 
impregnation, gluing and coating properties of wood. Such 
information is essential in the development of efficient 
processing methods, and for the prediction of the functionality 
and durability of wood products. 

Three species of Mexican rain-forest heartwood were 
investigated: i - Tzalam (Lysiloma bahamensis); ii - Caoba 
Mahogany (Swietenia macrophylla); and White Cedar 
(Cupressus Lusitanica). 

3. Results and Discussion 
The results from the wide XPS survey spectra of investigated 

wood samples before (DBD non-treated) and two hours after 
plasma chemical treatment (DBD pre-treated) are presented in 
Table 1. Analysis of the survey spectra indicates the presence of 
carbon (C), oxygen (O) and small amounts of nitrogen (N), 
phosphor (P) and silicon (Si) which represent the expected 
elements in wood. 

High-resolution scans of the XPS spectra of C (1s) and O (1s) 
levels are also presented with their decomposition into 
components, respectively Fig. 2 and 3. 

Using the total areas of these peaks and the respective 
photoemission cross-sections, a quantitative determination of the 
O/C ratio can be calculated. By knowing the chemical 
composition of each of these components, it is possible to 
calculate a priori the theoretical O/C ratio characteristic of non-
treated wood samples [5].  

Table 2. Carbon peak C (1s) components or proportions of oxygen (O) and carbon (C) functional groups of heartwood surfaces before (K) 
and 2 hours after plasma surface pre-treatment (DBD:12/18 kV) determined from high-resolution XPS-spectra.  

 

Wood Samples Peaks on the Wide XPS-spectra - Chemical Surface Composition, at. % 
Peaks C O N P Si nO/nC 

Tzalam Heartwood 
К (Non-Treated) 83.71 14.49 1.53 - 0.27 0.17 

DBD Pre-
treated 

12 kV (50 Hz) 66.55 32.43 1.03 - - 0.49 
18 kV (50 Hz) 61.38 37.63 0.99 - - 0.61 

Caoba Mahogany 
Heartwood 

К (Non-Treated) 81.12 18.39 0.49 - - 0.23 
DBD Pre-

treated 
12 kV (50 Hz) 78.25 20.17 1.58 - - 0.26 
18 kV (50 Hz) 71.06 28.21 0.73 - - 0.40 

Mexican White Cedar 
Heartwood 

К (Non-Treated) 79.86 17.75 1.41 - 0.98 0.22 
DBD Pre-

treated 
12 kV (50 Hz) 61.34 35.17 1.44 2.05 - 0.57 
18 kV (50 Hz) 66.83 29.92 2.24 1.01 - 0.45 

Woods Samples 

Carbon peak Cs1 components, area % 

C1 
(C-C or C-H) 

C2 
(C-O or 
C-OH) 

C2-3 
(ND) 

C3  
(C=O or 
O-C-O) 

C4 
(O-C=O) 

C4- 
(ND) nC1/ 

nC2 

Sum 
(nC2+ 
nC3 

nC2/ 
(nC2+nC3) 

(285.0 
±0.4 eV) 

(286.0 
±0.4 eV) 

(287.0 
±0.4 eV) 

(288.7 
±0.4 eV) 

(289.5 
±0.4 eV) 

(292.8 
±0.4 eV - - - 

Tzalam  
Heartwood 

К (Untreated) 56.79 15.20 0.00 4.14 0.00 0.00 5.31 19.34 0.79 
DBD 
Pre-

treated 

12 kV 35.04 27.12 22.01 15.27 0.00 0.56 1.29 42.39 0.64 
18 kV 42.33 30.92 15.35 9.23 0.00 2.17 1.40 40.15 0.77 

Caoba 
Mahogany  
Heartwood 

К (Untreated) 57.22 12.67 0.00 6.23 0.00 0.00 6.40 18.90 0.67 
DBD 
Pre-

treated 

12 kV 49.65 26.14 0.00 14.71 9.50 0.00 1.90 40.85 0.64 

18 kV 51.69 22.92 0.00 12.29 13.10 0.00 2.26 35.12 0.65 

Mexican 
White Cedar  
Heartwood 

К (Untreated) 54.22 17.40 0.00 4.60 0.00 0.00 4.48 22.00 0.79 
DBD 
Pre-

treated 

12 kV 45.94 27.96 15.05 5.98 0.00 5.07 1.64 33.94 0.82 

18 kV 50.23 20.74 15.22 13.10 0.00 0,71 2.42 33.84 0.61 
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Fig. 2. Carbon C (1s) peak in photoelectron XPS/ESCA spectra of bare samples of heartwood and 2 hours after plasma surface pre-treatment in 

atmospheric dielectric barrier discharge in air at industrial frequency (50 Hz) and 12 and 18 kV (RMS) voltage. 
 
Cellulose comprises five carbon atoms of C2 and one of C3 

with an O/C of 0.83. Hemicelluloses, which are mainly 
represented by glucuronoxylans, are constituted of fewer than 
five carbon atoms of C2, less than one carbon atom of C4 for the 
acetyl and carboxylic groups and one atom of C3 with an O/C of 
approximately 0.80. The contribution of lignin is more complex 
and therefore more difficult to quantify. Four types of carbons are 
present in its structure with a greater contribution from the C1 and 
C2 classes and an O/C ratio of roughly 0.33. Extractives are also 
present in very small quantities in wood and their contribution to 
the overall XPS spectrum is relatively low - for example carbon 
atoms of C4 class are present in linolic and abietic acid with an 
O/C of 0.11/0.10, respectively [5]. 

From the data of untreated wood samples, it appears that 
carbon atoms bonded with one oxygen atom (C2 class) are the 

most abundant. Carbon atoms bonded with other carbon or 
hydrogen (C1 class) or bonded with two oxygen atoms (C3 class) 
are present in smaller proportions, while those bonded with three 
oxygen atoms are less abundant Table 2.  

The O/C ratio may be estimated from the individual ratio and 
abundance of each component, or from the elemental 
composition determined experimentally in the case of untreated 
wood samples. According to these methods, the O/C ratios are 
found to be of and 0.17, 0.22 and 0.23, respectively,Table 1.  

The O/C ratio and distribution of carbon atoms of plasma 
treated samples differ considerably from those obtained for 
untreated wood: 0.49, 0.26 and 0.57 (DBD:12 kV); 0.61, 0.40 and 
0.45 (DBD: 18 kV). The increased O/C ratio is attributed to the 
important oxidation occurring during cold plasma-treatment: the 
C1 (C-C; C-H) contribution decreased considerably while  
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Table 3. Oxygen peak O (1s) components or proportions of oxygen (O), carbon (C) and hydrogen (H) functional groups of heartwood 
surfaces before (Tzalam-K) and after plasma surface pre-treatment (DBD: 12/18 kV) determined from high-resolution XPS-spectra. 

Woods Samples 
O1 O2 O3 

Su
m

1 
 

( O
1;O

3)
 

Su
m

2 
 

(C
2;C

3)
 

Su
m

1 
( O

1;O
3)

 -
Su

m
2 

(C
2;C

3)
 

(H
-O

-H
) O31 

(O=C) (O-H) (O-C; 
H-O-H) (O-C) 

 Binding energy, eV 531.5±0,4 532.5±0,4 533.0±0,4 

Tzalam (Lysiloma 
bahamensis) 

K: untreated 0.00 58.48 41.51 41.51 19.34 22.17 19.34 
DBD: 12 kV (50 Hz) 0.00 56.21 43.79 43.79 42.39 1.40 42.39 
DBD: 18 kV (50 Hz) 0.00 58.74 41.26 41.26 40.15 1.11 40.15 

Caoba Mahogany 
(Swietenia 
macrophylla) 

K: untreated 0.00 58.00 42.00 42.00 18.90 23.10 18.90 
DBD: 12 kV (50 Hz) 0.00 58.62 41.38 41.38 40.85 0.53 40.85 
DBD: 18 kV (50 Hz) 0.00 56.72 43.28 43.28 35.12 8.16 35.12 

Mexican White Cedar 
(Cupressus 
Lusitanica) 

K: untreated 0.00 53.22 46.78 46.78 22.00 24.78 22.00 
DBD: 12 kV (50 Hz) 0.00 61.43 38.57 38.57 33.94 4.63 33.94 
DBD: 18 kV (50 Hz) 0.00 56.70 43.30 43.30 33.84 9.46 33.84 

 

the C2 (C-O; C-OH), C3 (C=O; O-C-O) contribution increased, 
and C4 (O=C-O) appears in Caoba Mahogany, indicating that the 
content of C-O, C-OH, C=O, O-C-O and O=C-O groups becomes 
more important. This plasma modification can not be attributed 
to an increase of the lignin content due to preferential 
degradation of hemicellulose. 

Figures 2 and 3 show typical XPS survey spectra and high 
resolution C (1s) and O 1s spectra of plasma-treated Tzalam, 
Caoba mahogany and White cedar wood. When comparing C 1s 
spectra presented in Fig. 2, it is clear that the contribution of the 
different types of carbons differs strongly between untreated and 
plasma-treated wood samples. C3 and C2 contributions increased 
highly, while the C1 contribution (attributed to lignin) decreased 
seriously after plasma-treatment.  

The contribution of the different types of oxygen atoms is 
much more difficult to analyze, Fig. 3. O1 and O3 classes report 
the contribution of two types of carbon atoms - O=C and O-C 
while C2 and C3 classes report the contribution similarly of 
different types of oxygen atoms - C-O, C-OH, C=O and O-C-O. 
The difference between Sum1 (O1 + O3) and Sum2 (C2 + C3) can 
be attributed to the amount of water on the wood surface (H-O-
H), Table 3. 

The plasma chemical surface modification removes 
successfully the water (H-O-H) from the wood surfaces. The 
difference (Sum1-Sum2) was decreased highly two hours after 
plasma pre-treatment: Tzalam - form 22.17 to 1.40/1.11; Caoba 
Mahogany - from 23.10 to 0.53/8.16; and Mexican white cedar - 
from 24.78 to 4.63/9.46, respectively, Table 3.  

The O3 class reveals the oxygen atoms bonded with one 
carbon atom and two hydrogen atoms (O-C and H-O-H). A new 
difference between O3 class and the difference (Sum1-Sum2) 
reveals the abundance of oxygen atoms bonded with other carbon 
atom (O-C). From the data of untreated and plasma treated wood 
samples, it appears that carbon atoms bonded with one oxygen 
atom (C2 or O31 class) increase essentially its quantity after 
plasma treatment: Tzalam - form 19.34 to 42.39/40.15; Caoba 
Mahogany - from 18.90 to 40.85/35.12; and Mexican white cedar 
- from 22.00 to 33.94/33.84, respectively, Table 3. 

When using high energy resolution experiment settings on 
XPS equipped with a monochromatic Al K-alpha X-ray source, 
the Full Width at Half Maximum (FWHM) of the main 
investigated XPS-peaks range from:  

□ The C1, C2, C3 and C4, or C (1s) component, peaks of 
untreated (bare) woods have FWHMs that, in general, range from 
1.3 eV to 2.0 eV: Tzalam - from 1.6 to 2.0; Caoba Mahogany - 
from 1.3 to 2.0; and Mexican white cedar - from 1.8 to 2.0; 

□ The C1, C2, C3 and C4 peaks of plasma treated (DBD: 12 kV) 
woods have FWHMs that, in general, range from 1.4 eV to 2.34 
eV: Tzalam - from 1.8 to 2.2; Caoba Mahogany - from 1.98 to 
2.16; and Mexican white cedar - from 1.4 to 2.34. 

□ The C1, C2, C3 and C4 peaks of plasma treated (DBD: 18 kV) 
woods have FWHMs that, in general, range from 1.4 eV to 2.34 
eV: Tzalam - from 1.42 to 2.1; Caoba Mahogany - from 1.75 to 
2.38; and Mexican white cedar - from 1.0 to 1.91. 

□ The O1, O2, and O3, or O (1s) component, peaks of untreated  
woods have FWHMs that, in general, range from 1.8 eV to 2.44 
eV: Tzalam - 2.38; Caoba Mahogany - from 1.97 to 2.44; and 
Mexican white cedar - from 1.8 to 2.0; 

□ The O1, O2, and O3, or O (1s) component, peaks of plasma 
treated (DBD: 12 kV) woods have FWHMs that, in general, range 
from 2.24 eV to 2.67 eV: Tzalam - from 2.45 to 2.67; Caoba 
Mahogany - from 2.40 to 2.63; and Mexican white cedar - from 
2.24 to 2.25; 

□ The O1, O2, and O3, or O (1s) component, peaks of plasma 
treated (DBD: 18 kV) woods have FWHMs that, in general, range 
from 1.3 eV to 2.0 eV: Tzalam - from 2.17 to 2.37; Caoba 
Mahogany - from 2.53 to 2.57; and Mexican white cedar - from 
2.3 to 2.58; 

Conclusion 

Processes of woods preservation and bonding are usually 
achieved through the application of impregnation solution or 
adhesive on wood surface. Among the different mechanisms 
involved in the impregnation and bonding of woods, two 
synergistic effects seem essential in order to achieve good results: 

□ The penetration and anchoring of the impregnation solution 
or adhesive in the void spaces of the wood surface; 

□ The occurrence of a strong interaction or chemical reaction 
between the impregnate or adhesive and the major constituents of 
wood. 

These conditions are governed by the surface properties that 
depend not only on the bulk composition, but also on the surface 
building and modification process. 

X-ray photoelectron spectroscopy is a suitable investigation 
method to characterize the composition of wood surface. XPS is 
the most widely used surface analysis technique because of its 
relative simplicity in use and data interpretation. It was used 
successively to investigate the interaction of three rain-forest 
wood surfaces with cold non-equilibrium plasma of DBD in air at 
atmospheric pressure and room temperature.  
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Fig. 3. Oxygen O1s peak in photoelectron XPS/ESCA spectra of bare sample of heartwood and 2 hours after plasma surface pre-treatment in atmospheric 

dielectric barrier air discharge at industrial frequency (50 Hz) and 12 and 18 kV (RMS) voltage. 
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