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Abstract: The analysis of pre-treated wood surfaces, which have been plasma modified is also very informative for wood quality. Our 
measuring instruments determine the wettability based on the contact angle. The optical shape analysis of drops which are dispensed onto 
the surface is a reliable method for carrying out this measurement. The aim of this study was to verify possibility of determining the contact 
angle values of the plasma activated wood and calculate the surface free energy and its components of wood from the obtained contact angle 
values using Zisman, Equation of state (EOS), Fowkes and Wu theory and calculation method. Based on the contact angle data, the surface 
energy was obtained from the polar-dispersive(non-polar) approach. This study has been created as part of a large investigation on plasma-
chemically activated wood surface and flame retardant treated wood. 

 

Keywords: ATMOSPHERIC DIELECTRIC BARRIER DISCHARGE, CONTACT ANGLE MEASUREMENT, FLAME RETARD-
ANT, PLASMA-AIDED CAPILLARY IMPREGNATION, SESSILE DROP TECHNIQUE, SURFACE ENERGY DETERMINING.  

 

1. Introduction 
The plasma-aided flame retardation of wood, and wooden 

products has been developed as a result of a new plasma-aided 
process of capillary impregnation that comprises a surface plas-
ma pre-treatment for alteration of chemical activity of wood 
surface as well as its electrical (ionic) and capillary activities, and 
in general for improvement of the capillary impregnation process. 
A technological system of plasma device and applicators has 
been created to produce cold technological plasma through die-
lectric barrier discharge (DBD) at atmospheric pressure and room 
temperature. The cold plasma pre-treatment of wood, improves 
water solution spreading and absorption speed, as well as a spe-
cific amount of the adsorbed flame retardant. In this way, the 
plasma pre-treatment of wood and wooden products improves its 
flame retardation [1, 2 and 6]. 

The objective of this paper was to study the effect of plasma 
pre-treatment on wood surface as well as the effect of wood 
surface polarity on the wetting phenomena, both aiming to im-
prove the capillary impregnation process. This study has been 
developed as part of a large research on plasma-chemically acti-
vated wood surface and flame retarded rain-forest wood. 

2. Experimental Investigation 
Wetting phenomena of wood may be characterized by using 

thermodynamic wetting parameters, for example contact angles, 
surface free energy, and work of adhesion, work of spreading or 
work of wetting. It is important to know that such parameters are 
by definition bulk measurements, and they do not directly 
describe the interaction at a molecular level [3]. 

Some basic relations for the study of wetting phenomena 
If a liquid droplet is placed on a smooth, non-porous and 

rigid solid both exposed to a gas/vapor, Fig. 1, and if the whole 
system is in equilibrium state, the contact angle θ is then defined 
as the angle between the tangent to the liquid surface and the 
liquid/solid surface at the point of liquid/solid/gas contact. 
Young’s equation expresses the relation between the contact 
angle θ for a droplet of liquid deposited on a flat horizontal ideal 
- smooth, non-porous and rigid surface and the work of adhesion, 
Wa, defined (Dupré, 1869) as the work required to separate unit 
area of the solid-liquid interface, i.e.: 

Wa = γL (1 + cosθ) (1) 
where γL is the surface free energy of the liquid (L) surfaces 

in vacuum assuming that γL≈ γLG (γLG - the surface free energy of 
the liquid exposed to a gas/vapor) [3]. 

 
Fig. 1. Schematic illustration of Young-Bikerman-Good model of 

wetting phenomena - if a liquid drop is placed on a smooth, non-porous 
and rigid solid, both exposed to a gas/vapor: if the system is not in equi-
librium and the liquid ‘wets out’ the solid then the liquid exhibits a 
contact angle of zero against the solid, i.e. so if γSG. > γSL + γLG, then 
cosθ = 1 and sinθ = 0 (θ = 0) and γLG sinθ = 0 (Good, 1993). 

Neumann and Good (1979) reviewed the classical techniques 
for measuring contact angles. Using well defined liquid, if the 
contact angle can be measured on a solid surface, the work of 
adhesion can be determined and the solid surface can be revealed. 
The most widely used technique, also regarding wood, involves 
digital image analysis of the profile dimensions of a droplet 
deposited on a horizontal surface from which the contact angle 
can be calculated - referred to here as the sessile drop method. 

A low contact angle indicates a high solid surface energy, and 
a high or sometimes complete degree of wetting. For example, a 
contact angle of zero degrees will occur when the droplet has 
turned into a flat puddle; this is called complete wetting Fig. 1. 

The wetting phenomena on a real (non-ideal) - rough, porous, 
heterogeneous, or hygroscopic wood surface, Fig.2, can be in-
volved by: i - the spreading of liquid over a solid surface; ii - the 
wicking of a liquid into a porous solid (as wood). 

 

Fig. 2. Young-Bikerman-Good model of wetting phenomena - the 
wetting phenomena on a real surface can be involved by: i - the 
spreading of liquid over a solid surface; ii - the wicking of a liquid into a 
porous solid (as wood). Wetting does not include dissolution or swelling 
of the solid by the liquid or any kind of chemical reaction between the 
materials that changes the system composition (Berg, 1993). 

 

Rough, Porous, Heterogeneous, or 
Hygroscopic Surface 

Spreading 

Wicking 

Liquid 

Solid (Wood) 

Gas/Vapor 

Spreading 

Liquid 

Solid (Wood) 

Gas/Vapor 

γSL γSG (γS) 

γLG (γL) 

γ L
G
.si

nθ
 

γLG.cosθ 

Strain Field 

θ 

Smooth, Non-Porous and 
Rigid Surface 

50

http://en.wikipedia.org/wiki/Wetting


   a) 
 

 

 

 

 

 

 

 

   b) 

Fig. 3 Time-depending change of contact angle θ of a liquid as it advances slowly over a non-ideal Tzalam (Lysiloma bahamensis) wood surface (e.g., not 
chemically homogeneous, rough or not perfectly smooth, porous and hygroscopic as in the case of most practical wood surfaces) - contact angle measure-
ments 2 (a) and 24 (b) hours after atmospheric dielectric barrier discharge (DBD) surface treatment in air with specified test liquids: Water (bifunctional; θ = 
70.2 ± 0.1 deg, total surface energy - 72.8 mN/m; dispersive component - 21.8 mN/m; polar component - 51 mN/m; acid component - 25.5 mN/m, and base 
component - 25.5 mN/m); Ethylene glycol (acidic, θ = 41 ± 0.1 deg, total surface energy - 47.5 mN/m, dispersive component - 29.3 mN/m; polar component - 
18.2 mN/m; and n-Hexadecane (neutral, θ = 10.3 ± 0.1 deg, total surface energy - 27.6 mN/m, dispersive component - 27.6 mN/m; polar component - 
0 mN/m). 

Wetting does not include dissolution or swelling of the solid 
by the liquid or any kind of chemical reaction between the 
materials that changes the system composition. It must be 
emphasized that the contact angle of a liquid as it advances 
slowly over a non-ideal surface (e.g. not chemically 
homogeneous, porous and not perfectly smooth, as in the case of 
wood surfaces) changes (decreases) synchronously to droplet 
change and movement. The droplet was deposited by a syringe 
pointed vertically down onto the wood surface, and a high resolu-
tion camera captures the image, which can then be analyzed by 
using image analysis software. By taking pictures incrementally 
as the droplet advances over the surface, the user can acquire a 
set of data to get a good time-depending change of the contact 
angle Fig. 3 and 4. 

Experimental investigation 
The apparatus used for this study was a KRÜSS Drop Shape 

Analyzer DA100. Measurement of the contact angle with three 

liquids ensures maximum accuracy when determining the surface 
free energy of wood. Precisely controlled tempering and humidi-
ty chambers help to provide a realistic modeling of the process 
conditions. Measuring range (referred to image analysis): contact 
angle - 1÷180 deg; surface free energy - 0.01÷1000 mN/m. 
Measurement resolution: contact angle - 0.1 deg; surface free 
energy - 0.01 mN/m. The aim of this study was to verify possibil-
ity of determining the contact angle values of the plasma pre-
treated wood surface and calculate the surface free energy and its 
components from the obtained contact angle values using Zis-
man’s, Equation of state (EOS), Fowkes and Wu’s theory and 
calculation method. All methods described there are integrated in 
the KRÜSS Drop Shape Analysis programs DSA1 and DSA2. 

On the basis of prior art, as well as on our own experience in 
plasma-aided capillary impregnation of wood and wooden mate-
rials, [1, 2], an oxidative (nitrogen oxides, NOx) surface plasma 
pre-treatment has been applied on the test samples for 60 sec in a 
non-equilibrium cold plasma of atmospheric  

 
Table 1. Calculated Total Free Surface Energy of Wood Samples at about 22 0C  

Wood 
Sample 

Sessile Drop Test Components of Total Surface Free Energy 
Total Surface Free Energy Fowkes Theory Wu Theory 

Zisman 
Theory 

Equation of state 
(EOS) Theory 

Fowkes 
Theory 

Wu 
Theory 

Polar 
Com-
ponent 

Dispersive 
Compo-

nent 

Polarity/ 
Non-

Polarity 

Polar 
Com-
ponent 

Dispersive 
Compo-

nent 

Polarity/ 
Non-

Polarity 
mN/m mN/m mN/m mN/m mN/m mN/m - mN/m mN/m - 

Tzalam (Lysiloma bahamensis) 
2 h old NA 47.08 ± 21.17 57.27 63.18 32.09 25.18 0.56/0.44 38.88 24.30 0.62/0.38 

24 h old 30.33 32.68 ± 4.96 34.77 37.54 6.50 28.27 0.19/0.81 9.78 27.76 0.26/0.74 
Caoba Mahagony (Swietenia macrophylla) 

2 h old 27.90 35.41 ± 7.44 37.96 40.62 10.99 26.96 0.29/0.71 14.35 26.27 0.35/0.65 
24 h old 29.77 33.89 ± 5.48 36.07 38.77 8.19 27.88 0.23/0.77 11.46 27.31 0.30/0.70 

Mexican White Cedar (Cupressus Lusitanica) 
2 h old NA 43.47 ± 21.75 49.25 56.20 24.41 24.84 0.50/0.50 33.25 22.95 0.59/0.41 

24 h old 31.44 29.17 ± 7.65 32.08 34.81 2.66 29.42 0.08/0.92 5.95 28.87 0.17/0.83 
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a) 

b) 

Fig. 4. Time-depending change of contact angle θ of a flame retardant water solution as it advances slowly over a non-ideal (wood) surface (e.g., not 
chemically homogeneous, rough or not perfectly smooth, and porous as in the case of most practical wood surfaces): PhN-FR - 30 mass % water impregna-
tion solution of phosphor and nitrogen containing flame retardant; PhN-FR-A5 - water solution with 5 vol. % anionic surfactant; PhN-FR-A5-S - water solu-
tion with 5 vol. % anionic surfactant and 0.1 vol. % spreader; PhN-FR-A10-S - water solution with 10 vol. % anionic surfactant and 0.1 vol. % spreader - 2 
(a) and 24 (b) hours old surfaces - after atmospheric dielectric barrier discharge (DBD) surface treatment in air. 

dielectric barrier air discharge (DBD) in industrial frequency 
(50 Hz) and 18 kV (RMS) or 25 kV (PV) voltage. 

Results and discussion 

Wood surface energy as quality parameter of plasma treated 
wood surface 

Since wood surfaces are porous, rough and not perfectly 
smooth, sessile drop method requires some type of video capture 
in order to measure the contact angle which changes as the drop-
let is absorbed. Time-depending change of contact angle θ of 
three probe liquids - water, ethylene glycol and n-hexadecane, as 
its advance slowly over the non-ideal wood surface are presented 
in Fig. 4.  

Based on the contact angle data of plasma activated wood 
surface, the total surface free energy and its components were 
obtained using Zisman’s Equation of state, Fowkes and Wu’s 
theory and calculation methods. Total surface free energy and its 

polar and dispersive (non-polar) components are presented in 
Fig. 5 and Table 1. 

The dispersive and polar surface free energies of the three 
rain-forest wood species were obtained using Wu and Fowkes 
theories and calculation methods. In general, plasma surface 
activated woods show a high polar surface free energy 
component (PEC) and polarity p. The fresh (2-hours-old) plasma 
activated surfaces show considerably greater polarity than surfac-
es kept for a long time (24-hours-old) after plasma pre-treatment: 
Tzalam - 0.56 against 0.19; Mexican White Cedar - 0.50 against 
0.08; Caoba Mahogany - 0.29 against 0.23 (Fowkes method); 
Tzalam - 0.62 against 0.26; Mexican White Cedar - 0.35 against 
0.30; Caoba Mahogany - 0.59 against 0.17 (Wu method). Plasma 
activated wood surfaces show a very high dispersive surface 
energy. 

The 24-hours-old plasma treated surfaces have large non-
polarity (1 - p): Tzalam - 0.81; Mexican White Cedar - 0.77 and 
Caoba Mahogany - 0.92 (Fowkes method);  

 
Table 2. Wood surface energy, especially the polar component (or the polarity in general) is related to the surface composition  

- especially to the oxygen/carbon ratio (XPS analysis) 

Wood Sample 

Wood Surface Analysis of Plasma Surface Treated Samples (DBD, 18 kV RMS, 50 Hz) 
XPS Analysis Sessile Drop Test - Fowkes Theory Sessile Drop Test - Wu Theory 

Oxygen/ 
Carbon Ratio 
(nO/nC) 

Total 
Surface 

Free 
Energy 

Polar 
Com-
ponent 

Dispersive 
or Non-

Polar 
Component 

Polarity 

Total 
Surface 

Free 
Energy 

Polar 
Com-
ponent 

Dispersive 
or Non-

Polar 
Component 

Polarity 

- J/m J/m J/m - J/m J/m J/m - 
Tzalam (Lysiloma bahamensis) 
After 2 h 0.6131 57.27 32.09 25.18 0.560 63.18 38.88 24.30 0.615 
Mexican White Cedar (Swietenia macrophylla) 
After 2 h 0.4477 49.25 24.41 24.84 0.495 56.20 33.25 22.95 0.592 
Caoba Mahogany (Cupressus Lusitanica) 

After 2 h 0.3970 37.96 10.99 26.96 0.290 40.62 14.35 26.27 0.353 
In General 
Cellulose 0.8300 

 Lignin 0.3300 
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Fig. 5. Total surface energy of three rain-forest (Mexico, Yucatán) heart 
wood samples - Mexican white cedar (Cupressus Lusitanica), Caoba 
mahogany (Swietenia macrophylla), and Tzalam (Lysiloma bahamensis), 
2 and 24 hours after DBD - plasma treatment in air. 

Tzalam - 0.74; Mexican White Cedar - 0.70 and Caoba Mahoga-
ny - 0.83 (Wu method). Approximately 0.70 to 0.92 of the overall 
wood surface energy is attributed to dispersion forces, Table 1. 

The 2-hours-old plasma treated surfaces have lower non-
polarity (1/p): Tzalam - 0.44; Mexican White Cedar - 0.50 and 
Caoba Mahogany - 0.71 (Fowkes method); Tzalam - 0.38; Mexi-
can White Cedar - 0.41 and Caoba Mahogany - 0.65 (Wu meth-
od) - approximately 0.38 to 0.71 of the overall wood surface 
energy is attributed to dispersion forces Table 1. 

Zisman’s theory and EOS theories are not suitable for high 
energy surfaces such as 2-hours-old plasma activated wood sur-
faces. They are mostly used for low energy surfaces Table 1. 

Fowkes and Wu’s theories are more suited for higher energy 
wood surfaces, and since they are rooted in theories about capil-
lary impregnation, they are more suitable for the characterization 
of interactions where the solids and liquids have a high affinity 
for one another, Table 1. 

Surface energy and chemical composition  
By means of XPS/ESCA-analysis it is possible to analyze the 

chemistry and the surface reorganization after plasma-chemical 
pre-treatment to a depth of 5 to 10 nm. 

 
Fig. 6. The response of wood surface on plasma-chemical surface pre-
treatment is complex but it appears to be controlled by its surface compo-
sition, especially by the introduced oxygen containing functionalities and 
increased surface polarity. 

Obviously the polar component of surface free energy (for 
plasma treated woods) is well correlated with the Oxygen/Carbon 
(nO/nC) ratio (XPS/ESCA-analysis), Table 2. 

Among the main factors determining the chemistry of the 
wood surface, the adsorption of gases and vapors (water), chemi-
cal composition, aging, thermal processing and machining, ex-
tractives migration to the surface and surface inactivation, plas-
ma-chemical pre-treatment (activation) may be perceived as 
management tool for purposeful changing the surface chemistry 
and the total surface free energy. Wood surface free energy, 
especially its polar component is related to the distribution of 
oxygen containing groups. The response of wood surface to 
plasma-oxidative (DVD) treatment is complex but appears to be 
controlled by its oxygen containing functionalities [6, 7].  

The observed increase in surface free energy has to be com-
bined to significant reduction of surface tension of the flame 
retardant containing water solution by the addition of surfactants 
and spreaders Fig. 4.  

The main objective of plasma surface oxidizing pre-treatment 
of wood is the conversion of the low-energy in high-energy wood 
surface, Fig. 6.  

Conclusion 
The wetting theory, expressed in terms of thermodynamic 

wetting parameters, such as the contact angle and the surface free 
energy, is the most widely used approach in adhesion science at 
present, and this work considers only this type of capillary im-
pregnation phenomena, also referred to here as wetting 
phenomena. Surface energy analysis helps define and illustrate 
the impact of the plasma-chemical surface activation on plasma-
aided capillary impregnation. This activation significantly de-
creases the contact angle within the range of 10÷15 deg and 
increases considerably the polar component of surface free ener-
gy. 
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