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Abstract

The authors propose here a dynamic multi-body model of a wind turbine which includes a rotor, a drive train and an electrical
generator. The drive train has a three-stage gearbox which contains two high-speed parallel gear stages and a low-speed
planetary gear stage. The model consists of 10 bodies and has 11 degrees of freedom. The model takes into account the
stiffness of the engaged tooth pairs as time functions. In this model the aerodynamic and generator torques are applied as
external loads. The calculation permits to obtain time series of torsional vibrations and amplitude-frequency characteristics
for an industrial wind turbine. The results show that transient loads in the gearbox have complex character and require special

attention. The modeling can be used for fault and wear gear diagnostic.

Key Words : wind turbine, drive train, vibrations

1. Introduction

The wind energy application has been growing rapidly for the last few years. In the last ten
years the global installed capacity of wind energy has increased 20 times. This trend is
expected to continue in Europe. The increase in the rotor and hence size of the turbine leads to
a complicated design of the drive train in the wind turbine beside higher requirements of

turbine reliability.

Design calculations for a wind turbine base on simulation of mechanical loads on the turbine
components caused by external forces. The external forces are the wind, the electricity grid

and sea waves for offshore applications.

The multi-body simulation techniques are used to analyze the loads on internal components of
drive trains. The simplest model with one degree of freedom (DOF) for each drive train
component is used to investigate only torsional vibrations in the drive train. In this model all
bodies have one DOF, i.e. the rotation around their axis of symmetry. Therefore, the coupling
of two bodies involves 2 DOF’s. Gear contact forces between two wheels are modeled with a
linear spring acting in the plane of action along the contact line (normal to the tooth surface).
This modeling is valid for heavily and moderately loaded gears, Minchev et Grigorov [1998],

Kahraman [1993]. More complex model with 6 DOF’s for each drive train component is used

CFSER 2010




1ére Conférence Franco-Syrienne sur les énergies renouvelables Damas, 24-28 Octobre 2010

for investigation of the influence of bearing stiffness on the internal dynamics of the drive
train. All drive train components are treated as rigid bodies. The linkages in the multi-body
model, representing the bearing and tooth flexibilities, have 12 DOF’s, Parey et al. [2006],
Vedmar et Andersson [2003]. Finally, it is used a flexible model in which the drive train
components are modeled as finite element models instead of rigid bodies, Ambarisha et
Parker [2006], Andersson et Vedmar [2003], Lundvall et al. [2004], Vinayak et Singh [1998].
This model adds a possibility of calculating stress and deformation in the drive train
components in some time. Any addition to the model leads to additional information about
dynamics of the drive train but makes the modeling and the simulation more complicated.
Litak et Friswell [2004], Parey et al. [2006], Wojnarowski et Onishchenko [2003], Yuksel et
Kahraman [2004] present the effects of the tooth defects and the wearing on the gear

dynamics.

The modern wind turbines have a planetary gearbox. Studies on the vibrations in a planetary
gear system have been done by Ambarisha et Parker [2006], Dresig et Schreiber [2005],
Khang et al. [2004], Lin et Parker, [1999], [2002], [2007], Parker [2008], Theodossiades et
Natsiavas [2001]. The tooth meshes are modeled as a linear spring with stiffness which is a
time function. For this reason the vibration equations of a planetary gear system are
differential equations with periodic coefficients, Ambarisha et Parker [2006], Khang et al.
[2004], Lin et Parker [1999], [2002], [2007], Theodossiades et Natsiavas [2001].

The applications of these modeling techniques on different drive trains of wind turbines are
presented in Gold et al. [2004], Heege [2003], [2007], Peeters et al. [2002], [2004], [2006],
Peeters [2006], Rosas [2003], Shlecht et Shulze [2003], [2006], Shlecht et al. [2004],
Serensen et al. [2003], VOITH [2006]. Different simulations for specific wind turbines are
presented in Ekanayake et al. [2003], Fuglseth [2005], Hansen et al. [2002], Ramtharan et al.
[2007], Shi et al. [2007], Serensen et al. [2003]. Todorov et al. [2007], [2009] present the
numerical investigations for the given wind turbine in this paper, where the meshes stiffness
are modeled as constant springs. In this case the differential equations, which describe the

torsional vibrations of the wind turbine, have constant coefficients.

2. Dynamic model of the wind turbine

The wind turbine consists of a rotor, a drive train and a generator (Fig.1). The drive train has a

gearbox with three stages. The gear stages include two high-speed parallel gear stages (helical
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gear pairs) and a low-speed planetary gear stage (three identical planets with spur teeth, sun

and fixed ring wheel) (Fig.2).

Safety coupling ¢ s pl.2.3 h
| 1

[ Gearbox |  Generator

"-.__\.\ H igh-s.i)t.’ ed shaft

b

| [ LA N\ \Gearbox
[ — A7\ \ suspension

|\ 'Low-speed shaft

| |\ “Main bearing
{ | LN )
| i il B Tower

Fig. 1. Schematic sketch of wind turbine

Fig. 2. Sketch of gearbox: h-hull, c-carrier, p1,2,3-planets, s-sun,

gl,2,3-gears

The dynamic multi-body model is shown in Fig.3. It consists of a rotor with 3 rigid blades, a
low-speed elastic shaft, a gearbox with 3 gear stages, a high-speed elastic shaft and a

generator rotor. Thus, the model consists of 10 bodies and 11 DOF’s.

Rotor Low-speed shaft  Carrier Gearbox hull  Planet1  Sun High-speed shaft

C - hull support stiffness
C,- ring-planet stiffness
Cps - planet-sun stiffness
G2 - gear 1-gear 2 stiffness

Cg23 - gear 2-gear 3 stiffness

C, - low-speed shaft torsional stiffness
G, - medial shaft torsional stiffness

C; - hight-speed shaft torsional stiffness

Planet 2 Medial shaft Planet 3

Fig. 3. Dynamical model of wind turbine
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The gear contact forces between wheels are modeled by linear spring acting in the plane of
action along the contact line (normal to the tooth surface), Veits et al. [1984], Minchev et
Grigorov [1998], Zakrajesek [1989]. The stiffness gear is defined as a normal distributed
tooth force in a normal plane causing the deformation of one or more engaging tooth pairs,
over a distance of 1 um, normal to a envolvent profile in a normal plane, Deutsches Institut
fiir Normung [1987]. This deformation results from the bending of the teeth in contact
between the two gear wheels, the one of which is fixed and the other is loaded. The stiffness
varies in the time and can be expressed in a time Fourier series form, Khang et al. [2004], Lin

et Parker [2002], [2007], Theodossiades et Natsiavas [2001]. For instance,

Cgi (t) - Cgi + Cgiv (t)

where C 'y and C g, are mean and time-varying components of the stiffness. The variation

part is periodic with frequency Q; =z;®; (z; is the number of teeth on the gears, @; is mean
angular velocity of the gear shafts) and it is expressed in Fourier series as
® .
Cgiv (1)=2C,, El(as sin sQ;t + b c0s sQ;t)

where

ag = —%sin[sn(e —2p)]sin(sze)

by = _2 cos[sz(s — 2 p)]sin(s )
ST

Without loss of generality, it can be accepted that p =0 (p is the phasing between planets)
Lin et Parker [2002]. In practice, three or four Fourier terms reasonably approximate the

stiffness variation.

Damping and friction forces are not included. These assumptions are valid for heavily to
moderately loaded gears that are correctly for a large wind turbine, Kahraman [1993],

Minchev et Grigorov [1998].
It is also accepted that the masses of the planets are identical.

In this article Lagrange’s equations are used to obtain the equations of the torsional vibrations
of the wind turbine, Amirouche [2006], Coutinho [2001], Nikravesh [1988], Shabana [2005],
Wittenburg [1977]. The vector of the generalized co-ordinates is
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{Q}:[¢h P O ¢pl ¢p2 ¢p3 Ps ¢gl ¢g2 ¢g3 ¢gn:|T

where ¢; (i=h,c,r,pl,p2,p3,s,g1,g2,g3,gn) are the rotational angles of the ring (gearbox hull),

carrier, rotor (hub), planet 1, planet 2, planet 3, sun, gear 1, gear 2, gear 3 and the generator

rotor (Fig. 3).

The differential equations, describing the torsional vibrations of the wind turbine, are

[M1{G} +[C(1) - @*C,{g} =T},

where M is the inertia matrix and C is the stiffness matrix. The matrix C,, results from the

carrier rotation.

The vector of the external forces, caused by the wind and the electricity grid, is
T4=[0 0 Toro 00 0 00 0 0 T,,[,
where 7., and Ty, are the acrodynamic and electromagnetic torques.

The non-zero numbers of inertia matrix M are

myy=Jy+J, +mcl§r +J,+ mrlczr +3J, +3mpZC2r +3mprc2 +J,+ mslczr +14 +mg11§12 +

2 2 .

+ 1g2 + mg21g22 + 1g3 + mg3lg23,
g =myy=Jo+J,+3J ,+3myrt;
my3=my=my3=m3y=my3=J,;

My =my)=ms=me=mMg)=Ms] =My 4 =My =NM)5=Ms)=M)c=Mg)=0M44=
=mss=mge=1p;
myg=myy=my7=1Ig;mg=mgy=mgg=1Iq;mg=mg;=mgg=1g7;

. _ 2, _
my1o =myo1 =m0 =Lg3; My =Jo+J +3J ) +3mpyres myy g =1gy.

The non-zero numbers of stiffness matrix C are
e =Cy (1521 +1% )+ Cpp (z)(sr,% +312 +3r) — 61z, )+ C s (t)(3r3 +3r7 + 317 — 61,17 cos a)+

+Cg12(f)(1g12 _lg22)2 +Cg23(f)(lg22 —lg23)2;
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clp=¢21=Cpp (t)(3rc2 + 3r1§ = 3rgr, )+ Cps (t)(3r02 + 3r§ —3r,rgcos a)

ca=c41=Cpp (t)[ 2_ RTp cos(wt +a)+r, e'p cos(wrt + a)]+

(t)[ — Iy cos(at —a)+r, T COS a)tl

cs=c¢51=C rp(t)lr +IRry cos(60 — a)t—a)—rr cos(60 — ot — )]+

Cps(t)[rp +7 cos(60 ot +a)-r, " cos(60 — a)t)}

c6=¢c61=C rp(t)[r + IRy cos(60+a)t+a)—rr cos(60+a)t+a)]+

r, cos(60 + wt — a)—r,r

sp cos(60 + a)t)l

+C s(t)[r + 1.1y
=c71=Cp(OBrd - = (g12 —1422)
cl7 =71 =Cps(OBrg —rergcosaf ¢ g =cgy=Cg12(D)rgi\lgin —lgap Jeosacos f;
c19 = o1 = Ca12(7g21(lg12 — 922 Jo0s @008 B+ Cgn3(1)rgna lg22 — 23 Joos acos B;
110 =c10,0 = Cga3 () 3(g22 lg23 Jeos xcos f3;
2 2 2 2
¢22 = Cop(OBr2 + 32+ e ()32 4312 )
€23 =-033= =-C}; ¢ A=C40= rp(t) F 1y COS(C!)t+ o J+ Cps(t)l_ —IIp COS(&)I— )}
c5=052=Cpp (t)lr —rerp cos(60 — ot — a )J+ Cps (t)lr +1erp cos(60 — a)t+a)}
c26=¢62=Cpp (t)lr — 11 cos(60+ ot + a)J+ Cps (t)lrg +1erp cos(60+ wt — a)l
2 2.
Cp7=C7p = —3Cps(t)rcrs CoSQr; Cq4=C55=Cq6 = Crp (t)l’p + Cps(t)l’ ;
C47=C74= S(l) p Ccoswt; c5 J=C15=- S(t)r p COS(6O a)t)
C6,7=C76 = S([)F "p COS(60+0)Z) 17 = C2 +3Cps(t)r5‘2; 78 = —Cz;
2 2 2 2
cgg =Cor +Cyq1p(Drg 1 cos” acos ,B+s1n af cgg=Cgra(t)rg 21 cos” acos ﬂ+s1n a
2 2
€99 =\Cg12(D)rg 21 +Cqp3(Drg 22 cos” acos ,B+s1n a
c =Cy23(O)r 0ot (cos2 acos’ £+ sin? a}
9,10 = Cg23()rgn07g3

10,10 = C3 + Cg23(0)r, 3(cos2 aCcos ﬂ+ sin? a)
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cro1 =—¢c1,11 =—C3

The non-zero number of C,, is

2
Cany = 3myre .

3. Results

The drive train data is listed in Table I. It is also assumed that the aerodynamic torque and

electromagnetic torque are 7., =—Tgp, = 15000 Nm. The rotor is turned with angular
velocity @ =18 tr/min. The mesh stiffness between gears is shown in fig.5.

Table 1. Drive Train Data

J}, -inertia of the hull (kg-m?) 473

J -inertia of the carrier (kg'm?) 58

m,, - mass of the carrier (kg) 786

J, - inertia of the rotor (kg:m?) 1.57-10°
m, - mass of the rotor (kg-m?) 4144

J, -inertia of the planets (kg-m®) 1.12

my, -mass of the planets (kg) 58

J -inertia of the sun (kg'm?) 0.86

mg -mass of the sun (kg) 146

Jg1 -inertia of the gear 1 (kg-m?) 14

mg1 -mass of the gear 1 (kg) 429

Jgp -inertia of the gear 2 (kg'm?) 2.09
my) -mass of the gear 2 (kg) 159

J g3 -inertia of the gear 3 (kg'm?) 1.27
my3 -mass of the gear 3 (kg) 134

J g -inertia of the generator (kg'm?) 93.22

C) -stiftness of the low-speed shaft (Nm/rad) 7.19-107
C, -stiffness of the internal shaft (Nm/rad) 1.40-10’
Cj5 -stiffness of the high-speed shaft (Nm/rad) 0.15-10’
C,, -mean stiffness of the engaging tooth pairs ring-planets in the low-speed | 0.73- 10°
planetary gear stage (N/m)

Cps -mean stiffness of the engaging tooth pairs planets-sun in the low-speed 0.73-10°
planetary gear stage (N/m)

Cg12 -mean stiffness of the engaging tooth pairs in the 1** high-speed parallel | 2.02-10°
gear stage (N/m)
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Cyo3 -mean stiffness of the engaging tooth pairs in the 2™ high-speed parallel 0.11-10°
gear stage (N/m)

rp - ring radius (mm) 420

r,. - carrier radius (mm) 270

1, - planets radius (mm) 160

7, - sun radius (mm) 110

1o1 - radius of gear 1 (mm) 290

Iy - radius of gear 2 from the 2" stage (mm) 95

1922 - radius of gear 2 from the 3" stage (mm) 185

1y3 - radius of gear 3 (mm) 80

I, -distance between hull center of gravity and centers of gravity of rotor, carrier, | -130

and sun (mm)

l41, -distance between hull center of gravity and center of gravity of gear 1 (mm) | -130

l427 -distance between hull center of gravity and center of gravity of gear 2 (mm) 277

l473 -distance between hull center of gravity and center of gravity of gear 3 (mm) 557

[ -distance between hull center of gravity and hull support (see fig.4) (mm) -1282
I, -distance between hull center of gravity and hull support (see fig.4) (mm) 468
Erp -ring-planet contact ratio 1.9342
€ ps -planet-sun contact ratio 1.6242
€417 -contact ratio of gears the 1* high-speed parallel gear stage 1.6616
€423 -contact ratio of gears the 2" high-speed parallel gear stage 1.5984
a - pressure angle (°) 20
[ - helix angle (°) 20
gear ratio 34.654
Gear 3 C.G.
Sun C.G. Hull C.G. Gear2 C.G.
\n
< i R : T “
) il g{‘“
S
[ s -1
Carrier C.G. LE j j;
= Planet C.G. Gear 1 C.G.

Fig.4
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The results are shown in Fig.6-16.
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Fig. 5. Mesh gears stiffness
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Fig. 6. Hull rotational angle @y,. From top: time series, amplitude-frequency characteristic
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Fig. 7. Carrier rotational angle ¢c . From top: time series, amplitude-frequency characteristic
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Fig. 8. Rotor rotational angle ¢,, . From top: time series, amplitude-frequency characteristic
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Fig. 9. Planet 1 rotational angle ¢pl' From top: time series, amplitude-frequency characteristic
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Fig. 10. Planet 2 rotational angle ¢p2 . From top: time series, amplitude-frequency characteristic
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Fig. 11. Planet 3 rotational angle ¢p3' From top: time series, amplitude-frequency characteristic
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Fig. 12. Sun rotational angle @. From top: time series, amplitude-frequency characteristic
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Fig. 13. Gear 1 rotational angle ¢g1 . From top: time series, amplitude-frequency characteristic
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Fig. 15. Gear 3 rotational angle ¢g3 . From top: time series, amplitude-frequency characteristic
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Fig. 16. Generator rotor rotational angle ¢gn . From top: time series, amplitude-frequency characteristic
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4. Conclusion and future researches

The purpose of this article is to develop a detailed multi-body model of the wind turbine with

a complex drive train.

The time series and amplitude-frequency characteristics of absolute rotation angles of the

drive train parts are presented.

The analyses of the results show that there are poliharmonic vibrations in a wide range. The
existence of the induced vibrations with rotation frequency and its multiplicities is connected
with changeable stiffness of the gearing. Moreover, intensive parametric vibrations with
frequency, which is equal to a half frequency of rotation and its multiplicities, generate
themselves. In addition, the activity of vibrations of some second rate harmonics is significant

and its also commensurable with that one of the main harmonics.
The results confirm the presence of vastly dynamic loads in the gearbox parts.

Future researches will extend the current model and will add the effects of bearing

flexibilities.

Finally, it is important to validate and improve the wind turbine dynamic model by obtaining

experimental measurements.
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