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Abstract

Hydroxyl-terminated polybutadiene (HTPB) is widely studied and the most used prepoly-
mer for the binder system of composite solid propellants. A suitable functionalization of
HTPB with energetic groups greatly improves the performance of the propellant. There-
fore, the nitration of HTPB plays an essential role in the obtaining of high-energy binders.
Among the reported methods, the nitration of HTPB using nitryl iodide (NO2I) was distin-
guished as the most preferable due to the facilitated synthesis and product purity. However,
the thus established synthesis is long and laborious; therefore, in the present work we
focus our attention on the improved procedure using ultrasonic conditions. The resulted
nitro-HTPB was characterized using FTIR, 1H NMR, GPC, and DSC analyses. Also, based
on the recorded IR-spectra a ratiometric analysis for determining the nitration rate was
established, which could replace the expensive and time-consuming NMR analysis that
was used.

Keywords: nitration; HTPB; ultrasonic activation; energetic binders; Fourier-transform
infrared spectroscopy (FTIR)

1. Introduction
Hydroxyl-terminated polybutadiene (HTPB) has been one of the most widely used

binders for composite solid propellants for several decades, valued for its excellent me-
chanical properties, low cost, ease of processing, and compatibility with a broad range
of oxidizers, explosives, and metallic fuels [1–4]. Initially employed in composite rocket
propellants, it is now utilized across a wide spectrum of composite energetic materials [5–9].
Conventional HTPB, however, is essentially non-energetic. It functions effectively as
a binder, fuel, and structural matrix but contributes minimally to the overall energetic
output of the formulation. This limitation has stimulated sustained interest in energetic
binder systems, capable of simultaneously providing mechanical integrity and enhancing
propellant performance.

Among the various existing options, nitrated HTPB stands out as a promising choice
due to its structural similarity to conventional HTPB, which facilitates its integration into
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established manufacturing processes while simultaneously providing a substantial increase
in the energetic content of the binder [1,2,10–12]. The nitration process introduces nitro
(-NO2) and nitrate ester (-O-NO2) functionalities into the polybutadiene chain, thereby
improving the oxygen balance and increasing the energy density of the polymer [13–15].
As a result, nitrated HTPB exhibits a significantly higher heat of combustion and a more
favorable oxygen balance than unmodified HTPB, enabling theoretical specific impulse
increases of approximately 10–30 s depending on the oxidizer system and formulation [1,16].
This improvement may reduce required oxidizer content, increase payload capacity, or
allow more compact motor design. Furthermore, nitration increases polymer density from
approximately 0.9 g/cm3 to 1.2–1.3 g/cm3, contributing to higher overall energetic material
density and improved volumetric energy characteristics—an essential valuable feature
under stringent volume constraints [2,17].

Another notable advantage of nitrated HTPB is the retention of many desirable me-
chanical properties of conventional HTPB. Because nitrated HTPB is derived directly from
HTPB, it can preserve elasticity toughness, and strong adhesion to solid fillers. With appro-
priate control of the nitration degree and curing conditions, nitrated HTPB-based propellant
matrices can exhibit mechanical characteristics comparable to, or in some cases superior
to, those obtained with conventional binders. Owing to these properties, nitrated HTPB
is considered a promising material for a variety of advanced propulsion and energetic
applications. Potential areas of use include solid rocket motors, where increased specific
impulse and volumetric efficiency translate directly into improved range and payload of the
rocket; orbital maneuvering motors that require high performance within strict geometric
constrains; divert and attitude control systems; and gas generators and various CAD/PAD
devices [16]. Nitrated HTPB is also relevant for low-signature propellants when paired
with nitramine oxidizers or phase-stabilized ammonium nitrate, for insensitive munitions
where performance must be balanced with safety, and for plastic-bonded explosives [1,16].

Despite these advantages, several challenges have limited the widespread adoption of
nitrated HTPB. Traditional nitration methods are highly exothermic and rely on hazardous
acidic media, creating significant safety and scale-up concerns. Controlled and inherently
safer approaches, such as continuous-flow nitration, have recently emerged as promising
alternatives. These techniques generally offer improved thermal management, reduced
by-product formation, enhanced operational safety, and superior reaction reproducibility
compared with conventional batch nitration [18,19]. Additionally, nitrated HTPB often
exhibits higher intrinsic viscosity than standard HTPB at comparable molecular weight,
complicating mixing and casting operations. Consequently, optimizing both the molecular
weight distribution and the functionalization pattern is essential to achieving improved
processability without compromising energetic performance [17].

Advances in synthesis technology therefore play a crucial role in overcoming these
limitations. Modern strategies increasingly emphasize not only chemical modification but
also process intensification and the development of robust processing methodologies. The
overarching goal is to produce consistent and high-quality energetic binders with well-
defined properties suitable for reliable large-scale manufacturing [16,18]. Continuous-flow
nitration meets many of these requirements; however, its implementation is hindered by the
need for complex expensive equipment and instrumentation and has limited applicability
in the context of HTPB.

The chemistry of nitro compounds has been intensively explored during the last three
decades. Various reaction pathways for the nitration of HTPB have been reported [20–25].
The most popular methods include the use of fuming nitric acid, nitrogen monoxide, nitryl
iodide, nitromercuration–demercuration (HgCl2-NaNO2), and epoxidation and subsequent
nitration with N2O5 in dichloromethane. Among them, due to the facilitated synthesis,
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the product purity, the non-destructive nature, and the relatively low toxicity of the ni-
trating agent, while retaining the properties of starting olefin, the nitration of HTPB using
nitryl iodide (NO2I) stands out as a preferable approach for obtaining nitro-functional
HTPB [26–29]. In this synthesis, nitryl iodide is formed in situ by the interaction of NaNO2

and iodine, which attacks HTPB double bonds and gives the desired nitro derivative after
subsequent elimination of HI from the formed nitro-iodo intermediate. However, the thus
established procedure is long and laborious; therefore, in the present work we focus our
attention on an improved procedure employing ultrasonic conditions.

The aim of the present study is to investigate the influence of the ultrasonication on
both the efficiency and the rate of the nitration process conducted via the classical batch
method, as well as to assess the properties of the resulting nitro-HTPB.

2. Materials and Methods
2.1. Materials

A Krasol LBH5000 (Cray Valley, Saint-Avold, France) was used as a starting HTPB.
The commercially available sodium hydrogencarbonate, sodium nitrate, iodine, sodium
sulphate, and sodium thiosulphate were purchased from Sigma-Aldrich (St. Louis, MO,
USA) and were used without purification. The solvents used in the synthetic procedures
ethylene glycol and ethyl acetate (Fisher Scientific, Waltham, MA, USA) were of pure and
extra-pure grade, respectively.

2.2. Methods

The FTIR spectra were recorded on a Thermo Nicolet iS50 infrared spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA) with a diamond crystal ATR accessory at
a resolution of 2 cm−1 and 64 scans. The spectra were referenced to air as a background
by accumulating 64 scans, at the same resolution. The 1H NMR spectra were acquired at
room temperature (303 K) using a Bruker Avance 400 MHz spectrometer (Billerica, MA,
USA) using CDCl3 as the solvent. Chemical shifts (δ) are reported in parts per million
(ppm). The average molecular weights were determined by GPC analysis on a Shimadzu
Nexera XR (Shimadzu, Kyoto, Japan). The DSC studies were performed on a Mettler Toledo
TA3000 thermal analysis system—DSC30 cell (Mettler Toledo, Columbus, OH, USA). The
ultrasonic synthesis was performed in a BANDELIN SONOREX RK 100 H Ultrasonic Bath
(Bandelin electronic gmbh & co. kg, Berlin, Germany). The ultrasonic power dissipated in
the reaction mixture was determined calorimetrically by measuring the initial temperature
rise of the solvent under identical experimental conditions. The effective acoustic power
was 12 ± 3 W. The ultrasonic frequency was 35 kHz.

2.3. Synthetic Procedure

In a 1 L round-bottomed flask were dissolved 30.6 g HTBP (6 mmol) in 360 mL ethyl
acetate. Then a solution of 26.5 g NaNO2 (312 mmol) in 18 mL ethylene glycol and 42 mL
water was added. The reaction mixture thus prepared was cooled to 0 ◦C and 36.6 g iodine
(144 mmol) was added under vigorous stirring. After iodine addition the flask was placed
in an ultrasonic bath for 25 h. Then the organic layer was separated and washed with 10%
sodium thiosulphate until discoloration, followed by saturated aqueous NaHCO3. The
obtained organic solution was dried with anhydrous Na2SO4 and evaporated to give the
crude product. The desired nitro-functional HTPB was obtained as a red-brown viscous
liquid after washing with methanol to remove soluble impurities.

The chemical structure of the obtained product was confirmed by FTIR and 1H NMR
analysis. FTIR (ATR): 3500–3200 (br.s. νOH), 2922 and 2845 (νCH), 1640 (νCH=CH),
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1523 and 1335 cm−1 (νNO2). 1H NMR: (400 MHz, CDCl3) 7.2–6.9 (NO2-CH-), 5.7–5.1 (-CH=),
5.1–4.8 (=CH2), 2.3–1.8 (-CH2- and CH-), and 1.05–1.0 (CH2).

3. Results
The synthetic rout used herein is summarized in Scheme 1.

Scheme 1. Synthesis of nitro-functional HTPB.

Ethyl acetate was used as a solvent for HTPB, and a mixture of water and ethylene
glycol was needed to dissolve the sodium nitrite. The two solutions were mixed and under
vigorous stirring iodine was added to the mixture at 0 ◦C. Then the reaction vessel was
placed in an ultrasonic bath for 25 h. After the end of the reaction, with the help of a
separating funnel, the organic layer was subsequently separated and washed with sodium
thiosulfate until it became decolorized. The final product was obtained in the form of a
viscous liquid of nitro-functional HTPB after evaporation of the solvent under vacuum.
The duration of the synthetic process was established using FTIR spectroscopy (a detailed
explanation can be found below). The chemical functionalization of the obtained product
was confirmed according to FTIR and 1H NMR analyses.

The FTIR spectra are consistent with previous reports on nitro-HTPB and clearly indi-
cate that the nitration does not affect the double bonds and hydroxyl groups in the initial
HTPB. As can be seen in Figure 1, in contrast to the starting HTPB, the FTIR spectrum of
nitro-functionalized product showed well-pronounced peaks at 1523 cm−1 and 1335 cm−1,
which are characteristic of asymmetric and symmetric stretch of α,β-unsaturated nitro
olefine hydrocarbons [25,29]. In the range of 3500–3200 cm−1 the FTIR spectra of both com-
pounds exhibited a very similar broad shoulder that could be attributed to the presence of
hydroxyl groups in the HTPB backbone. The peak for alkene fragments in HTPB appeared
at 1640 cm−1 and remained constant after nitro functionalization in the final product.

Also, the FTIR analysis was used to monitor and determine the completion of the
nitration process. For this purpose, during the synthesis several 2 mL samples from the
reaction mixture were taken and nitro-functional HTPB was isolated according to the
method described above. Then the FTIR spectra of the obtained samples were recorded
and are summarized in Figure 2.

In order to study the nitration rate while avoiding the effect of varying spectral baseline,
the changes in intensity at 1523 cm−1 corresponding to asymmetric stretch of nitro groups
in HTPB were inspected as a ratio to the constant alkenes signal at 1640 cm−1. The observed
results presented in Figure 2 reveal a sigmoidal fit (R2 = 0.9984) with rapid linear increase
during the first 10 h, suggesting fast nitration in the HTPB functionalization. After the first
10 h, the rate of increase gradually slowed and plateaued at 20 h, indicating completion of
the HTPB nitration process. Thus, the duration of the ultrasonic synthetic route proposed
herein is 20 h. This observation demonstrates a significant improvement in terms of reaction
time compared to previously reported works on HTPB nitro functionalization using nitryl
iodide in which the reaction time varies from 96 h to 144 h [28]. The accelerating ultrasonic
effect could be explained according to two major factors: first, the ultrasound brings an
additional amount of energy; second, it provides better mixing and a better contact surface
in the used heterogeneous reaction, where sodium nitrite was dissolved in water and HTPB
in water-immiscible ethyl acetate.
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Figure 1. FTIR spectra of initial HTPB and synthesized nitro-functional product.

Figure 2. Changes in FTIR| spectra of nitro-functional HTPB (A) and changes in ratio between
intensity at 1523 cm−1and constant alkenes signal at 1640 cm−1 (B) according to nitration time.

The observed 1HNMR spectrum (Figure 3) of the synthesized nitro-HTPB was in accor-
dance with previously reported data. Similarly to the starting HTPB it showed resonances
in the range of 5.7–5.1 ppm and 5.1–4.8 attributed to -CH= and =CH2 protons, respectively,
and two resonance peaks in the range of 2.3–1.8 ppm and 1.5–1.0 ppm characteristic of
-CH2- and -CH- [30]. However, in the spectrum of nitrated HTPB, a novel peak in the
range of 7.2–6.9 ppm appeared, which is a typical signal of protons from the NO2-CH=
groups. Due to the strong electron-accepting properties of the NO2 group, a pronounced
de-shielding effect occurs, causing the neighboring C–H proton to resonate at a higher
frequency (higher ppm value) in the NMR spectrum. This large difference and lack of an
overlap between the resonances of nitrated and non-nitrated olefin protons allow the use
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of NMR analysis to determine the level of double-bond nitro functionalization. The level
of 12% was calculated as follows: nitro functionalization % = 2×A/B + C, where A is the
integral in the range of 7.2–6.9 ppm, while B and C are the integrals at 5.7–5.1 ppm and
5.1–4.8 ppm [28].

Figure 3. 1H NMR spectra of starting HTPB and synthesized nitro-HTPB.

The use of 1HNMR for the measurement and calculation of nitro functionalization of
HTPB is expensive, time-consuming, and particularly impractical on an industrial scale.
At the same time the above-discussed FTIR analysis provides a possibility to perform a
ratiometric evaluation for the quantitative detection of HTPB nitro functionality in which
the percentage of nitro functionalization could be determined from the ratio between
intensities of the characteristic peaks for nitro groups at 1523 cm−1 and alkene fragments
at 1640 cm−1. Moreover, this measurement is based on a relatively inexpensive and rapid
ATR technique, suitable for industrial monitoring.

In order to prove the concept that FTIR analysis is a useful tool for quantitative
control in HTPB nitration, the changes in the FTIR spectra at 1523 cm−1 relative to the
peak at 1640 cm−1 of nitro-HTPB with different percentages of nitro functionality were
investigated (Figure 4). On the basis of the ratio between examined peak intensities at
1523 cm−1 and 1640 cm−1 as a function of HTPB nitro functionality (calculated according
to the respective NMR spectra) a calibration plot was constructed. As is shown in Figure 4B,
in the studied interval of nitro functionality, the resulting calibration curve revealed an
excellent linear fit with R2 = 0.99354. The linear response is preferable in chemical analysis;
therefore, this finding suggests the great potential of FTIR in the ratiometric measurement
and determination of the nitro functionality in nitro-HTPB. Also, the ratiometric analysis is
of particular interest, because the ratiometric response allows internal calibration which
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compensates instrumental factors (such as fluctuations in light source) and does not depend
on sample concentration [31].

 

Figure 4. Changes in FTIR spectra of nitrated HTPB with different nitro functionality (A) and changes
in ratio between intensity at 1523 cm−1 and constant alkenes signal at 1640 cm−1 (B) according to
nitro functionality.

The average molecular weights of starting and nitrated HTPB were measured by
GPC as 4810 g/mol and 5375 g/mol, respectively. The observed increase in molecular
weight of 565 g/mol in nitro-HTPB compared to the initial compound is of the same
order of magnitude as previously reported data. For example, in the works by Ghayeni
et al. the terminated average molecular weight of HTPB increased from 2550 g/mol
to 2780 g/mol [28] and 2586 g/mol to 2730 g/mol [25] after nitration, which gives an
approximately two times lower increase in molecular weight compared to the present work;
however, it was based on a two times lower percentage of nitro functionality. Also, the
work by Pant et al. [29] showed an increase in average molecular weight with 543 g/mol
after nitro functionalization of HTPB with 10–15% nitro content, which is very close to the
obtained results in this work. The determined specific gravity at 25 ◦C of HTPB increased
from 0.89 to 1.14 after nitration, which is slightly higher compared to the value of 1.12 of
nitro-HTPB with similar nitro functionality reported by Pant et al. [29]

The DSC analysis was performed with a temperature rate of 10 ◦C/min in two general
ways. First, the samples were examined at low temperature from −70 ◦C to room tempera-
ture in order to determine glass transition, and second, from room temperature to 400 ◦C.
The observed glass transition temperature (Tg) curves of nitrated and unmodified HTPB are
presented in Figure 5. As expected, due to the incorporation of polar nitro groups, the syn-
thesized nitro-HTPB showed higher Tg = −27 ◦C compared to the obtained Tg = −46 ◦C
for the starting HTPB. The calculated difference between the Tg of both products is 19 ◦C,
which is a little higher in comparison to the previous report by Pant et al. for nitrated
HTPB with similar nitro functionality, where this difference is 14 ◦C [29]. However, in the
work by Pant et al. the initial HTPB is more linear than the compound used herein and
logically showed lower temperatures of glass transition before (Tg = −76 ◦C) and after
(Tg = −61 ◦C) nitration.
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Figure 5. DSC analysis of synthesized nitro-HTPB (A) and starting HTPB (B) from −70 ◦C to 10 ◦C.

A DSC thermogram of nitrated HTPB heated at 10 ◦C/min from room temperature
to 400 ◦C is depicted in Figure 6. The illustrated curve reveals an initial exothermic
decomposition in the range of 140–280 ◦C with the peak temperature at 226 ◦C accompanied
with heat release of 856 J/g. This result is consistent with the data for nitrated HTPB in
which the exothermic decomposition peak was in the range of 220–232 ◦C [25,28,29].
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Figure 6. DSC analysis of the nitrated HTPB heated at 10 ◦C/min to 400 ◦C.

For a better understanding of the above obtained data for HTPB and nitrated HTPB,
a summary is provided in Table 1.

Table 1. Properties of HTPB and NO2-HTPB.

HTPB NO2-HTPB

Average molecular weights 4810 g/mol 5375 g/mol
Specific gravity 0.89 1.14

Glass transition temperature −76 ◦C −27 ◦C

4. Conclusions
In conclusion, this work extends the classic nitration of HTPB using nitryl iodide

(NO2I) as a nitrating agent by introducing accelerated reaction conditions under ultrasoni-
cation. As a result of the applied sonic energy the reaction time was drastically reduced
from the classic 96–144 h to only 20 h. The final compound showed 12% nitro functionality,
which is comparable with the other highly efficient syntheses. The data obtained from FTIR,
1HNMR, DSC, and GPC analyses were consistent with the reports about nitrated HTPB and
clearly illustrated the absence of any ultrasonic influence on the produced nitro-HTPB. Also,
it was revealed that the FTIR analysis can serve as fast, inexpensive, and reliable ratiometric
method for determining HTPB nitro functionality, offering a practical alternative to the less
convenient classical NMR method.

The results presented here could be seen as a contribution to the development of
applied nitro chemistry and will support the rapid synthesis and characterization of
nitrated HTPB.
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