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Abstract. Reliability of renewable energy assets represents an essential factor
for achieving operational stability while lowering maintenance expenses.The
traditional rule-based and physics-based reliability models fail to produce
accurate results when used in complicated operational settings. The paper shows
a predictive maintenance system which depends on the Predictive Maintenance
dataset and EDA and ML techniques and methods to solve class imbalance
problems. The predictive maintenance framework tests baseline models Logistic
Regression and KNN and Random Forest against advanced gradient boosting
methods XGBoost and LightGBM, which were optimised through Bayesian
hyperparameter tuning. The two solutions for handling imbalance used
resampling methods, which included upsampling and SMOTE and class weight
adjustments. The LightGBM models which underwent hyperparameter tuning
with SMOTE produced the best predictive results because they maintained both
precision and recall balance and achieved high ROC AUC scores. The predictive
analysis of feature importance indicated that temperature changes together with
torque data and tool wear stood out as essential indicators. The data-based
methods showed they could enhance energy asset reliability, which would bring
about a change in how condition monitoring and maintenance planning work
today.

1. Introduction

The stability of renewable energy systems stands as a fundamental requirement for
creating sustainable power generation. The failure of wind turbines and solar inverters along
with essential system components leads to costly operational disruptions and reduced energy
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output and creates risks for worker safety. The traditional reliability engineering system follows
maintenance routines which operate under standard rules and physical degradation models.
These methods deliver useful results, but they fail to predict how complex systems behave
randomly and how systems evolve in reality.

Machine learning (ML) and artificial intelligence (AI) have become vital predictive
maintenance tools during the past few years. [1]. Data-centric methods use past sensor data and
equipment operation details and failure history to develop predictive models which detect
upcoming failures before they happen. The predictive maintenance datasets show an
unbalanced pattern because equipment failures occur much less frequently than standard
operational conditions, which reduces the effectiveness of traditional classification algorithms.

The research paper presents an evaluation of machine learning techniques which operate
on the Predictive Maintenance dataset while emphasizing methods to manage data imbalance.
The modeling framework we developed combines data preprocessing with exploratory analysis
and multiple classifiers and systematic evaluation methods to study different imbalance
mitigation techniques. Our research shows new methods and useful information which support
the reliability of energy assets.

2. Methodology

2.1 Dataset

The Predictive Maintenance dataset (sourced from Kaggle) [2] holds 10,000+ observations,
which include operational settings and sensor measurements and tool wear information. The
target variable identifies different failure types, while most of the data points show normal
operating conditions.

Features include:

The dataset holds numerical information which contains air temperature readings and process
temperature values together with rotational speed measurements in RPM and torque values and
tool wear data.

e (Categorical: Product type.

e Target: Failure type (5 categories, heavily imbalanced).

2.2 Preprocessing and Exploratory Analysis

The machine learning algorithms operate through numerical data because they fail to interpret
categorical variables, which contain product type information. The solution required one-hot
encoding, which transformed each categorical value into separate binary indicator variables.
The representation prevents models from generating artificial category order because it
maintains all categories at the same level. The product categories L, M and H received their own
binary columns to prevent any confusion that might arise from using integer values.

The one-hot encoding technique allows K-Nearest Neighbors and Random Forests and
Gradient Boosting models to work with categorical data effectively [3], such as K-Nearest
Neighbors, and tree-based models, such as Random Forests and Gradient Boosting. The method
creates higher dimensionality, but the dataset contains only a few categories, thus making it
simple to handle. The process maintains fairness so that all categories can contribute equally to
the complete predictive maintenance modeling system. Basic sensor data fails to show the core
system patterns which cause system failures. The team developed new features by using their
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domain knowledge about operating conditions, which they incorporated into the current
dataset. The temperature difference between process and air temperature (AT) operates as a
fundamental indicator because it reveals the amount of thermal stress inside the system. The
system shows signs of abnormal heat transfer when air temperature (AT) values rise above
normal levels, which could indicate equipment problems or dangerous operating conditions.
The engineered system uses the ratio between torque and rotational speed (RPM) as a
mechanical stress indicator. High torque values at relatively low speeds may indicate friction,
wear, or misalignment, while normal operation tends to maintain consistent torque-to-speed
ratios. Engineered features help the dataset reveal hidden second-order interactions between
variables, which improves the performance of future models.
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Figure 1. Distribution of Torque and Tool Wear across Operational Cycles.

The diagram displays the complete operational cycle data for torque (Nm) and tool wear
(minutes). The torque histogram shows multiple stress levels, with two main clusters at normal
operating values and a long tail that indicates rare power surges. The tool wear histogram shows
a steady increase of wear over time because most samples start at low wear values, but they
move toward higher wear levels. The different distributions show that operational
environments operate at various levels, and stress monitoring requires both current stress
levels and total accumulated damage for accurate failure risk modeling.

The team began modeling by conducting correlation analysis to detect duplicate features
and strong failure predictors. The analysis showed that torque and tool wear displayed a
substantial direct relationship. The data set shows multicollinearity because tool usage duration
causes tool wear which demands increased torque for tool operation. These relationships need
strict control because they create problems for models which use coefficients for their
operation, like Logistic Regression.
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Figure 2. Pairplot of Numeric Features with Failure Type Labels.

The pairplots illustrate relationships between numeric features, with hue indicating the
failure type. The left panel (blue) shows the raw pairwise correlations, while the right panel
(orange) highlights separation between different failure categories. Notably, torque and
rotational speed exhibit strong structure, with certain failure types concentrated in distinct
regions. These plots confirm that feature interactions contain valuable predictive information,
but also highlight the overlapping regions that complicate classification, necessitating advanced
machine learning methods.

Conversely, the engineered AT feature showed a clear and independent association with
failure outcomes, particularly thermal-related failures. This highlights the importance of
combining domain-driven engineering with statistical checks. By identifying and retaining
features that exhibit strong yet non-redundant predictive signals, the modeling pipeline ensures
both interpretability and robustness. Features with high redundancy may still be valuable in
tree-based models, but awareness of their interactions allows for better interpretation of model
outputs.

To ensure comparability across features with different numerical ranges, standardization
was applied where necessary. For example, rotational speed values are typically expressed in the
thousands of revolutions per minute, while tool wear is measured in much smaller units.
Without scaling, models relying on distance measures (such as KNN) or gradient-based
optimization could disproportionately weight high-magnitude features, reducing their ability to
learn from smaller-scaled yet informative signals [4].

Standardization was achieved by transforming each variable to have zero mean and unit
variance [5]. This approach preserves the shape of distributions while aligning the feature
scales, thereby enabling fairer optimization and faster convergence. Importantly, scaling was
applied only after the train-test split to prevent data leakage. While tree-based algorithms are
inherently scale-invariant, scaling nevertheless provides consistency across the modeling
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pipeline and improves comparability between baseline linear methods and more advanced
models.

2.3 Modeling Pipeline

Logistic Regression operates as a basic linear model [6] which researchers use for building
interpretable models that produce probability estimates for different categories [6]. Logistic
Regression functions as a basic benchmark in predictive maintenance because it differentiates
between standard operating conditions and equipment failure points. The model shows its
greatest value through its direct approach because the coefficients indicate exactly how each
predictor affects the target outcome in terms of log-odds, which helps analyze operational
features like temperature and torque and wear. The model faces difficulties because Logistic
Regression demands that classes exist in a linear pattern, while sensor data tends to include
complex non-linear relationships. The method becomes particularly vulnerable to unbalanced
data because it cannot identify minority failure cases which become lost in the majority normal
operation data.

The K-Nearest Neighbors (KNN) method operates as a non-parametric approach which
determines data point similarity instead of using predefined mathematical equations. The KNN
algorithm identifies the majority label between neighboring points in feature space to create
decision boundaries which do not follow linear patterns. The algorithm produces different
outcomes based on how it measures distance and which value of k it uses. The KNN method
helps predictive maintenance systems detect uncommon failure patterns which match
established failure cases. The method requires extensive computational power when working
with big datasets and it struggles to handle class imbalance problems because the standard
cases end up taking control of the local neighborhood structure.

Random Forest introduces an ensemble-based approach [7], constructing multiple decision
trees trained on bootstrapped subsets of the data. Random Forest reduces overfitting through
the averaging of tree predictions, which creates a more stable baseline than single classifiers
produce. The tool shows which operational features generate the best predictive outcomes
through its variable importance analysis feature. Random Forest achieves better predictive
maintenance results because it identifies complex patterns which linear methods fail to detect.
The model shows bias toward majority class data when no imbalance correction methods exist,
but it does not reach the performance level of gradient boosting algorithms for multi-class
imbalanced data.XGBoost and LightGBM operate as current gradient boosting systems which
generate decision trees by fixing residual errors from previous trees in a step-by-step process.
XGBoost operates as a leading solution because it delivers scalable solutions together with
regularization methods which produce top results in various machine learning competitions.The
model uses shrinkage and column sampling together with L1 and L2 regularization to prevent
overfitting more effectively than standard ensemble techniques.XGBoost operates as an
outstanding predictive maintenance solution because it identifies complex feature relationships
and handles noisy industrial sensor data with stability [8].

LightGBM expands the gradient boosting framework through two core innovations, which
consist of histogram-based splitting and leaf-wise tree growth that accelerate computational
speed. LightGBM receives performance and speed improvements through these optimization
methods, which produce results that match or surpass XGBoost. The evaluation study showed
LightGBM produced superior results for uncommon failure detection when combined with data
imbalance handling methods. The optimization process used Optuna to enhance both XGBoost
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and LightGBM models through its Bayesian hyperparameter optimization system. The Optuna
system performs automatic hyperparameter search through its exploration and exploitation
methods, which produce better performance results. The tuning process created excellent
results because default hyperparameter values tend to underperform when working with
unbalanced predictive maintenance datasets [9].

LightGBM (Light Gradient Boosting Machine) is an advanced implementation of the gradient
boosting framework that uses tree-based learning algorithms. Developed by Microsoft, it is
designed to be distributed and efficient with the following innovations: histogram-based
decision tree learning [10], leaf-wise tree growth, and exclusive feature bundling. Gradient
Boosting Decision Trees (GBDT) function as popular machine learning algorithms because they
deliver superior prediction outcomes. The conventional GBDT systems encounter two main
problems which affect their ability to scale and their computational speed. LightGBM solves
these problems through multiple methods which decrease memory consumption and speed up
processing while keeping prediction accuracy intact [11].

2.4 Imbalance Handling: Raw Data, Random Upsampling, SMOTE, Class-Weighted Training
Predictive maintenance datasets are inherently imbalanced because failure events are rare
compared to normal operations. Training models on raw data without adjustment leads to
classifiers biased toward the majority class, achieving high accuracy but poor recall for the
minority classes. This phenomenon makes imbalance handling a central challenge in building
effective predictive models [12].

To solve this problem, the researchers applied three different methods which included
random upsampling and SMOTE and class-weighted training while testing their results against
the original dataset. Random upsampling creates balance in the dataset through the repeated
copying of minority class examples until all class frequencies become equal. The technique stops
models from overlooking minority classes, yet it produces overfitting because the model
encounters the same data points numerous times. SMOTE (Synthetic Minority Oversampling
Technique) produces new synthetic samples through interpolation of minority instances, which
generates data variety to solve class imbalance problems. The method of class-weighted training
functions as an alternative approach because it changes the loss function to give more weight to
errors made on minority classes. The method shows full compatibility with Logistic Regression
and XGBoost and LightGBM algorithms. The researchers employed these methods to evaluate
how different imbalance techniques affect various models, while SMOTE and class weighting
produced the best balance between recall and predictive accuracy.

2.5 Evaluation Metrics: Accuracy, Precision, Recall, Macro-F1, and ROC AUC
Evaluating predictive maintenance models needs performance metrics which show results that
go past basic accuracy measurements. The method of measuring accuracy becomes deceptive
when dealing with imbalanced data because a model that forecasts normal operation for all
cases will show high accuracy scores yet fail to identify any failures. The evaluation framework
included precision and recall and macro-F1 and ROC AUC to solve this problem. The metric
precision shows how many predicted failures turned out to be correct, while recall measures
how many real failures the system was able to find. The system depends on high recall for
predictive maintenance because it needs to detect all failures to avoid expensive equipment
breakdowns and dangerous situations.

The evaluation method Macro-F1 combines precision with recall through harmonic mean to
handle both majority and minority classes equally. The metric proves essential for multi-class
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predictive maintenance datasets [12], because it enables the detection of different failure
categories. ROC AUC, which measures the trade-off between true positive and false positive rates
across thresholds, provides an overall view of model discrimination capability. By emphasizing
macro-F1 and ROC AUC, this study prioritized metrics that capture the true reliability of
predictive models in imbalanced settings, ensuring that improvements benefit not only the
dominant “normal” class but also the critical minority failure modes.

3. Results and Discussion

3.1 Model Performance

The comparative evaluation between baseline and advanced classifiers showed that class
imbalance created major difficulties during the assessment process. The classifiers Logistic
Regression and K-Nearest Neighbors (KNN) reached over 85% accuracy, but their confusion
matrices showed that they failed to identify minority failure categories correctly [5]. The model
Logistic Regression failed to detect most failure cases because it predicted normal for almost all
instances, which resulted in very low recall scores below 0.25 for the infrequent classes “Power
Failure” and “Overstrain.” The system shows that accuracy alone fails to provide adequate
information for handling situations with extreme class imbalances.

Random Forest achieved better results through its ability to detect complex relationships
between input features [13]. The model produced macro-F1 results between 0.60 and 0.65
when random upsampling was used as the combination method. The model continued to show
sensitivity toward imbalanced data during training on unprocessed data because it misclassified
normal instances. The evaluation results showed that XGBoost and LightGBM as advanced
gradient boosting methods produced better results than the baseline models. The evaluation
results showed that the LightGBM model which was tuned with SMOTE produced the best
results because it achieved an ROC AUC score above 0.90 and a macro-F1 score above 0.75. The
research results demonstrate that both algorithm selection and methods for handling data
imbalance play essential roles in predictive maintenance model development.

The table shows how each metric should be read to help readers understand the
information better without needing advanced technical knowledge.

Table 1. Model performance across classifiers and imbalance handling strategies.

Model Strategy Accuracy Precision Recall F1 ROC AUC
Logistic Regression Raw 0.87 0.42 0.23 0.29 0.65
Logistic Regression SMOTE 0.82 0.51 0.48 0.49 0.72
KNN Raw 0.85 044 027 034 0.69
Random Forest Upsampling 0.88 0.63 0.60 0.61 0.81
XGBoost (tuned) Class Weights 0.90 0.71 0.68 0.69 0.87
LightGBM (tuned) SMOTE 0.92 078 0.74 076 091

2Macro-F1 and ROC AUC are emphasized due to dataset imbalance; LightGBM with SMOTE yielded the most balanced
performance.
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The results in Table 1 show that imbalance-handling methods produce better model
performance, especially when predicting minority failure classes. The models which trained on
the original imbalanced data showed poor performance results for recall and macro-F1 metrics.
The models showed a bias toward the majority class because this class contained most of the
training data. The system achieved high accuracy levels above 85%, but it failed to identify most
minority cases of “Power Failure” and “Overstrain”, which resulted in recall scores below 0.30.
The outcome shows the typical problem of accuracy in imbalanced learning problems because
high overall accuracy fails to detect important minority cases.

The implementation of imbalance-handling methods which include random upsampling
and SMOTE and class weighting resulted in major advancements for detecting minority class
instances. The Random Forest model achieved better class balance through upsampling, which
resulted in a macro-F1 score of approximately 0.61. Gradient boosting algorithms [14] showed
particular success when XGBoost and LightGBM applied these methods. The researchers
obtained better rare failure prediction results through their method of merging advanced
non-linear decision boundaries with adjusted training data distribution.

The LightGBM-SMOTE method achieved the best results in the study because it reached
accuracy levels above 0.90 and recall and macro-F1 scores that exceeded 0.74 and 0.75
respectively.

The results demonstrate that performance improvements reached all classes because the
major "Normal" class showed no loss in prediction accuracy, which preserved the model's total
reliability. LightGBM-SMOTE achieved the most balanced results across all evaluation metrics,
while XGBoost with class-weighting improved minority detection but showed reduced macro-F1
performance.
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Figure 3. Confusion Matrices for LightGBM with Class Weights (Left) and SMOTE (Right).

This figure highlights not only performance differences but also the trade-offs between false
alarms and missed detections, which are critical in practice.
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Figure 3 demonstrates how LightGBM predicts results by using two different methods for
handling data imbalance, which include class weighting and SMOTE oversampling. The model
reaches acceptable accuracy levels yet fails to detect minority failures since the diagonal entries
for rare classes remain minimal. The SMOTE-enhanced model demonstrates better recall
performance throughout all failure categories, while showing improved confusion matrix
balance and higher detection rates for minority classes. The study shows that synthetic
oversampling produces better class balance, which results in superior predictive maintenance
performance.

The practical application of predictive maintenance depends on maintaining this particular
equilibrium. Systems which learn from minority failures produce too many false alerts that force
operators to perform unnecessary maintenance activities. The models which favor majority
class predictions fail to detect genuine failures, which creates expensive unplanned downtime
[15]. LightGBM with SMOTE avoided both extremes by effectively synthesizing minority
examples during training, improving the model’s ability to generalize across all classes. The
results show that the choice of algorithm and imbalance handling method determines
performance because synthetic sampling with advanced ensemble methods produces better
failure prediction results.

3.2 Interpretability

Model interpretability was explored using feature importance measures and SHAP value
analysis. The Tree-based models Random Forest and XGBoost and LightGBM selected the
engineered AT (process-air temperature difference) as the most important failure prediction
factor. The results match what experts know because unusual heat differences between
components lead to equipment breakdowns.

LightGBM - SHAP bar LightGBM - SHAP bar
L
L
Tool wear | ... . Rotatons! speco NI _ ...
mmm Class 1 mmm Class 2
mmm Class 3 ‘ mmm Class 3
f T T T T f T T T T T
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Figure 4. Native and Permutation Feature Importance for LightGBM with SMOTE.
This figure provides a comparative perspective, where the alignhment between native and
permutation importance underlines the stability of the LightGBM model in identifying reliable
features.

The figure displays feature importance rankings from the best-performing model
(LightGBM with SMOTE). The left panel presents native LightGBM importance scores which
show that AT (process-air temperature difference) and torque/RPM ratio and tool wear serve
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as the main predictors. The right panel displays permutation importance, which measures
feature contributions through their effects on prediction accuracy. The two methods identify
identical top features, which proves their reliability as failure indicators. Engineers can discover
which operational signals need monitoring through the intersection of native and permutation
measures.

Table 2. Top features ranked by importance (LightGBM with SMOTE).

Rank Feature Importance (%) Interpretation

1 AT (process-air temp) 27.3 Thermal stress indicator, linked to overheating failures
2 Torque/RPM ratio 211 Mechanical load per rotation, linked to overstrain

3 Tool wear (min) 18.6 Degradation over usage, predictor of tool-related faults
4 Rotational speed 16.4 Operational condition, interacts with torque

5 Product type_M 8.7 Product-specific variability in reliability

The ratio of torque to rotational speed (torque/RPM) functions as a fundamental parameter
which shows mechanical stress patterns that lead to overstrain failures. The tool wear
measurement in operational minutes showed a strong correlation with the development of
gradual degradation-related failure types. The SHAP visualizations demonstrated that tool wear
values above normal levels led to higher chances of tool failure according to the model, and
torque/RPM deviations resulted in greater chances of overstrain.

The table shows how data-driven feature selection matches with engineering intuition
according to Table 2. The predictive maintenance models placed the highest value on AT and
torque/RPM, which proved to be essential indicators.

3.3 Implications for Energy Asset Reliability

The research shows that data-centric ML models generate reliability information which
surpasses what traditional rule-based and physics-based models can deliver [16]. Operational
sensor data allows models to detect failure indicators which scheduled maintenance and static
thresholds do not recognize.

The system enables better maintenance planning, which leads to fewer unexpected
equipment failures and longer service life for renewable energy components [10].

The identification of AT as a vital predictor shows that monitoring temperature differences
continuously could detect potential overheating failures in wind turbine gearboxes and solar
inverter modules at an early stage. Engineers use torque/RPM data to detect stress conditions in
rotating components, which enables them to perform inspections before equipment failures
occur. Operators can achieve better asset reliability and reduced maintenance expenses through
the integration of predictive signals with current monitoring systems.

4. Conclusion and Future Work

The research study examined multiple predictive maintenance models through their evaluation
on a standard dataset, which focused on methods to address data imbalance and create
understandable model explanations. The evaluation demonstrated that baseline models

10
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including Logistic Regression [13] and KNN struggled to identify complex data patterns because
of their limited ability to handle severe class imbalances. Random Forest models achieved better
results, but their performance stayed vulnerable to unbalanced data distributions.

XGBoost and LightGBM showed better performance than other gradient boosting methods
in the evaluation. LightGBM combined with SMOTE for minority class oversampling produced
the best performance results by reaching high accuracy levels together with complete recall for
essential rare failure categories. The most important predictors according to feature importance
analysis were AT (process-air temperature difference), torque/RPM ratio and tool wear, which
matched engineering knowledge.

The research proves gradient boosting methods work well and shows data-centric methods
play a vital role in predictive maintenance systems. The research shows that simple feature sets
can produce high-performance models through the combination of imbalance handling
techniques and optimized ensemble learning methods [11,17,18]. The process shows data
preparation and model tuning and evaluation methods maintain equal importance to algorithm
selection according to the results. The interpretability results together with SHAP analyses
enable maintenance engineers to understand the models better because they show how
prediction results connect to physical failure mechanisms.

The research framework requires future studies to apply it to authentic renewable energy
datasets which contain multiple operational scenarios and enhanced measurement
disturbances. The datasets would enable researchers to test their models against actual
conditions, which include changing weather situations and different equipment types and
varying sensor performance levels. The natural path leads to uniting physics-based reliability
models with machine learning techniques through the creation of hybrid systems which merge
domain expertise with data-driven learning capabilities. This approach would reduce
dependence on statistical correlations, which would lead to better performance across various
asset categories [19].

The development of real-time monitoring systems should use online learning methods
together with streaming system architectures, according to current research. Static models
which operate offline become obsolete when operating conditions change because energy assets
generate ongoing data streams. The system would benefit from predictive failure detection and
active maintenance scheduling through the addition of adaptive models which learn from new
data in small amounts. The evaluation system would become more useful for industrial
decision-making through the addition of cost-sensitive metrics which would measure expected
downtime and maintenance intervention costs. The integration of predictive models with
operational and economic targets will lead to future development that improves predictive
maintenance effectiveness for renewable energy system reliability and resilience.
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