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Abstract. Reliability of renewable energy assets represents an essential factor 
for achieving operational stability while lowering maintenance expenses.The 
traditional rule-based and physics-based reliability models fail to produce 
accurate results when used in complicated operational settings. The paper shows 
a predictive maintenance system which depends on the Predictive Maintenance 
dataset and EDA and ML techniques and methods to solve class imbalance 
problems. The predictive maintenance framework tests baseline models Logistic 
Regression and KNN and Random Forest against advanced gradient boosting 
methods XGBoost and LightGBM, which were optimised through Bayesian 
hyperparameter tuning. The two solutions for handling imbalance used 
resampling methods, which included upsampling and SMOTE and class weight 
adjustments. The LightGBM models which underwent hyperparameter tuning 
with SMOTE produced the best predictive results because they maintained both 
precision and recall balance and achieved high ROC AUC scores. The predictive 
analysis of feature importance indicated that temperature changes together with 
torque data and tool wear stood out as essential indicators. The data-based 
methods showed they could enhance energy asset reliability, which would bring 
about a change in how condition monitoring and maintenance planning work 
today. 

1. Introduction  

The stability of renewable energy systems stands as a fundamental requirement for 
creating sustainable power generation. The failure of wind turbines and solar inverters along 
with essential system components leads to costly operational disruptions and reduced energy 
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output and creates risks for worker safety. The traditional reliability engineering system follows 
maintenance routines which operate under standard rules and physical degradation models. 
These methods deliver useful results, but they fail to predict how complex systems behave 
randomly and how systems evolve in reality.  

Machine learning (ML) and artificial intelligence (AI) have become vital predictive 
maintenance tools during the past few years. [1]. Data-centric methods use past sensor data and 
equipment operation details and failure history to develop predictive models which detect 
upcoming failures before they happen. The predictive maintenance datasets show an 
unbalanced pattern because equipment failures occur much less frequently than standard 
operational conditions, which reduces the effectiveness of traditional classification algorithms. 

The research paper presents an evaluation of machine learning techniques which operate 
on the Predictive Maintenance dataset while emphasizing methods to manage data imbalance. 
The modeling framework we developed combines data preprocessing with exploratory analysis 
and multiple classifiers and systematic evaluation methods to study different imbalance 
mitigation techniques. Our research shows new methods and useful information which support 
the reliability of energy assets. 

2. Methodology 

2.1 Dataset 
The Predictive Maintenance dataset (sourced from Kaggle) [2] holds 10,000+ observations, 
which include operational settings and sensor measurements and tool wear information. The 
target variable identifies different failure types, while most of the data points show normal 
operating conditions.  
 
Features include: 
 
The dataset holds numerical information which contains air temperature readings and process 
temperature values together with rotational speed measurements in RPM and torque values and 
tool wear data.  

● Categorical: Product type. 
● Target: Failure type (5 categories, heavily imbalanced). 

2.2 Preprocessing and Exploratory Analysis 
The machine learning algorithms operate through numerical data because they fail to interpret 
categorical variables, which contain product type information. The solution required one-hot 
encoding, which transformed each categorical value into separate binary indicator variables. 
The representation prevents models from generating artificial category order because it 
maintains all categories at the same level. The product categories L, M and H received their own 
binary columns to prevent any confusion that might arise from using integer values. 

The one-hot encoding technique allows K-Nearest Neighbors and Random Forests and 
Gradient Boosting models to work with categorical data effectively [3], such as K-Nearest 
Neighbors, and tree-based models, such as Random Forests and Gradient Boosting. The method 
creates higher dimensionality, but the dataset contains only a few categories, thus making it 
simple to handle. The process maintains fairness so that all categories can contribute equally to 
the complete predictive maintenance modeling system. Basic sensor data fails to show the core 
system patterns which cause system failures. The team developed new features by using their 
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domain knowledge about operating conditions, which they incorporated into the current 
dataset. The temperature difference between process and air temperature (ΔT) operates as a 
fundamental indicator because it reveals the amount of thermal stress inside the system. The 
system shows signs of abnormal heat transfer when air temperature (ΔT) values rise above 
normal levels, which could indicate equipment problems or dangerous operating conditions. 
The engineered system uses the ratio between torque and rotational speed (RPM) as a 
mechanical stress indicator. High torque values at relatively low speeds may indicate friction, 
wear, or misalignment, while normal operation tends to maintain consistent torque-to-speed 
ratios. Engineered features help the dataset reveal hidden second-order interactions between 
variables, which improves the performance of future models. 

 

  

 

Figure 1. Distribution of Torque and Tool Wear across Operational Cycles. 

 
The diagram displays the complete operational cycle data for torque (Nm) and tool wear 

(minutes). The torque histogram shows multiple stress levels, with two main clusters at normal 
operating values and a long tail that indicates rare power surges. The tool wear histogram shows 
a steady increase of wear over time because most samples start at low wear values, but they 
move toward higher wear levels. The different distributions show that operational 
environments operate at various levels, and stress monitoring requires both current stress 
levels and total accumulated damage for accurate failure risk modeling.  

The team began modeling by conducting correlation analysis to detect duplicate features 
and strong failure predictors. The analysis showed that torque and tool wear displayed a 
substantial direct relationship. The data set shows multicollinearity because tool usage duration 
causes tool wear which demands increased torque for tool operation. These relationships need 
strict control because they create problems for models which use coefficients for their 
operation, like Logistic Regression. 
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Figure 2. Pairplot of Numeric Features with Failure Type Labels. 
 
The pairplots illustrate relationships between numeric features, with hue indicating the 

failure type. The left panel (blue) shows the raw pairwise correlations, while the right panel 
(orange) highlights separation between different failure categories. Notably, torque and 
rotational speed exhibit strong structure, with certain failure types concentrated in distinct 
regions. These plots confirm that feature interactions contain valuable predictive information, 
but also highlight the overlapping regions that complicate classification, necessitating advanced 
machine learning methods. 

Conversely, the engineered ΔT feature showed a clear and independent association with 
failure outcomes, particularly thermal-related failures. This highlights the importance of 
combining domain-driven engineering with statistical checks. By identifying and retaining 
features that exhibit strong yet non-redundant predictive signals, the modeling pipeline ensures 
both interpretability and robustness. Features with high redundancy may still be valuable in 
tree-based models, but awareness of their interactions allows for better interpretation of model 
outputs. 

To ensure comparability across features with different numerical ranges, standardization 
was applied where necessary. For example, rotational speed values are typically expressed in the 
thousands of revolutions per minute, while tool wear is measured in much smaller units. 
Without scaling, models relying on distance measures (such as KNN) or gradient-based 
optimization  could disproportionately weight high-magnitude features, reducing their ability to 
learn from smaller-scaled yet informative signals [4]. 

Standardization was achieved by transforming each variable to have zero mean and unit 
variance [5]. This approach preserves the shape of distributions while aligning the feature 
scales, thereby enabling fairer optimization and faster convergence. Importantly, scaling was 
applied only after the train-test split to prevent data leakage. While tree-based algorithms are 
inherently scale-invariant, scaling nevertheless provides consistency across the modeling 
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pipeline and improves comparability between baseline linear methods and more advanced 
models. 

 

2.3 Modeling Pipeline 
Logistic Regression operates as a basic linear model [6] which researchers use for building 
interpretable models that produce probability estimates for different categories [6]. Logistic 
Regression functions as a basic benchmark in predictive maintenance because it differentiates 
between standard operating conditions and equipment failure points. The model shows its 
greatest value through its direct approach because the coefficients indicate exactly how each 
predictor affects the target outcome in terms of log-odds, which helps analyze operational 
features like temperature and torque and wear. The model faces difficulties because Logistic 
Regression demands that classes exist in a linear pattern, while sensor data tends to include 
complex non-linear relationships. The method becomes particularly vulnerable to unbalanced 
data because it cannot identify minority failure cases which become lost in the majority normal 
operation data.  

The K-Nearest Neighbors (KNN) method operates as a non-parametric approach which 
determines data point similarity instead of using predefined mathematical equations. The KNN 
algorithm identifies the majority label between neighboring points in feature space to create 
decision boundaries which do not follow linear patterns. The algorithm produces different 
outcomes based on how it measures distance and which value of k it uses. The KNN method 
helps predictive maintenance systems detect uncommon failure patterns which match 
established failure cases. The method requires extensive computational power when working 
with big datasets and it struggles to handle class imbalance problems because the standard 
cases end up taking control of the local neighborhood structure. 

Random Forest introduces an ensemble-based approach [7], constructing multiple decision 
trees trained on bootstrapped subsets of the data. Random Forest reduces overfitting through 
the averaging of tree predictions, which creates a more stable baseline than single classifiers 
produce. The tool shows which operational features generate the best predictive outcomes 
through its variable importance analysis feature. Random Forest achieves better predictive 
maintenance results because it identifies complex patterns which linear methods fail to detect. 
The model shows bias toward majority class data when no imbalance correction methods exist, 
but it does not reach the performance level of gradient boosting algorithms for multi-class 
imbalanced data.XGBoost and LightGBM operate as current gradient boosting systems which 
generate decision trees by fixing residual errors from previous trees in a step-by-step process. 
XGBoost operates as a leading solution because it delivers scalable solutions together with 
regularization methods which produce top results in various machine learning competitions.The 
model uses shrinkage and column sampling together with L1 and L2 regularization to prevent 
overfitting more effectively than standard ensemble techniques.XGBoost operates as an 
outstanding predictive maintenance solution because it identifies complex feature relationships 
and handles noisy industrial sensor data with stability [8]. 

LightGBM expands the gradient boosting framework through two core innovations, which 
consist of histogram-based splitting and leaf-wise tree growth that accelerate computational 
speed. LightGBM receives performance and speed improvements through these optimization 
methods, which produce results that match or surpass XGBoost. The evaluation study showed 
LightGBM produced superior results for uncommon failure detection when combined with data 
imbalance handling methods. The optimization process used Optuna to enhance both XGBoost 
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and LightGBM models through its Bayesian hyperparameter optimization system. The Optuna 
system performs automatic hyperparameter search through its exploration and exploitation 
methods, which produce better performance results. The tuning process created excellent 
results because default hyperparameter values tend to underperform when working with 
unbalanced predictive maintenance datasets [9]. 

LightGBM (Light Gradient Boosting Machine) is an advanced implementation of the gradient 
boosting framework that uses tree-based learning algorithms. Developed by Microsoft, it is 
designed to be distributed and efficient with the following innovations: histogram-based 
decision tree learning [10], leaf-wise tree growth, and exclusive feature bundling. Gradient 
Boosting Decision Trees (GBDT) function as popular machine learning algorithms because they 
deliver superior prediction outcomes. The conventional GBDT systems encounter two main 
problems which affect their ability to scale and their computational speed. LightGBM solves 
these problems through multiple methods which decrease memory consumption and speed up 
processing while keeping prediction accuracy intact [11]. 

2.4 Imbalance Handling: Raw Data, Random Upsampling, SMOTE, Class-Weighted Training 
Predictive maintenance datasets are inherently imbalanced because failure events are rare 
compared to normal operations. Training models on raw data without adjustment leads to 
classifiers biased toward the majority class, achieving high accuracy but poor recall for the 
minority classes. This phenomenon makes imbalance handling a central challenge in building 
effective predictive models [12].  

To solve this problem, the researchers applied three different methods which included 
random upsampling and SMOTE and class-weighted training while testing their results against 
the original dataset. Random upsampling creates balance in the dataset through the repeated 
copying of minority class examples until all class frequencies become equal. The technique stops 
models from overlooking minority classes, yet it produces overfitting because the model 
encounters the same data points numerous times. SMOTE (Synthetic Minority Oversampling 
Technique) produces new synthetic samples through interpolation of minority instances, which 
generates data variety to solve class imbalance problems. The method of class-weighted training 
functions as an alternative approach because it changes the loss function to give more weight to 
errors made on minority classes. The method shows full compatibility with Logistic Regression 
and XGBoost and LightGBM algorithms. The researchers employed these methods to evaluate 
how different imbalance techniques affect various models, while SMOTE and class weighting 
produced the best balance between recall and predictive accuracy. 

2.5 Evaluation Metrics: Accuracy, Precision, Recall, Macro-F1, and ROC AUC 
Evaluating predictive maintenance models needs performance metrics which show results that 
go past basic accuracy measurements. The method of measuring accuracy becomes deceptive 
when dealing with imbalanced data because a model that forecasts normal operation for all 
cases will show high accuracy scores yet fail to identify any failures. The evaluation framework 
included precision and recall and macro-F1 and ROC AUC to solve this problem. The metric 
precision shows how many predicted failures turned out to be correct, while recall measures 
how many real failures the system was able to find. The system depends on high recall for 
predictive maintenance because it needs to detect all failures to avoid expensive equipment 
breakdowns and dangerous situations.  

The evaluation method Macro-F1 combines precision with recall through harmonic mean to 
handle both majority and minority classes equally. The metric proves essential for multi-class 
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predictive maintenance datasets [12], because it enables the detection of different failure 
categories. ROC AUC, which measures the trade-off between true positive and false positive rates 
across thresholds, provides an overall view of model discrimination capability. By emphasizing 
macro-F1 and ROC AUC, this study prioritized metrics that capture the true reliability of 
predictive models in imbalanced settings, ensuring that improvements benefit not only the 
dominant “normal” class but also the critical minority failure modes.  

3. Results and Discussion  

3.1 Model Performance 
The comparative evaluation between baseline and advanced classifiers showed that class 
imbalance created major difficulties during the assessment process. The classifiers Logistic 
Regression and K-Nearest Neighbors (KNN) reached over 85% accuracy, but their confusion 
matrices showed that they failed to identify minority failure categories correctly [5]. The model 
Logistic Regression failed to detect most failure cases because it predicted normal for almost all 
instances, which resulted in very low recall scores below 0.25 for the infrequent classes “Power 
Failure” and “Overstrain.” The system shows that accuracy alone fails to provide adequate 
information for handling situations with extreme class imbalances.  

Random Forest achieved better results through its ability to detect complex relationships 
between input features [13]. The model produced macro-F1 results between 0.60 and 0.65 
when random upsampling was used as the combination method. The model continued to show 
sensitivity toward imbalanced data during training on unprocessed data because it misclassified 
normal instances. The evaluation results showed that XGBoost and LightGBM as advanced 
gradient boosting methods produced better results than the baseline models. The evaluation 
results showed that the LightGBM model which was tuned with SMOTE produced the best 
results because it achieved an ROC AUC score above 0.90 and a macro-F1 score above 0.75. The 
research results demonstrate that both algorithm selection and methods for handling data 
imbalance play essential roles in predictive maintenance model development.  

The table shows how each metric should be read to help readers understand the 
information better without needing advanced technical knowledge.  

 
Table 1. Model performance across classifiers and imbalance handling strategies. 

Model                  Strategy  Accuracy         Precision Recall    F1 ROC AUC         

Logistic Regression Raw   0.87  0.42 0.23 0.29 0.65 

Logistic Regression SMOTE   0.82  0.51 0.48 0.49 0.72 

KNN   Raw   0.85  0.44 0.27 0.34 0.69 

Random Forest  Upsampling  0.88  0.63 0.60 0.61 0.81 

XGBoost (tuned)  Class Weights  0.90  0.71 0.68 0.69 0.87 

LightGBM (tuned) SMOTE   0.92  0.78 0.74 0.76 0.91 

a Macro-F1 and ROC AUC are emphasized due to dataset imbalance; LightGBM with SMOTE yielded the most balanced 
performance. 

 
 



AMITANS-2025
Journal of Physics: Conference Series 3145 (2025) 012002

IOP Publishing
doi:10.1088/1742-6596/3145/1/012002

8

 

The results in Table 1 show that imbalance-handling methods produce better model 
performance, especially when predicting minority failure classes. The models which trained on 
the original imbalanced data showed poor performance results for recall and macro-F1 metrics. 
The models showed a bias toward the majority class because this class contained most of the 
training data. The system achieved high accuracy levels above 85%, but it failed to identify most 
minority cases of “Power Failure” and “Overstrain”, which resulted in recall scores below 0.30. 
The outcome shows the typical problem of accuracy in imbalanced learning problems because 
high overall accuracy fails to detect important minority cases. 

The implementation of imbalance-handling methods which include random upsampling 
and SMOTE and class weighting resulted in major advancements for detecting minority class 
instances. The Random Forest model achieved better class balance through upsampling, which 
resulted in a macro-F1 score of approximately 0.61. Gradient boosting algorithms [14] showed 
particular success when XGBoost and LightGBM applied these methods. The researchers 
obtained better rare failure prediction results through their method of merging advanced 
non-linear decision boundaries with adjusted training data distribution.  

The LightGBM-SMOTE method achieved the best results in the study because it reached 
accuracy levels above 0.90 and recall and macro-F1 scores that exceeded 0.74 and 0.75 
respectively.  

The results demonstrate that performance improvements reached all classes because the 
major "Normal" class showed no loss in prediction accuracy, which preserved the model's total 
reliability. LightGBM-SMOTE achieved the most balanced results across all evaluation metrics, 
while XGBoost with class-weighting improved minority detection but showed reduced macro-F1 
performance. 
 

 

  

 

 Figure 3. Confusion Matrices for LightGBM with Class Weights (Left) and SMOTE (Right). 
 

This figure highlights not only performance differences but also the trade-offs between false 
alarms and missed detections, which are critical in practice. 
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Figure 3 demonstrates how LightGBM predicts results by using two different methods for 
handling data imbalance, which include class weighting and SMOTE oversampling. The model 
reaches acceptable accuracy levels yet fails to detect minority failures since the diagonal entries 
for rare classes remain minimal. The SMOTE-enhanced model demonstrates better recall 
performance throughout all failure categories, while showing improved confusion matrix 
balance and higher detection rates for minority classes. The study shows that synthetic 
oversampling produces better class balance, which results in superior predictive maintenance 
performance.  

The practical application of predictive maintenance depends on maintaining this particular 
equilibrium. Systems which learn from minority failures produce too many false alerts that force 
operators to perform unnecessary maintenance activities. The models which favor majority 
class predictions fail to detect genuine failures, which creates expensive unplanned downtime  
[15]. LightGBM with SMOTE avoided both extremes by effectively synthesizing minority 
examples during training, improving the model’s ability to generalize across all classes. The 
results show that the choice of algorithm and imbalance handling method determines 
performance because synthetic sampling with advanced ensemble methods produces better 
failure prediction results. 

 

3.2 Interpretability 
Model interpretability was explored using feature importance measures and SHAP value 
analysis. The Tree-based models Random Forest and XGBoost and LightGBM selected the 
engineered ΔT (process–air temperature difference) as the most important failure prediction 
factor. The results match what experts know because unusual heat differences between 
components lead to equipment breakdowns. 
 

 

  

LightGBM raw LightGBM smote 

 

Figure 4. Native and Permutation Feature Importance for LightGBM with SMOTE. 
This figure provides a comparative perspective, where the alignment between native and 
permutation importance underlines the stability of the LightGBM model in identifying reliable 
features. 

The figure displays feature importance rankings from the best-performing model 
(LightGBM with SMOTE). The left panel presents native LightGBM importance scores which 
show that ΔT (process–air temperature difference) and torque/RPM ratio and tool wear serve 
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as the main predictors. The right panel displays permutation importance, which measures 
feature contributions through their effects on prediction accuracy. The two methods identify 
identical top features, which proves their reliability as failure indicators. Engineers can discover 
which operational signals need monitoring through the intersection of native and permutation 
measures. 

 
Table 2. Top features ranked by importance (LightGBM with SMOTE). 
 

Rank Feature   Importance (%) Interpretation 

1 ΔT (process–air temp) 27.3  Thermal stress indicator, linked to overheating failures 

2 Torque/RPM ratio 21.1  Mechanical load per rotation, linked to overstrain 

3 Tool wear (min)  18.6  Degradation over usage, predictor of tool-related faults 

4 Rotational speed  16.4  Operational condition, interacts with torque 

5 Product type_M  8.7  Product-specific variability in reliability 

 
The ratio of torque to rotational speed (torque/RPM) functions as a fundamental parameter 

which shows mechanical stress patterns that lead to overstrain failures. The tool wear 
measurement in operational minutes showed a strong correlation with the development of 
gradual degradation-related failure types. The SHAP visualizations demonstrated that tool wear 
values above normal levels led to higher chances of tool failure according to the model, and 
torque/RPM deviations resulted in greater chances of overstrain.  

The table shows how data-driven feature selection matches with engineering intuition 
according to Table 2. The predictive maintenance models placed the highest value on ΔT and 
torque/RPM, which proved to be essential indicators. 

3.3 Implications for Energy Asset Reliability 
The research shows that data-centric ML models generate reliability information which 
surpasses what traditional rule-based and physics-based models can deliver [16]. Operational 
sensor data allows models to detect failure indicators which scheduled maintenance and static 
thresholds do not recognize.  

The system enables better maintenance planning, which leads to fewer unexpected 
equipment failures and longer service life for renewable energy components [10].  

The identification of ΔT as a vital predictor shows that monitoring temperature differences 
continuously could detect potential overheating failures in wind turbine gearboxes and solar 
inverter modules at an early stage. Engineers use torque/RPM data to detect stress conditions in 
rotating components, which enables them to perform inspections before equipment failures 
occur. Operators can achieve better asset reliability and reduced maintenance expenses through 
the integration of predictive signals with current monitoring systems. 

4. Conclusion and Future Work 

The research study examined multiple predictive maintenance models through their evaluation 
on a standard dataset, which focused on methods to address data imbalance and create 
understandable model explanations. The evaluation demonstrated that baseline models 
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including Logistic Regression [13] and KNN struggled to identify complex data patterns because 
of their limited ability to handle severe class imbalances. Random Forest models achieved better 
results, but their performance stayed vulnerable to unbalanced data distributions.  

XGBoost and LightGBM showed better performance than other gradient boosting methods 
in the evaluation. LightGBM combined with SMOTE for minority class oversampling produced 
the best performance results by reaching high accuracy levels together with complete recall for 
essential rare failure categories. The most important predictors according to feature importance 
analysis were ΔT (process–air temperature difference), torque/RPM ratio and tool wear, which 
matched engineering knowledge.  

The research proves gradient boosting methods work well and shows data-centric methods 
play a vital role in predictive maintenance systems. The research shows that simple feature sets 
can produce high-performance models through the combination of imbalance handling 
techniques and optimized ensemble learning methods [11,17,18]. The process shows data 
preparation and model tuning and evaluation methods maintain equal importance to algorithm 
selection according to the results. The interpretability results together with SHAP analyses 
enable maintenance engineers to understand the models better because they show how 
prediction results connect to physical failure mechanisms.  

The research framework requires future studies to apply it to authentic renewable energy 
datasets which contain multiple operational scenarios and enhanced measurement 
disturbances. The datasets would enable researchers to test their models against actual 
conditions, which include changing weather situations and different equipment types and 
varying sensor performance levels. The natural path leads to uniting physics-based reliability 
models with machine learning techniques through the creation of hybrid systems which merge 
domain expertise with data-driven learning capabilities. This approach would reduce 
dependence on statistical correlations, which would lead to better performance across various 
asset categories [19].  

The development of real-time monitoring systems should use online learning methods 
together with streaming system architectures, according to current research. Static models 
which operate offline become obsolete when operating conditions change because energy assets 
generate ongoing data streams. The system would benefit from predictive failure detection and 
active maintenance scheduling through the addition of adaptive models which learn from new 
data in small amounts. The evaluation system would become more useful for industrial 
decision-making through the addition of cost-sensitive metrics which would measure expected 
downtime and maintenance intervention costs. The integration of predictive models with 
operational and economic targets will lead to future development that improves predictive 
maintenance effectiveness for renewable energy system reliability and resilience.  
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