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Abstract: This study synthesizes a variant of a modified algorithm for measuring the time delay of a signal reflected from a small-sized (point) 

target, using an ultrawideband (UWB) sequence of ultra-short (US) probing pulses. The research is a continuation of a series of publications 

dedicated to the possibilities of reducing the number of operations during analog-to-digital converter (ADC) discretization of the reflected 

signal. 
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1. Introduction. 

In recent years, the use of ultra-short transmitted pulses (USP), 

as a typical representative of ultrawideband signals (UWBS), has 

become relevant in various fields: radio reconnaissance, electronic 

warfare (EW), for high-precision distance detection to ultra-small 

objects (UAVs, drones, SLAs, etc., commonly referred to as remotely 

piloted aircraft systems - RPAS)2. In radiolocation, UWBS are used 

for: 

detection, tracking, and control of small-sized and point target; for 

obtaining high-resolution radio images; radio mapping of specific 

terrains, and more. Finding and developing new and modified 

algorithms for digital processing of US pulses (USP) is one of the 

constant tasks, with the aim of finding a relatively universal 

processing method.  

 

2. Prerequisites and ways to solve the problem.  

This study synthesizes a variant of a modified algorithm 

for measuring 

the time delay of a signal reflected from a small-sized (point) target, 

using an ultrawideband (UWB) sequence of ultra-short (US) probing 

pulses. The research is a continuation of a series of publications 

dedicated to the possibilities of reducing the number of operations 

during analog-to-digital converter (ADC) discretization of the 

reflected signal and increasing the radar's resolution.  

When synthesizing the algorithm, a UWB reflected signal 

with a known "bell-shaped" envelope is used. In one of the 

subsequent publications on the topic, the operation of the proposed 

variant of the modified algorithm will be simulated and the 

algorithm's performance will be checked even with a priori unknown 

envelope shape of the reflected US signal, and under conditions of 

Gaussian noise in the received sequence of reflected pulses. 

One of the challenges in processing received US signals is 

the need for high-speed and expensive analog-to-digital converters 

(ADCs) and a large volume of resources, which makes real-time 

processing of USPs reflected from the target, often lasting several 

picoseconds, impossible. Most often, the processing of signals 

reflected from point targets (RPAS) is carried out in three stages: 

1. Discretization of the received sequence of USPs, 

reflected from the illuminated small-sized target; 

2. Determination of the amplitudes of the pulses in the 

packet, usually in complex form; 

3. Determination of the moment of appearance of the 

reflected signal by applying known and well-developed spectral 

methods, after which the distance to the illuminated object is 

determined by known procedures. 

 

3. Solution to the investigated problem. 

  One approach to solving the problem described above is to 

apply a low-pass filter (LPF), briefly called a "preliminary filter", at 

the receiver input.  

The study was conducted in three stages: 

1. In the first stage, an algorithm for processing USPs 

reflected from small-sized targets was synthesized; 

2. During the second stage, simulation procedures were 

conducted in a MATLAB environment to determine a suitable 

resonant frequency for tuning the "preliminary filter" with the aim of 

the best matching with the frequency of the input packet of received 

USPs;  

3.  In the third stage, the algorithm's performance under 

noisy conditions was tested.   

     To simplify the study, a "bell-shaped" envelope form 

and a "Nyquist filter" will be used, which provides some freedom in 

selecting the initial conditions for algorithm synthesis.  

Initial conditions for conducting the first stage of the 

study: 

1. At the receiver input, a signal reflected from the 

observed object is observed, which can be represented as: s(t -τ), 

where τ is the unknown moment of appearance of the reflected signal 

taking values in the interval [0 - T], and T ˃˃ t.  

2. Envelope shape of the pulse – "bell-shaped", with a 

mathematical model of the form:  

  s(t) = A exp ( - α τ t²) 

Such an envelope shape was chosen for the simplicity of 

analytical analysis and the relatively easy physical realization. 



 

Duration of USP - 20 ps, then fm will take a value equal to α > 2 * 

10⁻¹¹ s.  

3. Discretization interval: According to the Sampling 

Theorem, the condition Δt ≤ 5 * 10⁻¹² s must be met. 

4. Observation interval: T = 1 * 10⁻³ s (1ms), and for the 

entire observation period, T/Δt samples will be required.  

With these accepted time intervals, the number of samples 

for subsequent processing will exceed 2 * 10⁸. Thus, for 

discretization, even if it is considered principally possible to perform, 

excessively large resources and corresponding high ADC speed will 

be required.  

Modern publications describe various methods for 

processing USPs, including under noisy conditions. The goal is to 

measure the moment of reception of the reflected signal and 

determine the time delay relative to the emitted signal, and from 

there, the distance to the target.  

Such examples are: 

- Using classical correlation methods - these methods would 

require ADCs with very high sampling rates for direct digital 

processing to measure the time delay. For correlation reception with 

accumulation (Kalman filtering), a delay line (DL) with a very large 

number of outputs would be needed. Given requirements for high 

probability of correct detection, measurement accuracy, and high 

distance resolution the practical impossibility of such classical 

measurement of the arrival time of the reflected signal is observed. 

- Applying the "Compressive Sensing" approach - this method 

presupposes the availability of complex and expensive equipment for 

signal compression and ADCs with very high sampling rates.  

An approach is proposed where the packet of useful periodic 

input signals is fed to the input of a so-called "preliminary filter" with 

selected parameters: 

1. The mathematical model of the useful reflected signals can 

be represented as a12 

periodic sequence (packet) of ultra-short pulses with the expression:  

              (1)   S(t - τ) = A ∑ −∞∞
𝑛 F(t - τ - nT),  

     

where: T – observation period; τ – the unknown moment of 

arrival of the useful signal, which needs to be determined; F(t) – a 

function describing the chosen envelope – "bell-shaped" form of the 

reflected pulse within the packet. 

2. Since, according to the chosen model - (1), the signal is a 

periodic function, it can be expanded into a Fourier series, 

i.e.:  

(2)  𝐹(𝑡 − 𝑛𝑇) = ∑ 𝑎𝑚̇ 𝑒
(
𝑗2𝜋𝑚𝑡

𝑇
)∞

𝑛=−∞                                             

where: 𝑎𝑚̇ = 1/T∫ 𝐹(𝑡)
𝜏

0
𝑒
(−

𝑗2𝜋𝑚𝑡

𝑇
)
𝑡 – Fourier series 

coefficients (these coefficients can also be in complex form).  

3. Then expression (1) can be transformed into the following 

form: 

(3) 𝑠(𝑡, 𝜏) = 𝐴∑ 𝑎̇𝑚𝑒
(
𝑗𝜋𝑚(𝑡−𝜏)

𝑇
)∞

𝑚=−∞ =

∑ 𝑎̇𝑚𝑏̇𝑚 𝑒
(
𝑗2𝜋𝑚𝑡

𝑇
)
,∞

𝑚=−∞               

 

where: 𝑏̇𝑚= 𝐴. 𝑒
−𝑗2𝜋𝑚𝜏

𝑇  – is the exponential component in 

complex form, which depends on the sought unknown moment of 

arrival of the reflected signal - τ.  

Let the input signal described by expression (1) now be fed 

to the input of a low-pass filter (LPF) with the following main 

characteristics – impulse response, most often denoted as hᵢ(t), which, 

for a chosen "ideal" LPF, has the form: :  

ℎ(𝑡) =
𝑤с

𝜋
𝑠𝑖𝑛𝑐 (

𝑤с𝑡

𝜋
), where sinc(x) = sin(πx)/πx. It should 

immediately be noted that with such an impulse response, such an 

LPF cannot be technically realized due to the fact that the described 

function has infinite duration. As a first approximation and for the 

simulation study later, the well-known "Nyquist filter" will be 

applied, which is standard in parameters. For clarification, the main 

mathematical models and characteristics of the "Nyquist filter" are as 

follows: 

- Impulse response – usually represented by the following 

mathematical model:  

(4)   ℎи (𝑡) =
𝑤с

𝜋
𝑠𝑖𝑛с (

𝑤с𝑡

𝜋
)
𝑐𝑜𝑠(𝛽𝑤с𝑡)

1−(
2𝛽𝑤с𝑡

𝜋2
)
,                                                                                           

- Amplitude-frequency characteristic (AFC), which is 

described by the following expression:  

 (5)      𝐾(𝑤) =

{
 
 

 
             1, при |𝑤 | <

1−𝛽

1+𝛽
𝑤с

𝑐𝑜𝑠2 [
𝜋(1+𝛽)

4𝛽𝑤с
(|𝑤| −

1−𝛽

1+𝛽
𝑤с)] , при 

1−𝛽

1+𝛽
𝑤с ≤ |𝑤 | ≤ 𝑤с

0, при|𝑤 | > 𝑤с

                                      

- Roll-off factor (or smoothing coefficient) – in this case 

denoted by β, and takes values: 0 < β < 118. When β = 0, the filter 

transforms into an "ideal LPF with a rectangular AFC envelope". At 

the maximum value, i.e., when β = 1, the filter has the properties of 

a so-called "raised cosine". The following feature of the filter should 

also be taken into account: as the values of β (the roll-off factor) 

increase, the decaying processes, which are typically called "tails," 

decrease much faster in time. These characteristics justify the 

application of the "Nyquist filter" in solving problems of 

compensation of passive interference [5,9] penetrating the receiver 

through the antenna. The presence of parasitic re-emissions with 

frequencies close to the filter's passband, such as passive refractions 

(re-reflections) from stationary objects, are characteristic of densely 

populated regions. At the filter's output, a signal will be realized that 

can be described by the expression, where 𝑎̇𝑚, 𝑏𝑚are respectively: 

𝑎̇𝑚= 𝑓𝑚, а 𝑏𝑚 = 𝐶𝑚  

(6)        𝑠̃out(𝑡) = ∫ 𝑠(𝜇, 𝜏)ℎ(𝑡 − 𝜇)𝑑𝜇 =
+∞

−∞

 ∑ 𝑎̇𝑚𝑏𝑚 ∫ ℎ(𝑡 − 𝜇)
+∞

−∞

̇+∞
𝑚=−∞ 𝑒

(
𝑗2𝜋𝑚𝜇

𝑇
)
𝑑𝜇,                                             

which can be written in the form:  



 

(7)      𝑠̃out(𝑡) = ∑ 𝑎̇𝑚𝑏̇𝑚𝐾 (
2𝜋𝑚

𝑇
)

̇
𝑒
(
𝑗2𝜋𝑚𝑡

𝑇
)̇

∞
𝑚=−∞                                                          

Let the condition K(wc) = 0 be satisfied for the filter, and 

by setting wс = = 2πМ / Т, where M ≥ 1. After such a setting, the 

expression 𝐾 (
2𝜋𝑚

𝑇
) = 0 for values of |m| ≥ M. After performing the 

mathematical operations, expression (1.7) can be written as: 

              (8)    𝑠̃out(𝑡) = ∑ 𝑎̇𝑚𝑏̇𝑚𝐾(𝑚𝑤с)
̇ 𝑒

(
𝑗2𝜋𝑚𝑡

𝑇
)̇

М
м=−М                

  From expression (8), it can be concluded that for a value M 

= 1, the input information regarding the moment of arrival of the 

incoming US reflected pulse – τ – is completely compensated. Since 

when solving (8) for M=1, the signal function becomes 𝑠̃out(𝑡) =

𝑎𝑜 = 𝐴. For further research and simulation procedures, the 

condition M ≥ 2 will be applied. 

With this analysis, mathematical operations, assumptions, 

and initial conditions, one can proceed to calculating the necessary 

minimum number of samples for discretizing the signal output from 

the LPF – expression (8). In doing so, it is necessary to consider that 

the maximum frequency in the output signal's spectrum – wmax – is 

equal to the resonant frequency – wp – to which the LPF is tuned. The 

theorem for calculating the necessary minimum number of samples 

for discretization states: Δt ≤ π / wmax = π / wc = T / 2M. In fulfilling 

this condition, in this specific case, the minimum required number of 

samples must satisfy the condition: N ≥ T / Δt + 1 = 2M + 1. With 

the understanding that M ≥ 2, it turns out that after applying 

"preliminary filtration," with an LPF tuned to wp = wmax, the 

necessary minimum number of samples drastically decreases. The 

obtained result confirms the expected reduction in the number of 

required samples from the input packet of ultra-short pulses reflected 

from the target. The number of samples for unambiguously 

determining the arrival time of the pulse is about 5-10, which will 

allow determining the distance to the observed target in real time and 

with minimal ADC resource consumption. For further analysis, the 

equation can be used: 𝐶𝑚 = 𝐴 𝑒
−𝑗2𝜋𝑚𝜏

𝑇
̇

, which represents the 

exponential component in complex form. For determining the 

amplitude and initial phase of the sum of complex components (K) 

[10,11], N > 2K samples are required. In the analyzed specific case, 

i.e., K=1, the minimum required number of samples can be reduced 

to 3-5. For further analysis, let's set: 𝑋̇𝑚 =  𝑓𝑚̇
̇ 𝐶̇𝑚𝐾(𝑚𝑤𝐶). When 

this assumption is applied to (1.8), it can be written as:                

 (9)  𝑠̃out(𝑡) = 𝑠̃(𝑛∆𝑡)∑ 𝑋𝑚̇𝑒
(
𝑗2𝜋𝑚∆𝑡

𝑇
)̇

М−1
м=−(𝑀−1) ,  

for n = 0,1,2….N-1                                

And in this case, N can take very small values, for example, N ≥ 3. 

 If we now consider the last aquation - (9), we can conclude 

that it represents a system of N equations with 2M+1 unknown values 

of 𝑿𝒎̇. If T/Δt = N = 2M + 1 is chosen, then equation (9) transforms 

into an "inverse Fourier transform," i.e., the unknown complex 

coefficients can be found by applying the "forward Fourier 

transform" directly from the acquired samples for.  

However, if N > 2M + 1, the solution to the system can be 

obtained after pseudo-inversion of the corresponding signal matrix 

[12]. 

 

4. Results and discussion.  

Thus: The general formulation of the proposed modified 

algorithm for measuring the exact arrival time of the reflected signal 

can be presented as follows: 

1. The input sequence of ultra-short pulses (signals reflected 

from the target) must be fed to the input of a low-pass filter with a 

resonant frequency wс = 2πМ/ Т, where M > 1; 

2. The output signal from the "preliminary filter" is discretized 

in the interval [0 - T], resulting in N ≥ 2M + 1 samples of 𝒔̃out; 

3. After matrix inversion (if N > 2M + 1) or by applying the 

"forward Fourier transform" (if N = 2M + 1), the coefficients - Xm - 

are found. 

4. As a result of these operations, the complex amplitude – 

𝐶̇𝑚 =  
𝑋̇𝑚

𝑓𝑚̇𝐾(𝑚𝑤р)

̇
 

5. Furthermore, the unknown values of the complex exponential 

dependence - (A and τ) – will be determined by standard spectral 

methods, such as Prony's Method; Annihilating Filter; MUSIC, etc. 

[13,15].  

 

5. Conclusion.  

The algorithm proposed for calculating the arrival time of the 

ultra-short reflected pulse is synthesized under the condition that only 

reflected signals are considered and noise samples, which are 

necessarily present in the input signal under real conditions, are not 

accounted for. Under "noise component", it will further be assumed 

that the input sequence contains "white" (Gaussian noise) with a one-

sided noise power spectral density - N₀. In this case, the estimation 

of the time moment – τ – will be obtained with a certain error, which 

will depend on the signal-to-noise ratio. 
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