
Годишник на секция “Информатика” Annual of “Informatics” Section
Съюз на учените в България Union of Scientists in Bulgaria
Том 6, 2013, 1–16 Volume 6, 2013, 1–16

SOLVING MAX-MIN FUZZY LINEAR SYSTEMS OF EQUATIONS.
ALGORITHM AND SOFTWARE

Zlatko Zahariev

Faculty of Applied Mathematics and Informatics
Technical University of Sofia
Sofia 1000, P. O. Box 384

e-mail: zlatko@tu-sofia.bg

Abstract: An algorithm for solving max-min fuzzy linear systems of equations is presented in
this paper. The algorithm is based on the theory as presented in [10], but introduces improve-
ments. Also a new data type is proposed to be used in software implementations. Analysis of the
computational and memory complexity is given.
Keywords: Fuzzy linear systems of equations, Max-min composition, Algorithm,
Complexity.

1. Introduction
This paper is focused on solving fuzzy linear systems of equations:∣∣∣∣∣∣∣∣

(a11 ∧ x1) ∨ (a12 ∧ x2) ∨ . . . ∨ (a1n ∧ xn) = b1
(a21 ∧ x1) ∨ (a22 ∧ x2) ∨ . . . ∨ (a2n ∧ xn) = b2
. . .

(am1 ∧ x1) ∨ (am2 ∧ x2) ∨ . . . ∨ (amn ∧ xn) = bm

(1)

where aij , bi ∈ [0, 1], are given and xj ∈ [0, 1] marks the unknowns in the system. In this paper
for the indixes we suppose i = 1, ...,m, j = 1, ..., n

The system (1) will be presented in matrix form:

A •X = B (2)

1



where A = (aij)m×n is the matrix of coefficients, B = (bi)m×1 holds for the right-hand side
vector and X = (xj)1×n is the vector of unknowns.

These systems are investigated in [1], [3]- [11] and [14] from various points of view.
Despite that nowadays the problem appears as almost classical, there are still only few relevant

algorithms to solve it [1], [4], [6]- [11], [16] and [19] and even less software implementations [11],
[20], [22].

The algorithm presented here is based on the results given in [10]. Still a lot of principal
improvements are made here. In order to help the reader, all improvements are presented below
as well as all the parts from the original algorithm, which are relevant to this article.

At first glance the presented algorithm looks similar to the algorithms presented in [16] and
[19] but instead of using generators [16] or coverings [19] it uses domination and list operations
– that improves the algebraic-logical approach from [10].

In general the algorithm keeps the idea for domination and the algebraic-logical approach
from [10] but highly improves their realization. To achieve this, the domination matrix form [10]
is substituted by a system ofH-positioning vectors (Section 4) and the algebraic-logical approach
is substituted by a list operations (Section 3.3) which highly improves the algorithm robustness.
New approach of finding the greatest solution of (1) is also presented in Section 3.2.2 as well as
other small improvements pointed among the lines.

The algorithms proposed in [10], [16] and [19] are heavy and obscure while the algorithm
presented here is robust and lucid.

The paper is divided in seven sections. Next section gives some basic notions. In Section 3
the theoretical background for solving the system (1) is given. In Section 4 a specific data type
is presented. The purpose of this data type is to make the algorithm more relevant for software
implementations. Examples are given in Section 5. Analysis of the computational complexity and
memory complexity of the algorithm is presented in Section 6. Some conclusions can be found in
Section 7.

The terminology for fuzzy sets is according to [5], for fuzzy equations – as in [2], [3] and [10],
for algorithms, computational complexity and memory complexity – as in [15] and [17].

2. Basic notions

Let a, b ∈ [0, 1].
Operation ∨ between a and b is defined as

a ∨ b = max(a, b) (3)

Operation ∧ between a and b is defined as

a ∧ b = min(a, b) (4)

2



Operation→G between a and b is defined as

a →G b =

{
1, if a ≤ b

b, if a > b
(5)

A matrix A = (aij)m×n with aij ∈ [0, 1] for each i = 1, ...,m, j = 1, ..., n is called
membership matrix. In what follows ’matrix’ is used instead of ’membership matrix’.

Let the matrices A = (aij)m×p and B = (bij)p×n be given. The matrix Cm×n = (cij) =

A •B is called max-min product of A and B if

cij = ∨p
k=1(∧(aik, bkj)) (6)

for each i = 1, ...,m, j = 1, ..., n.
The matrix Cm×n = (cij) = A →G B is called→G product of A and B if

cij = ∧p
k=1(aik →G bkj) (7)

for each i = 1, ...,m, j = 1, ..., n.
For X = (xj)1×n and Y = (yj)1×n the inequality X ≤ Y holds iff xj ≤ yj for each

j = 1, ..., n.
Next notions are according to [10]:
A vector X0 = (x0

j )1×n with x0
j ∈ [0, 1], j = 1, ..., n, is called solution of the system (2)

if A • X0 = B holds. The set of all solutions of (2) is called complete solution set and it is
denoted by X0. If X0 ̸= ∅ then the system is called solvable (or consistent), otherwise it is called
unsolvable (or inconsistent).

A solution X0
low ∈ X0 is called lower solution of A • X = B if for any X0 ∈ X0 the

inequality X0 ≤ X0
low implies X0 = X0

low. A solution X0
u ∈ X0 is called upper solution of

A •X = B if for anyX0 ∈ X0 the inequalityX0
u ≤ X0 impliesX0 = X0

u. If the upper solution
is unique, it is called greatest (or maximum) solution. The n-tuple (X1, ..., Xn) with Xj ⊆ [0, 1]

is called interval solution of the system A • X = B if any X0 = (x0
j )n×1 with x0

j ∈ Xj for
each j = 1, ..., n implies X0 = (x0

j )n×1 ∈ X0. Any interval solution of A • X = B whose
components (interval bounds) are determined by a lower solution from the left and by the greatest
solution from the right, is called maximal interval solution of A •X = B.

3. Simplifications

3.1. Normalization
The system (1), is called normalized [10] or correctly ordered with respect to the right hand side
if b1 ≥ b2 ≥ ... ≥ bm. The algorithm in [10] as well as the algorithm here, presumes that the
system is normalized. If not, it needs to be reordered. To decrease the computational complexity
of the algorithm instead of reordering (1), a mapping vectormap(b) for B is used for indexing B

3



and rows in A. map(b) marks the permutation of equations in (1). Usingmap(b) is equivalent to
reorder equations in (1) and thus without loss of generality, in what follows the system is supposed
to be in normalized form.

3.2. Greatest solution
It is well known [14], that any solvable max-min fuzzy linear system of equations has unique
greatest solution. In order to find all solutions of the solvable system, it is necessary to find both its
greatest solution and all of its minimal solutions. Finding the greatest solution is relatively simple
task often used as a criteria for establishing solvability of the system [10], [11], [16]. Finding all
minimal solutions is reasonable only when the greatest solution exists.

In 3.2.1 and the beginning of 3.2.2 we follow the terminology and we remind the results from
[10] and [11].

3.2.1. Classical approach

The traditional approach to solve (1) is based on the following theorem:

Theorem 1. [14] Let A and B be given matrices and X• be the set of all matrices such that
A •X = B when X ∈ X•. Then

• X• ̸= ∅ iff At →G B ∈ X•.

• If X• ̸= ∅ then At →G B is the greatest element inX•.

If the system (1) is solvable, its greatest solution is given by X̂ = (x̂j) = At →G B.
Using this fact, an appropriate algorithm for checking consistency of the system and for finding

its greatest solution is obtained [11], [16]. Its computational complexity isO(m.n2). Nevertheless
that it is simple, it is too hard for such a task.

3.2.2. More efficient approach

Here is proposed a simpler way to answer both questions, simultaneously computing the greatest
solution and establishing consistency of (1). Instead of using Theorem 1, we work with four types
of coefficients (S, E, G and H) and a boolean vector (IND).

In the system (1):

• aij is called S-type coefficient if aij < bi.

• aij is called E-type coefficient if aij = bi.

• aij is called G-type coefficient if aij > bi.

• aij is called H-type coefficient if aij ≥ bi.

4



The algorithm uses the fact that it is possible to find the value of the unknown x̂j if only the
jth column of the matrix A is considered. For every i = 1, ...,m, there are three cases:

• If aij is E-type coefficient then the i-th equation can be satisfied by aij ∧ xj < bi when
xj ≥ bi because aij ∧ xj = bi ∧ xj = bi.

• If aij is G-type coefficient then the i-th equation can be satisfied by aij ∧ xj < bi only
when xj = bi because aij ∧ xj = aij ∧ bi = bi.

• If aij is S-type coefficient then the i-th equation cannot be satisfied by aij ∧ xj < bi for
any xj ∈ [0, 1].

Hence, S-type coefficients are not interesting because they do not lead to solution.
For the purposes of the next theorem, b̂j is introduced as follows:

b̂j =

{
minmi=1 {bi}, for all i such that aij > bi
1 otherwise

(8)

In other words, for each j = 1, ..., n, b̂j is equal to the lowest coefficient in B = (bi), i =
1, ...,m, such that aij > bi. If there is no such coefficient then b̂j = 1.

Theorem 2. [4] A system A •X = B is solvable iff X̂ = (̂bj) is its solution.

Corollary 1. In a solvable system (1), choosing xj > b̂j for at least one j = 1, ..., n makes the
system unsolvable.
Proof. Suppose b̂j = bk ̸= 1. Let we choose xj > bk. This means that the left-hand side of the
kth equation is greater than bk and this proves the theorem. □

Corollary 2. In a solvable system (1), for every j = 1, ..., n, the greatest admissible value for xj

is b̂j .

Corollary 3. If the system (1) is solvable its greatest solution is X̂ = (x̂j) = (̂bj), j = 1, ..., n.

Corollary 4. X̂ = (x̂j) = (̂bj) and X̂ = At →G B are equivalent.

In general, Theorem 3 and its corollaries shows that instead of calculating X̂ = At →G B we
can use faster algorithm to obtain X̂ = (x̂j) = (̂bj) (presented further in the paper).

X̂ is only the eventual greatest solution of the system (1), because it can be obtained for any
system (1), even if the system is unsolvable, so the eventual solution should be checked in order
to confirm that it is solution of (1). Explicit checking for the eventual solution will increase the
computations complexity of the algorithm. To avoid this in the next presented algorithm this is
done during the extraction of the coefficients of the potential greatest solution. For every obtained
coefficient (x̂j) ∈ X̂ there is check, which equations of (1) can be satisfied with it (hold in the
boolean vector IND). If in the end of the algorithm all the equations of (1) are satisfied (i.e. all
the coefficients in IND are set to TRUE) this means that the obtained solution is the greatest
solution of (1), otherwise the system (1) is unsolvable.

5



Algorithm 1 Greatest solution of (1).

Step 1. Initialize the vector X̂ = (x̂j) with x̂j = 1 for j = 1, ..., n.

Step 2. Initialize a boolean vector IND with INDi = FALSE for i = 1, ...,m. This vector is
used to store equations what are satisfied by the eventual greatest solution.

Step 3. For every column j = 1, ..., n in A, walk successively through all coefficients aij , i =
1, ...,m in the jth column of A, until the first G-type coefficient is found. Here it is
important that the matrix A is normalized [10].

(a) If aij is E-type coefficient it means that the ith equation in the system can be solved
through this coefficient, but b̂j still should be found. Correct INDi to TRUE.

(b) If aij is G-type coefficient (i.e. first G-type for the current column is found) correct
INDi to TRUE. As A is normalized, the fact that aij is G-type coefficient means
that b̂j = bi and so x̂j = b̂j = bi. In X̂ correct the value for x̂j to b̂j .
In the current column, check if there exists other i such that aij isH type coefficient
and bi = b̂j . If yes, correct the value for INDi to TRUE. As the matrixA is normal-
ized, this check can be done by continue walk successively through the coefficients
in the current column until bi ̸= b̂j .
Go to the next j.

Step 4. Check if all components of IND are set to TRUE.

(a) If INDi = FALSE for some i the system A •X = B is unsolvable.
(b) If INDi = TRUE for all i = 1, ...,m the system A • X = B is solvable and its

greatest solution is X̂ .

Step 5. Exit.

Theorem 2 and its corollaries prove that if the system is solvable, X̂ computed by this algo-
rithm is its greatest solution. This is the first difference between published up to now results and
the result presented in this paper. In existing up to now algorithms (see [1], [4], [7], [8], [10],
[11], [16], [18]) consistency of the system is established substituting X̂ = At →G B for X in
(2): when A • (At →G B) = B holds the system is solvable, otherwise it is unsolvable. With
Algorithm 1 X̂ can be obtained in more efficient way thus improving the time complexity. In
addition there is no need to substitute X̂ in order to establish consistency of the system.

IND vector proposed first in [9] here is used for a similar purpose. The algorithm uses this
vector to check which equations are satisfied by the eventual X̂ . At the end of the algorithm if
all components in IND are TRUE then X̂ is the greatest solution of the system, otherwise the
system is unsolvable.

Analysis of the computational complexity for Algorithm 1 is given in Section 6. In general it
is between O(n logn) +O(m+ n) and O(n logn) +O(m.n).

6



3.3. Lower solutions
The algorithm presented here proposes improvements of the theory from [10] in order to provide
lower computational complexity and higher robustness.

It is important that every equation in the system (1) can be satisfied only through terms with
H-type coefficients. Also, the minimal value for every component in the solution is either the
value of the corresponding component in the vector B or 0 according to [9](Corollary 4). Along
these lines, the hearth of the presented here algorithm is to find H-type components aij in A and
to give toXlowj either the value of the corresponding bi when the coefficient contributes to solve
the system or 0 when it doesn’t.

Using this, a set of candidate solutions can be obtained. All candidate solutions are of three
different types:

• Lower solution;

• Non-lower solution;

• Not solution at all.

The task of the algorithm is to extract all lower solutions and to skip the second and third types
(i.e. not lower solutions). In order to extract all lower solutions a newmethod, based on the idea of
the dominance matrix [10] in combination with list manipulation techniques is developed here. A
set of vectors (discussed in Section 4) is constructed and used to eliminate non-perspective H-type
elements. After obtaining this set of vectors a new technique is used to extract all lower solutions
from it.

3.3.1. Domination

For the purposes of presented here algorithm, a modified version of the definition for domination
is given. Original definition can be found in [10].

Definition 1. Let al and ak be the lth and the kth equations, respectively, in (1) and bl ≥ bk.
al is called dominant to ak and ak is called dominated by al, if for each j = 1, ..., n it holds: alj
is H-type coefficient⇒ akj is also H-type coefficient.

3.3.2. Extracting lower solutions

Algebraic-logical approach is used up to now for finding all lower solutions [4], [6], [8], [10],
algorithms are with exponential memory and time complexity [1]. The new algorithm, proposed
here, also has exponential complexity but with a lower degree. Thereby it needs less number of
steps from the other algorithms to obtain all lower solutions, for a problems with size< ∞. Also,
it reduces part of the operations needed on every step (for instance absorption) and realizes faster
approach on the other operations and thereby it is more efficient among now available algorithms
[11], [16].

7



Lower solutions are extracted by removing from A (or from map(B)) the dominated rows.
A new matrix is produced and marked with Ã = (ãij) where ĩ = 1, ..., m̃, m̃ < m for obvious
reasons. It preserves all the needed information from A to obtain the solutions.

Extraction introduced here is based on the following recursive principle. If in the jth column
of Ã there are one or more rows (̃i∗) such that coefficients ãi∗j are H-type then xj should be
taken equal to the smallest b̃i∗ and all rows ĩ∗ should be removed from Ã. The same procedure
is repeated for (j + 1)th column of the reduced Ã. ”Backtracking” based algorithm using that
principle is presented next:

Algorithm 2 Extract the lower solutions from Ã.

Step 1. Initialize solution vectorXlow0(j) = 0, j = 1, ..., n.

Step 2. Initialize a vector rows(̃i), i = 1, ..., m̃ which holds all consecutive row numbers in
Ã. This vector is used as a stopping condition for the recursion. Initially it holds all the
rows in Ã. On every step some of the rows there are removed. When rows is empty the
algorithm exits from the current recursive branch.

Step 3. Initialize sols to be the empty set of vectors, which is supposed to be the set of all minimal
solutions for current problem.

Step 4. Check if rows = ∅. If so, add Xlow0
to sols and go to step 7.

Step 5. Fix ĩ equal to the first element in rows, then for every j = 1, ..., n such that ãij is H-type
coefficient

(a) Create a copy ofXlow0 and update its jth coefficient to be equal to b̃i. Create a copy
of rows.

(b) For all k̃ in rows if ak̃j is a H-type coefficient, remove k̃ from the copy of rows.

(c) Go to step 5 with copied in this step rows andXlow0 , i.e. start new recursive branch
with reduced rows and changed Xlow0 .

Step 6. Exit.

As this is a recursive algorithm the best explanations for it can be done with an example. A
suitable example is given in Section 5 (Example 1).

3.4. Algorithms overview
The next algorithm is based on the above given Algorithms 1 and 2.

8



Algorithm 3 Solving A •X = B.

Step 1. Obtain input data for the matrices A and B.

Step 2. Obtain greatest solution for the system and check it for consistency (Algorithm 1).

Step 3. If the system is unsolvable go to step 6.

Step 4. Obtain the matrix Ã.

Step 5. Obtain all minimal solutions from Ã and B (Algorithm 2).

Step 6. Exit.

Algorithm 3.3.2 (Step 5) is the slowest part of the Algorithm 3.4. Detailed complexity analysis
can be found in Section 6. In general this algorithm has its best and worst cases and this is the
most important improvement according to algebraic-logical approach from [10] (from the time
complexity point of view). Algorithm 3.3.2 is going to have the same time complexity as the
algorithm presented in [10] only in its worst case.

Nevertheless Algorithm 3 is simpler than the ones proposed in [10], [11] (see Section 7), in
next Section 4 another slight improvement is proposed.

4. H-positioning vectors

Definition 2. The vector Hi which elements are the numbers j ∈ {1, ..., n} (ordered ascending)
in the ith row of A such that aij is H-type coefficient is called a H-positioning vector.

In general H-positioning vectors can be used as a replacement of the matrix Ã. The most
significant value of using H-positioning vectors is reducing the size Ã and thus reducing the
memory and the computational complexity of Algorithm 3.3.2. The complexity for obtaining
the set of H-positioning vectors is the same as the complexity for obtaining Ã, but as the H-
positioning vectors hold only the indexes of the H-type coefficient (and Ã holds the entire rows),
the size of the set of the H-positioning vectors is reduced with as much elements as the number
of S-type coefficient in the system (1). Another advantage of using H-positioning vectors is that
they are more suitable for computer implementations of the algorithm.

Next is a revised version of Definition 1 with the same meaning but instead of rows in matrix,
it uses H-positioning vectors.

Definition 3. Let Hl and Hk be two H-positioning vectors for (1) and bl ≥ bk. If each number
hl (component of Hl) is a component of Hk, then Hl is called dominant vector to Hk and Hk is
called dominated vector byHl.

Obviously all dominated vectors in A correspond to dominated rows and so, the first step
for obtaining the lower solutions of (1) is to obtain the set of all non-dominated H-positioning

9



vectors (H̃) according to Definition 3. After that the algorithm is almost the same as Algorithm
3.3.2. The only difference is a substitution of the matrix Ã with a H̃ and the according changes
on the indexes. Because of that and to keep this paper compact such an algorithm is not presented
here.

5. Examples
In the first example we illustrate presented algorithms. The second example shows solving a
bigger problem with a software based on Algorithm 4 and developed by the author. Execution
time and a comparison with the software presented in [11] are given.

5.1. Example 1
Solve 

0.7 0 0.9 0.4 0.7

0.3 0.9 0.9 0.4 0.2

0.6 0.1 0 0.8 0.5

0.8 0.7 0.4 0.2 0.7

0.4 0.1 0.2 0.5 0.1

 •


x1

x2

x3

x4

x5

 =


0.9

0.9

0.7

0.7

0.5


5.1.1. Finding the greatest solution (Algorithm 1)

Step 1. Initialize X̂ = (1.0 1.0 1.0 1.0 1.0)′.

Step 2. Initialize IND = (indi) = FALSE for each i = 1, ...,m.

Step 3. In the first column of the matrix A, a41 is the only G-type coefficient and b4 = 0.7 ⇒
b̂1 = 0.7 ⇒ x̂1 = 0.7.

There is no E-type coefficient in this column, so only IND4 = TRUE

Step 4. In the second column there is no G-type coefficient so b̂2 = 1 ⇒ x̂2 = 1.

Two E-type coefficients are located in this column: a22 and a42. This means that IND2 =

TRUE. IND4 is already TRUE and there is no need to change it.

Step 5. In the third column there is no G-type coefficient so b̂3 = 1 ⇒ x̂3 = 1.

Two E-type coefficients are located in this column: a13 and a23. This means that IND1 =

TRUE. IND2 is already TRUE and there is no need to change it.

Step 6. In the fourth column of the matrix A the only G-type coefficient is a34 and b3 = 0.7 ⇒
b̂4 = 0.7 ⇒ x̂4 = 0.7. Also a54 = b̂4 is E-type coefficient, so IND3 = TRUE and

10



IND5 = TRUE. All elements in IND are set to TRUE on this step. This means that
no more checks for E-type coefficients should be performed and the system is solvable.

Step 7. In the fifth column there is no G-type coefficient, so x̂5 = 1.

With this the greatest solution of the system is obtained: X̂ = (0.7 1 1 0.7 1)′.
Also, Theorem 2 and its corollaries prove that this is the greatest solution and no more
verifications are needed.

5.1.2. Finding all lower solutions using H-positioning vectors (Algorithm 4)

Step 1. Form the set of H-positioning vectors

H = {(3), (2 3), (4), (1 2 5), (4)}.

From Definition 3, the second vector is dominated by the first and the fifth is dominated
by the third. As all dominated vectors are redundant they should be removed from the set.
New initial set of H-positioning vectors is obtained:

H = {(3), (4), (1 2 5)}.

Step 2. Start with initial vector Xlow1 = (0 0 0 0 0)′. Iterate through the first H-positioning
vector (corresponding to the second equation with b2 = 0.9 in the system). Since its only
value is 3, we have Xlow1(3) = b2 = 0.9 so Xlow1 = (0 0 0.9 0 0)′.

Step 3. Iterate through the second H-positioning vector (corresponding to the third equation with
b3 = 0.7). Its only value is 4, Xlow1(4) = b3 = 0.7. Xlow1 = (0 0 0.9 0.7 0)′.

Step 4. From the third H positioning vector with b4 = 0.7 all three solutions are obtained

Xlow1 = (0.7 0.0 0.9 0.7 0.0)′

Xlow2 = (0.0 0.7 0.9 0.7 0.0)′

Xlow1 = (0.0 0.0 0.9 0.7 0.7)′

5.2. Example 2
Solve 

0.9 0.9 0.0 0.9 0.0 0.0 0.0 0.9

0.8 0.8 0.0 0.0 0.8 0.0 0.8 0.0

0.7 0.7 0.0 0.0 0.0 0.7 0.0 0.0

0.6 0.6 0.6 0.0 0.0 0.0 0.0 0.0

0.5 0.0 0.5 0.0 0.0 0.0 0.5 0.5

0.4 0.0 0.4 0.4 0.4 0.0 0.0 0.0

0.3 0.0 0.0 0.3 0.0 0.3 0.3 0.0

0.2 0.0 0.0 0.0 0.2 0.2 0.0 0.2


•



x1

x2

x3

x4

x5

x6

x7

x8


=



0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20


11



Although this example is not much bigger than the first one, it is much more hard, because it
has 92 lower solutions. Because of this, only MATLAB session of solving this example with the
developed by the author software is demonstrated here and comparisonwith the software from [11]
is made. This also will demonstrate the efficiency of the presented here algorithm. The software
used in this example as well as instructions can be found in [23].

5.2.1. Solving the problem

1. Input matrix A and B

2. Declare A and B as fuzzy matrices. FuzzyMatrix is a MATLAB class holding some crucial
operations for a fuzzy matrices ([22])

>> A=fuzzyMatrix(A); B=fuzzyMatrix(B);

3. Create the system object with ’maxmin’ composition, emptymatrix X and option for finding
all lower solutions set as ’true’

>> S = fuzzySystem('maxmin',A,B,
fuzzyMatrix(), true);

4. Solve the system

>> S.solve_inverse()
ans =

fuzzySystem handle
Properties:

composition: 'maxmin'
a: [8x8 fuzzyMatrix]
b: [8x1 fuzzyMatrix]
x: [1x1 struct]

full: 1
inequalities: 0

Methods, Events, Superclasses

5. The member variable x is a stricture which holds all the solutions of the system. We can
inspect it and see that among the other information it holds one greater solution (x.gr) and
92 lower solution (x.low)

>> S.x
ans =

12



rows: 8
cols: 8
help: [8x8 fuzzyMatrix]

gr: [8x1 fuzzyMatrix]
ind: [8x1 double]

exist: 1
dominated: []
help_rows: 8

low: [8x92 fuzzyMatrix]

From the example it can be seen that this system has one greatest solution and 92 lower solu-
tions. Because lack of space all the solution are not listed here. They can be obtained running the
example with the software form [23].

5.2.2. Execution time comparison

On a test computer this example was solved with the presented above software in about 0.1 sec-
onds, which is very impressive result. For comparison solving the same example on the same
computer with the software from [11] took about 315 seconds.

6. Computational and memory complexity
In this section the terminology for computational complexity and for memory complexity is ac-
cording to [15] and [17].

The problem has exponential computational complexity [1]. It actually depends on the the
number of the lower solutions and if the system has a solution at all. Every step in this algorithm
has its best and worst case.

Computational complexity for reordering the equations of the system is O(m logm) with
memory complexity of O(n). This is because not the entire system is reordered, but only its
right hand side (vector Bm×1). Used algorithm is binary tree sort. For comparison, software
package from [11] reorders both, matrix A and vector B, this leads to O(n.m2) computational
and memory complexly.

Computational complexity for obtaining X̂ depends first of all on the consistency of the sys-
tem. The worst case is when the system is unsolvable. In this case the algorithm needs to iterate
through all the elements in the matrixA, so the time complexity isO(m.n). Of course in this case,
there is no sense to obtain any lower solutions and in general this is the fastest case for solving
the problem. There are some best cases to obtain greatest solution if the system is solvable. All
of them are with the same complexity. For instance one best case is when a system has G-type
coefficients among entire first row and E-type coefficients among entire first column (a11 can be

13



either E-type or G-type coefficient). In that case computational complexity is O(m + n). Since
there is need to keep information about the greatest solution, as well as IND vector, memory
complexity for this part of the problem is O(m+ n).

The most complicated part of the problem is to obtain the lower solutions. Its computational
complexity hardly depends on the number of non-dominated H-positioning vectors. From Defi-
nition 3 it is easy to see that for a system in n unknowns and m equations, the maximal number
of non-dominated H-positioning vectors is less than or equal to 2n − 1. The components of these
H-positioning vectors should be iterated with backtracking based Algorithm 4 with exponential
time complexity.

Obtaining the set of all H-positioning vectors and checking for domination has complexity
from a lower class and for this reason it is not discussed. But an extracted solution can be not
lower or can be duplicated, and therefore it should be checked against all other extracted solution.
This operation has the same computational complexity as the extraction of all lower solutions.

7. Conclusion
Presented algorithm is a simple and straightforward way to solve fuzzy max-min systems of lin-
ear equations. It gives better and reasonable approach. The tremendous procedure based on the
algebraic-logical properties from [10], [11] here is replaced with list manipulations. The software,
created by the author, implements Algorithm 4. This software is about only 120 lines of MAT-
LAB code, which just demonstrates algorithm simplicity. It is free distributed under BSD license
agreements. Comparison with other software packages can be found in [20].

Based on the presented here algorithm and software, a new software package is created by the
author. The package is called Fuzzy Calculus Core (FC2ore) [21], [23]. It supports operations with
fuzzy matrices and solves fuzzy linear systems of equations and inequalities in various algebras.
Up to now six types of systems can be solved with FC2ore according to the used algebra: max−
min and min − max according to the theory in [11], max − product according to the theory
in [12], Gödel, Goguen and Łukasiewicz according to the theory in [13].

It is important that all six types of systems are solved with algorithms very close to the algo-
rithm presented in this paper.

This software also proposes solving fuzzy optimization problems as well as obtaining, reduc-
ing andminimizing complete behavior matrix for fuzzy machines in all mentioned above algebras.
It is also supposed that this software will be useful for fuzzy reasoning, pattern recognition and in
graph theory for finding irredundant coverings.

FC2ore is free distributed under BSD license agreements [23].

14



References
[1] Chen, L., P. Wang, Fuzzy relational equations (I): The general and specialized solving al-

gorithm, Soft Computing, Vol. 6, 2002, 428–435.

[2] De Baets, B., Analytical solution methods for fuzzy relational equations, in the series: Fun-
damentals of Fuzzy Sets, The Handbooks of Fuzzy Sets Series, D. Dubois and H. Prade
(eds.), Kluwer Academic Publishers, Vol. 1,2000, 291–340.

[3] Di Nola, A., W. Pedrycz, S. Sessa, E. Sanchez, Fuzzy Relation Equations and Their Appli-
cation to Knowledge Engineering, Kluwer Academic Press, Dordrecht, 1989.

[4] Higashi, M., G. Klir, Resolution of finite fuzzy relation equations, Fuzzy Sets and Systems,
Vol. 13, 1984, No. 1, 65–82.

[5] Klir, G., B. Yuan, Fuzzy Sets and Fuzzy logic: Theory and Applications, Prentice-Hall,
PTR, Englewood Cliffs, NJ, 1995.

[6] Miyakoshi, M., M. Shimbo, Lower solutions of systems of fuzzy equations, Fuzzy Sets and
Systems, Vol. 19, 1986, 37–46.

[7] Pappis, C., G. Adamopoulos, A computer algorithm for the solution of the inverse problem
of fuzzy systems, Fuzzy Sets and Systems, Vol. 39, 1991 279–290.

[8] Pappis, C., M. Sugeno, Fuzzy relation equations and the inverse problem, Fuzzy Sets and
Systems, Vol. 15, 1985, 79–90.

[9] Peeva, K., Fuzzy linear systems, Fuzzy Sets and Systems, Vol. 49, 1992, 339–355.

[10] Peeva, K., Universal algorithm for solving fuzzy relational equations, Italian Journal of
Pure and Applied Mathematics, Vol. 19, 2006, 9–20.

[11] Peeva, K., Y. Kyosev, Fuzzy Relational Calculus-Theory, Applications and Software (with
CD-ROM), In the series Advances in Fuzzy Systems - Applications and Theory, Vol. 22,
World Scientific Publishing Company, 2004.

[12] Peeva, K., Y. Kyosev, Algorithm for SolvingMax-product Fuzzy Relational Equations, Soft
Computing, Vol. 11, 2007, No. 7, 593–605.

[13] Perfilieva, I., L. Nosková, System of fuzzy relation equations with inf− → composition:
Complete set of solutions, Fuzzy Sets and Systems, Vol. 159, 2008, 2256–2271.

[14] Sanchez, E., Resolution of composite fuzzy relation equations, Information and Control,
Vol. 30, 1976, 38–48.

15



[15] Sedgewick, R., Algorithms in C, Third Edition, Pearson Education, Inc., publishing as Ad-
dison Wesley Longman, 1998.

[16] Shieh, B., New resolution of finite fuzzy relation equations with max-min composition,
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 16,
2008, No. 1, 19–33.

[17] Wirth, N.Algorithms +Data Structures = Programs, Prentice-Hall, Inc., Englewood Cliffs,
1975.

[18] Wu, Y., S. Guu, An Efficient Procedure for Solving a Fuzzy Relational EquationWithMax-
Archimedean t-Norm Composition, IEEE Transactions on Fuzzy Systems, Vol. 16, 2008,
No. 1, 73–84.

[19] Yeh, C. On the minimal solutions of max–min fuzzy relational equations, Fuzzy Sets and
Systems, Vol. 159, 2008, 23–39.

[20] Zahariev, Z., Solving Max-min Relational Equations. Software and Applications, Proc.
of International Conference “Applications of Mathematics in Engineering and Economics
(AMEE’08)”, Vol. 1067, G. Venkov, R. Kovatcheva, V. Pasheva (eds.), American Institute
of Physics, 2008, 516–523.

[21] Zahariev, Z., Software package andAPI inMATLAB for working with fuzzy algebras, Proc
of International Conference “Applications of Mathematics in Engineering and Economics
(AMEE’09)”, vol. 1184, G. Venkov, R. Kovatcheva, V. Pasheva (eds.), American Institute
of Physics, 2009, 434–350.

[22] http://www.mathworks.com/matlabcentral/fileexchange/
6214-fuzzy-relational-calculus-toolbox-rel-1-01

[23] http://www.mathworks.com/matlabcentral/fileexchange/
27046-fuzzy-calculus-core-fc2ore

16


