CONTROL SYSTEMS WITH TRANSPORT DELAY Ahmed Kula, Georgi Ruzhekov |
|
CASCADE CONTROL OF A MULTI INPUT AND MULTI OUTPUT (MIMO) THERMAL CONTROL SYSTEM Anna Georgieva, Georgi Ruzhekov |
|
ADVANTAGES OF USING DECOUPLING MATRIX FOR MIMO CONTROL Bozhidar Rakov, Georgi Ruzhekov |
|
A MODIFIED METHOD FOR CONTROL OF MIMO PLANT USING PID AND DECOUPLING MATRIX Bozhidar Rakov, Georgi Ruzhekov |
|
RISK-BASED TESTING APPROACH FOR MEDICAL DEVICES SOFTWARE Ivan E. Ivanov, V. Gueorguiev, D. Georgieva, M. Nenova, B. Ivanov |
|
OBJECTS DETECTION FROM AN IMAGE USING MATLAB Sherif Sherif, Jordan Kralev, Tsonyo Slavov |
|
CYBERSECURITY IN SMART CARS Maria Nenova, Vesselin Gueorguiev, Stoyan Madzhirov, Desislava Georgieva, Ivan Evg. Ivanov |
|
LABORATORY SETUP FOR INVESTIGATION OF CONTROL SYSTEM FOR ELECTROHYDRAULIC STEERING UNITS Alexander Mitov, Tsonyo Slavov, Jordan Kralev, Ilcho Angelov |
CONTROL SYSTEMS WITH TRANSPORT DELAY
Ahmed Kula, Georgi Ruzhekov
Abstract
A hybrid system is being developed. The plant is realized in MATLAB, works in real-time. The control system uses an industrial controller and a SCADA system. Estimation of time-delay, modeling of reference object and autotune is performed. The developed hybrid system gives opportunities for research different types of regulators for plants with a big time-delay.
Keywords:
Control plant with time-delay, Hybrid system, PLC, SCADA, MATLAB.
Full Text:
PDF
Top
DOI: 10.47978/TUS.2020.70.04.021
References:
[1] Ружеков Г., Обработка на данни и сигнали, Технически университет - София, 2011. | |||
[2] Драготинов И., И. Ганчев, Автоматизация на технологични процеси, УХТ-Пловдив, 2003. | |||
[3] Danium M., M. Awtoniuk, R. Salat, Implementation of PID autotuning procedure in PLC controller, ITM Web Conferences 15, 2017. https://doi.org/10.1051/itmconf/20171505009 |
|||
[4] Sophocles J. O., Introduction to Signal Processing, Rutgers University, 2010. | |||
[5] Hanta V., A. Prochazka, Rational Approximation of Time Delay, Institute of Chemical Technology in Prague, 2009. | |||
[6] Åström K-J., T. Hägglund, Revisiting The Ziegler-Nichols step response method for PID control, Journal of Process Control, 2004. https://doi.org/10.1016/j.jprocont.2004.01.002 |
CASCADE CONTROL OF A MULTI INPUT AND MULTI OUTPUT (MIMO) THERMAL CONTROL SYSTEM
Anna Georgieva, Georgi Ruzhekov
Abstract
Cascade control of a “Multi Input and Multi Output (MIMO) Thermal Control System” is developed for better speed, better reduction of noise, lower overshoot. The thermal object consists of 4 thermally connected modules (three with a heater and one with a cooler), which is a MIMO object – 4 inputs and 4 outputs. The control system is realized with CPU and contains developing of PID control, Autotune system, history data.
Keywords:
Cascade control, “Multi Input and Multi Output (MIMO) Thermal Control System”, PLC control, controllers, Autotune.
Full Text:
PDF
Top
DOI: 10.47978/TUS.2020.70.04.022
References:
[1] Б. Раков, Г. Ружеков, Научен отчет етап 1: Разработване на система за управление на мно-госвързан обект № 172ПД0015-08, НИС, ТУ-София, 11.2017 | |||
[2] Б. Раков, Г. Ружеков, Научен отчет етап 2: Разработване на система за управление на мно-госвързан обект № 172ПД0015-08, НИС, ТУ-София, 06.2018 | |||
[3] Б. Раков, Г. Ружеков, Експериментална система за управление на лабораторен модел-Многосвързан обект, Годишник на Технически Университет-София, том 68, книга 2, 2018, стр. 315-324. | |||
[4] Емил М. Гарипов, Цифрови системи за управление - Проектиране на ПИД регулатори, ТУ-София, 2007. | |||
[5] М. Хаджийски, К. Велев, Г. Сотиров, И. Калайков , Методи и алгоритми за управлени", Техника, София1992. | |||
[6] Х. Хинов, К. Наплатаров, Автоматизация на технологични процеси, Техника, София, 1991. | |||
[7] Application Description 02/2015 - Single and Multi Loop Controller Structures (Cascade Control) with PID_Temp, Siemens, 02.2015. | |||
[8] Application Description 08/2019 - Single and Multi Loop Controller Structures (Cascade Control) with PID_Temp, Siemens, 08.2019. |
ADVANTAGES OF USING DECOUPLING MATRIX FOR MIMO CONTROL
Bozhidar Rakov, Georgi Ruzhekov
Abstract
A research for the effectiveness of using decoupling matrix for MIMO PID control is conducted. Approximations of different orders are used for the calculation of the decoupling matrix. The estimation of the effectiveness is measured by а modified criterion.
Keywords:
Multi-dimensional PID, decoupling matrix.
Full Text:
PDF
Top
DOI: 10.47978/TUS.2020.70.04.023
References:
[1] Vladimir Kučera, Diagonal decoupling of linear systems by static state feedback, IEEE Transactions on Automatic Control, 2017. https://doi.org/10.1109/TAC.2017.2710098 |
|||
[2] Carl A. Smith, Armando B. Corripio, Principles and practice of automatic control 2nd edition, John Wiley & Sons 1997. | |||
[3] Juan Garrido, Francisco Vazquez, Fernando Morilla, An extended approach of inverted decoupling, Journal of process control 21, 2011. https://doi.org/10.1016/j.jprocont.2010.10.004 |
|||
[4] Емил М. Гарипов, Идентификация на системи, ч.2, Технически университет-София, 2007. |
Abstract
A modified scheme is proposed for control of MIMO plant using a PID and decoupling matrix. The goal better performance of the closed loop systems and in-creased stability margin. By using a relay experiment an oscillating ultimate frequency is found, when the system is on the verge of instability. Using this estimation one applies a correction, which increases the stability margin of the closed loop system.
Keywords:
Multi-dimensional PID, decoupling matrix, structured singular value.
Full Text:
PDF
Top
DOI: 10.47978/TUS.2020.70.04.024
References:
[1] Carl A. Smith, Armando B. Corripio, Principles and practice of automatic control 2nd edition -, John Wiley & Sons 1997. | |||
[2] Б. Раков, Независим синтез на ПИД регулатор за тримерен обект, Годишник на Технически Университет 2018. | |||
[3] Sigurd Skogestad, Ian Postlethwaite, Multivariable Feedback Control: Analysis and Design 2nd Edition, Wiley & Sons 2001. | |||
[4] Juan Garrido, Francisco Vazquez, Fernando Morilla, An extended approach of inverted decoupling, Journal of process control 21, 2011. https://doi.org/10.1016/j.jprocont.2010.10.004 |
RISK-BASED TESTING APPROACH FOR MEDICAL DEVICES SOFTWARE
Ivan E. Ivanov, V. Gueorguiev, D. Georgieva, M. Nenova, B. Ivanov
Abstract
A successful "medical device" development requires the collaboration between designers, developers, and quality engineers to be able to assess needs, functional requirements, specifications, and problems at every stage of development. The quality control of the developing process is achieved through a predefined set of policies, quality assessment, and the management of activities to eliminate defects and weaknesses wherever the development process.
The paper presents a successful approach to the development of a new medical device that will successfully pass all stages of certification to obtain a CE-mark.
Keywords:
risk analysis, testing, CE mark, medical device.
Full Text:
PDF
Top
DOI: 10.47978/TUS.2020.70.04.025
References:
[1] U.S. Food & Drag Administration, Classify Your Medical Device, 2020, https://www.fda.gov/medical-devices/overview-device-regulation/classify-your-medical-device | |||
[2] Registrar Corp, FDA Issues Guidance on Medical Device Accessories, Jan. 2018, https://www.registrarcorp.com/fda-issues-guidance-on-medical-device-accessories/ | |||
[3] Johner Institute, Classification of Medical Devices, https://www.johner-institute.com/articles/regulatory-affairs/classification/ | |||
[4] Emergo by UL, Medical Device Classification in Europe, https://www.emergobyul.com/services/europe/european-medical-device-classification | |||
[5] M. El Azzouzi, Complete Guide: Medical Device Classification EU MDR, April 2020, https://easymedicaldevice.com/new-eu-medical-device-classification/ | |||
[6] News-Medical.Net, Test Methods for Medical Devices, 2018, https://www.news-medi-cal.net/whitepaper/20171018/Test-Methods-for-Medical-Devices.aspx | |||
[7] A. F. Benet, A Risk Driven Approach to testing Medical Device Software, Advances in Systems Safety, Springer, Nov. 2010, pp 157-168, ISBN 978-0-85729-132-5 https://doi.org/10.1007/978-0-85729-133-2_10 |
|||
[8] J. Speer, T. Rish , ISO 14971 RISK MANAGEMENT FOR MEDICAL DEVICES: THE DEFINITIVE GUIDE, Greenlight Guru, https://www.greenlight.guru/blog/iso-14971-risk-management | |||
[9] EU Directorate B Unit B2, MEDICAL DEVICES: Guidance document (Classification of medical devices), June 2010. | |||
[10] N. Pontius, The Ultimate Guide to Medical Device Design and Development: From Discovery and Concept to Design Controls, Navigating Medical Device Regulations, Risk Management, Quality Assurance, and More, 2020, https://www.pannam.com/blog/guide-medical-device-design-and-development/ | |||
[11] M. Strålin, Classification Of Medical Devices And Their Routes To CE Marking, March 2020, https://support.ce-check.eu/hc/en-us/articles/360008712879-Classification-Of-Medical-De-vices-And-Their-Routes-To-CE-Marking | |||
[12] IEC, IEC 60601-1:2020, Medical electrical equipment, 2020, https://webstore.iec.ch/publication/2603 | |||
[13] https://support.ce-check.eu/hc/en-us/articles/360030495832-11-Types-of-Medical-Device-Design-Testing |
[1] Bay, H., A. Ess, T. Tuytelaarss, L. Van Gool, SURF: Speeded Up Robust Features, Computer Vision and Image Understanding (CVIU), Vol. 110, No. 3, pp. 346-359, 2008. https://doi.org/10.1016/j.cviu.2007.09.014 |
|||
[2] Torr, P., A. Zisserman, MLESAC: A New Robust Estimator with Application to Estimating Image Geometry, CVIU, 2000. https://doi.org/10.1006/cviu.1999.0832 |
|||
[3] Sankowski, D., J. Nowakowski, eds. Computer Vision in Robotics and Industrial Applications, World Scientific, 2014. https://doi.org/10.1142/9090 |
|||
[4] Jayanthi, N., S. Indu, Comparison of Image Matching Techniques, International Journal of Lat-est Trends in Engineering and Technology, Vol. 7, Issue 3, e-ISSN: 2278-621X | |||
[5] Grimson, W., L. Eric, J. Mundy, Computer vision applications, Communications of the ACM 37.3 (1994), pp. 45-51. https://doi.org/10.1145/175247.175251 |
|||
[6] Kagami, S. High-speed vision systems and projectors for real-time perception of the world, IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, 2010. https://doi.org/10.1109/CVPRW.2010.5543776 |
[1] Srdjan Capkun, Jun Luo, The Security and Privacy of Smart Vehicles, IEEE Security and Privacy Magazine, May 2014. | |||
[2] Gasper Skolc, Blaz Markelj, Smart Cars and Information Security, Journal of Criminal Justice and Security | |||
[3] W. Jones, "Building Safer Cars," IEEE Spectrum, vol. 39, no. 1, 2002, pp. 82-85. https://doi.org/10.1109/6.975028 |
|||
[4] R. Moebus, A. Joos, and M. Morari, "Multi-Object Adaptive Cruise Control," Proc. Hybrid Systems: Computation and Control, LNCS vol. 2623, Springer Verlag, 2003, pp. 359-376 https://doi.org/10.1007/3-540-36580-X_27 |
|||
[5] W. Franz, R. Eberhardt, and T. Luckenbach, "FleetNet: Internet on the Road," Proc. 8th World Congress on Intelligent Transport Systems, 2001. | |||
[6] L. Zhou and Z. Haas, "Securing Ad Hoc Networks," IEEE Network, vol. 13, no. 6, 1999 https://doi.org/10.1109/65.806983 |
|||
[7] Anderson, M. J., Kalra, N., Stanley, D. K., Sorensen, P., Samaras, C., & Oluwatola, A. O. (2014). Autonomous vehicle technology: A guide for policymakers. Santa Monica: RAND Cor-poration | |||
[8] Browne, W. (2016). Internet of things devices increases cyber vulnerability of vehicles (Master's thesis). Utica: Faculty of Utica College. | |||
[9] L. Klein, Sensor Technologies and Data Requirements for ITS, Artech House, 2001. | |||
[10] A. Serjantov and G. Danezis, "Toward an Information Theoretic Metric for Anonymity," Proc. Privacy Enhancing Technologies (PET), Springer-Verlag, 2002. https://doi.org/10.1007/3-540-36467-6_4 |
|||
[11] J. Warner and R. Johnston, Think GPS Cargo Tracking = High Security? Think Again, tech. report, Los Alamos Nat'l Lab., 2003. | |||
[12] G. Ateniese, M. Steiner, and G. Tsudik, "New MultiParty Authentication Services and Key Agreement Protocols," IEEE J. Selected Areas in Comm. | |||
[13] S. Brands and D. Chaum, "Distance-Bounding Protocols," Theory and Application of Crypto-graphic Techniques, Springer-Verlag, 1993. | |||
[14] J.-Y. Lee and R.A. Scholtz, "Ranging in a Dense Multipath Environment Using a UWB Radio Link," IEEE J. Selected Areas in Comm., vol. 20, no. 9, 2002. https://doi.org/10.1109/JSAC.2002.805060 |
|||
[15] Eskandarian, A. (2012). Introduction to smart vehicles. In A. Eskandarian (Ed.), Handbook of smart vehicles (pp. 2-13). Washington: Center for Smart Systems Research in the George Washington University. https://doi.org/10.1007/978-0-85729-085-4_1 |
[1] Más, F., Zhang, Q. etc. Mechatronics and Intelligent Systems for Off-road Vehicles. Springer-Verlag London Limited, 2010 | |||
[2] Ljung, L. System Identification: Theory for the User. Second edition. Prentice-Hall Inc., Englewood Cliffs, NJ, 1999. | |||
[3] Danfoss, "OSPE Steering Valve", Technical Information, 11068682, November, 2016 | |||
[4] Angelov, Il., Mitov, Al. "Test Bench for Experimental Research and Identification of Electro-hydraulic Steering Units", International Fluid Power Conference, 10thIFK'2016, ISBN 978-3-9816480-1-0, Dresden, Germany, 2016 | |||
[5] Mitov, Al., Kralev, J., Slavov, Ts., Angelov, Il. SIMO System Identification of Transfer Function Model for Electrohydraulic Power Steering. 16th International Conference on Electrical Machines, Drives and Power Systems (ELMA), June, 2019, Bulgaria, pp. 130-135. https://doi.org/10.1109/ELMA.2019.8771571 |
|||
[6] Zhou, K., Doyle, J. etc. Robust and Optimal Control. Prentice Hall International Inc., Upper Saddle River, NJ, 1996. | |||
[7] Petkov, P., Slavov, Ts., Kralev, J. Design of Embedded Robust Control Systems using MATLAB®/Simulink®. IET Control, Robotics and Sensor Series 113. ISBN 978-1-78561-3330-2,2018. https://doi.org/10.1049/PBCE113E |