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Abstract—The idea of autonomous vehicles (AUVs) being 
used in logistics is gaining popularity. APCs capable of 
performing complex tasks such as autonomous navigation are 
an increasingly promising tool in logistics. Autonomous 
navigation requires sensors with high potential. The camera 
provides images from which it is possible to extract a large 
number of measurements for the APS - position, speed, 
distance from objects, etc. The area uniting vision and control 
is called visual control. The advantage of connecting vision 
with control is that the camera sensor has a great wealth of 
information. Its use has an undeniable advantage to perform 
complex tasks that require great precision. The work examines 
problems of visual control in the presence of a camera on 
board the APS. Control is sought only through the images 
captured by the camera under additional image analysis time 
constraints in order to update the command most frequently. 
The relationship between vision and control (visual 
assessment) is explored for the purpose of control based on the 
information provided by the video analysis. The combined 
study of the constituents of visual control leads to a new control 
enabling greater overlap between control law and image 
analysis and more efficient use of APS in logistics. 
 

Index Terms—autonomous vehicles, visual control, logistic 
 

I. INTRODUCTION 
Since the beginning of the 21st century, the idea of 

autonomous vehicles (AUVs) being used in logistics has 
gained popularity. Over the years, advanced APCs capable 
of performing complex tasks such as autonomous 
navigation are an increasingly promising tool in logistics. 

The complexity of the autonomous navigation task 
requires sensors with high measurement potential to be able 
to provide relevant control information. One of the sensors 
providing the most information is video cameras. Adding 
visuality to APS control laws gives more information 
increasing the degree of autonomy and interaction with the 
environment. The camera provides images from which it is 
possible to extract a large number of measurements such as 
the position of the APC in space, its speed of movement, the 
distance from objects of interest, as well as more semantic 
measurements of the environment such as the type of object 
present in the visual field. The area uniting vision and 
control is called visual control. 

The work examines problems of visual control in the 
presence of a camera on board the vehicle. It seeks to control 
the camera only through the images captured by it, 
necessary for tasks such as tracking stationary objects on the 
ground, regardless of the movements of the APS. The task 
is considered under additional image analysis time 
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constraints in order to update the command as often as 
possible. 

Most research on visual control has focused on two 
separate strands: 

– the development of new control laws using a highly 
simplified environment that allows easy extraction of 
information from the image, 

– or new general image analysis algorithms focused on 
measuring the information in the image for easy integration 
into the control chain. 

A combined study of the two topics constituting visual 
control is proposed here, leading to a new control allowing 
for greater overlap between control law and image analysis. 

This work investigates the relationship between vision 
and control (visual assessment) for the purpose of control 
based on the information provided by video sequence 
analysis. This makes it possible to move the latter from a 
current position to a desired position with respect to the 
observed scene. The advantage of combining vision with 
control compared to other techniques is that the camera 
sensor has a great wealth of information, its use has an 
undeniable advantage to perform complex tasks that require 
high precision. 

II. STATE OF THE PROBLEM 
A classic APS approach is with an embedded camera 

(Fig. 1 (a)) and APS or with a remote camera (Fig. 1 (b)). 
There is also the possibility of simultaneous use of a built-
in and remote camera. This work describes the case of an 
embedded camera, which is most promising in logistics. 

 

 
Fig. 1. Connection between APS and on-board (a) and remote (b) 

camera 
 
The first works and concerning the interaction of control 

and vision are based on the principle of open control loop. 
The APC moves, the vision sensor sends back information 
about its position in the observed scene, then, the APC 
moves again after changing its position in that same scene. 
The types of control developed in these studies, due to the 
simplified task formulation, are effective only in cases 
where the observed scene is static. 

A closed-loop vision control was first used by Shirai and 
Inoue 1973. Thus, the vision sensor improves the 
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positioning of the APS. Other methods then emerged, which 
can be divided into four main categories, depending on the 
use of visual information and the type of command. The first 
criterion, based on the measurement in the image, makes it 
possible to distinguish the techniques known as 3D visual 
or situational control (position-based) and the techniques 
based on image estimation or 2D estimation (image-based 
control). The other criterion makes it possible to distinguish 
the so-called indirect (dynamic look and move) and direct 
(direct visual servo) visual evaluations. As a summary, all 
visual management techniques can be classified into three 
groups according to three criteria: 

The table in Fig. 2 Classification based on APS 
measurement and management. Hybrid visual controls are 
typically hybrid in their measurement (2D and 3D) rather 
than their control. 

 
Criteria Direct control Indirect control  

2D measure 
Direct 2D visual 
assessment (Fig. 6) 

Indirect 2D visual 
assessment (Fig. 4) 

3D measure Direct 3D visual 
assessment (Fig. 5) 

Indirect 3D visual 
assessment (Fig.  3) 

Hybrid  Hybrid visual control 
Fig. 2. Classification of visual control methods 

III. VISUAL CONTROL 
The distinction between indirect and direct visual control 

is based on the calculation of movement (the first criterion). 

A. Indirect visual control 
The main advantage of indirect visual control techniques 

is that they allow control of the motion of the APS separated 
from the image analysis algorithm and its limitation in terms 
of computation time. 

An added advantage is that the APS can accept speed or 
position instructions in the Cartesian plane, making them 
easy to execute. Thus, the indirect visual control is stable, 
simple and adaptable to different types of APS. Its 
performance depends solely on its design and the delay from 
the image analysis in the loop. The measurement of the error 
to be stabilized can be done in Cartesian space or in the 
image plane. 
 

 
Fig. 3. Indirect 3D control with 3D position p in Cartesian space 
 

 
Fig. 1.4 – Indirect 2D control with 2D position p in the image 

B. Direct visual control 
Direct visual control methods differ from indirect visual 

control techniques in the role of the visual control device. 
[1] All governing law is done in the same governing device. 

Here it is necessary to provide an assessment of the 
condition of the vehicle at high speed. This method is 
similar to classic automatic control methods. 

The increase in computer computing power in recent 
years has made it possible to have image analysis algorithms 
fast enough to be embedded in the visual control chain. It 
also leads to an increase in the frequency of acquisition of 
images from the cameras and to the acquisition of very high 
visual rates of the estimates. 

 

 
Fig. 5. Direct 3D control with 3D position p in Cartesian space 

C.   2D/3D visual control 
The difference between 2D and 3D visual control 

techniques is the measurement used in the control device 
circuit. 

 
 

 
Fig. 6. Direct 2D control with 2D image position 

D. 3D visual control 
3D visual control methods are based on 3D measurement, 

including 3D reconstruction of visual information. [2] [3] A 
single camera is often used in this approach. In this case, the 
reconstruction of the target's position (and orientation) 
requires prior knowledge of the scene geometry. When the 
3D system has a stereo head or even more than two cameras, 
the reconstruction can be performed without any geometric 
knowledge of the scene. 

The geometric elements used in these methods are 
relatively simple – usually a point or a line. Fig. 5. illustrates 
the principle of direct 3D visual control. Fig. 3. illustrates 
indirect 3D visual control. pd is the setpoint vector 
representing the desired object position coordinates with 
respect to the camera, and p* is the measurement vector 
estimated using a 3D reconstruction algorithm. 

Limitation to simple objects and a priori knowledge are 
significant limitations of 3D methods. More attractive are 
2D visual control techniques or hybrid techniques that do 
not require full 3D reconstruction and are much less error 
sensitive. 

E. 2D visual assessments 
2D visual assessment techniques use 2D measurement. 

The idea is to no longer use a 3D size reconstructed from 
visual information, but to directly use the visual information 
in the 2D image. [4] The goal is to approximate the visual 
information (geometrical features) s* measured in the image 
to the desired visual information sd. 

A major advantage is the small amount of information – 
only depth and camera calibration parameters – and in most 
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cases a rough estimate works very well. Model-free visual 
control methods in which no parameter is known in advance 
have also been developed. They are based on online 
identification of the interaction matrix or on various types 
of optimization.  

The disadvantages of model-free techniques are the 
convergence of the optimization and the computation time 
of that optimization. 

Another drawback of 2D visual control is the problem 
called advance/retreat. It is due to the restriction for 2D 
visual control that the trajectories of the elements in the 
image are straight lines (Fig. 7.). The current camera 
position corresponds to points A, B, C, D in the image, and 
the desired position corresponds to points A∗, B∗, C∗, D∗. 
The dots move following the arrows, but such dot 
movement corresponds to pulling the camera back along its 
optical axis, in theory to infinity. Hybrid methods are 
designed to avoid this problem. 

 

 
Fig. 7. The forward/backward problem 
 
Fig. 1.6 illustrates the principle of direct 2D visual control. 
Figure 1.4 illustrates indirect 2D visual serving. In both 
cases, sd is the set point vector representing the desired 
visual information in the image, and s* is the measurement 
vector of the visual information estimated using an image 
analysis algorithm. 

F. Hybrid visual control 
Some hybrid visual control techniques are useful for the 

visual control of autonomous vehicles ideas considered 
here. 

2D visual assessment ½ 
2D visual control 1/2, [5] is a hybrid technique based on 

measurement information and commands defined directly in 
the image and in the camera reference frame. It is used in 
tasks where the camera is very far from the desired position 
[MCB98]. 

Fig. 8. represents a 2D 1/2 visual control, where rd and td 
are the desired rotation and translation vectors, and r* and 
t* are the measured rotation and translation vectors. The 
main advantage of this technique is that it requires very little 
a priori information compared to classical 3D techniques. In 
fact, convergence is ensured without knowledge of the 3D 
model of the object and only with an approximation of the 
desired depth of the object. 

 
Fig. 8. 2D assessment ½ 

 

d2D/dt visual assessment 
2D, 3D or 2D 1/2 visual control techniques are based on 

the use of visual information such as geometric elements 
and reference measurement of the position of the latter in 
the image. This requires robust and accurate algorithms for 
extracting and tracking geometric elements and their 
presence in the image. To circumvent these requirements, 
visual d2D/dt dynamic visual control, which is based on the 
speed of motion in the image, can be used. The command to 
move the APS is determined by the correspondence of the 
speed sd of the measured movement to the speed s∗ of the 
desired movement (Fig. 9.). 

In this case, the measurement of visual information is 
dynamic and used directly in the control law. [6] 
Reconstructed visual information is also used in the 
construction of the control law [QGS95, CAD95, SVS97], 
but this technique approaches classical 2D visual methods. 

 

 
Fig. 9. Block diagram of d2D/dt control 

G. Summarizing 
Various visual control techniques were proposed here. 

These systems have the advantage of allowing many 
constraints to be met, but are often financially prohibitive 
for large-scale commercialization. 

Rather, the practical approach is to offer a complete 
visual control method that is easy to implement and 
configure and does not require the deployment of very 
precise devices. 

An important criterion for selecting a visual control 
technique is the mechanical simplicity of the system to be 
controlled. Unless necessary, the use of complex visual 
control techniques using strong control-level constraints 
(trajectory generation, guarantee that the object remains in 
the visual field, forward/backward problem, etc.) as hybrid 
techniques is not justified for management. 

On the other hand, most of the manufacturers of control 
devices are not interested in the complete chain of 
processing of the incoming information. In other words, the 
topics of image analysis and control are rarely considered 
together to achieve the coupling of control with vision. 
Generally, the focus is on one of two aspects of this chain, 
namely image analysis or control. Reflecting on both the 
control approach and image analysis allowed for greater 
integration of these two areas in the visual control chain. 
This would make it possible to overcome certain time 
constraints present in many visual control techniques. 

An image analysis algorithm based on a global/local 
approach is discussed here. Methods for estimating the 
position of the object in the image are proposed. 

IV. MOTION ESTIMATION IN THE IMAGE 
Whatever the scheme used by each of the visual control 
methods, one thing is common - the need to work in real 
time, that is, to be able to update the control of the executive 
mechanisms in a very short time compared to the speed of 
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movement of the APS. In the case of visual control, the 
strongest time constraint usually concerns the image 
analysis algorithm. When the application has markers on 
objects of interest, the image analysis algorithm becomes 
quite simple. Conversely, when the target application allows 
the user to select the extracted visual information, the image 
analysis algorithm is more complex and requires more 
intensive computations. 
The most critical part of visual processing techniques is the 
extraction of motion in an image. It needs to be stable and 
precise while keeping the time limit. 
Except for visual techniques based on dynamic 
measurements (velocity in the image), the majority of visual 
systems use visual information from geometric elements 
(position of points, lines). There are two main approaches to 
measuring this geometric visual information: 
– The first approach consists in estimating the optical flow 
in the image. These methods are called motion analysis 
techniques. Optic flow is defined as the apparent 2D motion 
in an image given by spatiotemporal variations in light 
intensity. From the apparent velocity in the optical flow 
image, it is possible to find the desired geometric 
information. For example, in the case of a point, it is easy to 
find the position of the point by its original location. 
– The second main approach is to extract geometric shapes 
and trace them image by image. These are the methods for 
extracting geometric shapes. In these methods, the first 
phase consists of extracting the geometric shapes from the 
image using a detector. The second phase consists of finding 
them in the next image using matching. Unlike previous 
methods, it does not estimate the motion in the image, but 
only the motion of the geometric shape extracted in the first 
place. 

A. Motion estimation by image motion analysis 
This method estimates the field of apparent velocity 

vectors in the image. Motion analysis algorithms start from 
the hypothesis that image intensity remains constant during 
motion or that it varies in a model able way. [7]  

This hypothesis leads to the difference equation between 
the shifted images, i.e. between the images at times t and t 
+ δt, where δt = +/− 1. The equation is called the difference 
equation in the shifted frame and is written as follows: 

    (0) 
the light intensity at point p = (x,y) at time t and d = (dx,dy) 
the displacement vector of point p between times t and t + 
δt in the image plane. In the case of the direct direction, for 
the images I(t) and I(t + 1) at times t and t + 1, the evaluation 
reduces to finding the vector: d(x,y,t) = (dx(x,y,t),dy(x,y,t)) 
for the point p = (x,y) using the two images related by the 
hypothesis of conservation of light intensity: I(x,y,t) = I(x + 
dx,y + dy,t + 1) in the case of inverse estimation, the 
displacement vector is estimated using the relation: I(x,y,t) 
= I(x - dx,y - dy,t + 1) Fig 10 summarizes 
            image in t – 1        image in t    image in t + 1 

 
Fig. 10. Transformation of spatial coordinates  

 
In fact, the movement in the image is not directly 

observed, but its consequence on the intensity of light in the 

image. In the context of motion estimation, mathematically 
the task is ill-posed. It has no unique solution, and when one 
of two matching points is not visible in the image there is no 
solution. 

In motion analysis methods, the estimation of motion in 
an image is based on spatial and temporal gradients of light 
intensity. In the case of an image that is discrete 
information, the gradients are approximated by finite 
differences. 

B. Constraint equation of apparent motion 
Constraint equation of apparent motion 
The method relies on the apparent motion constraint 

equation (MCE) for motion in the image. From the PIR 
equation and under the assumption that the light intensity is 
constant, we can write for one image pixel p = (x,y): 

          (1) 
where x and y vary with time. By differentiating Eq. 1 [8] 
yields: 

  (2) 
by substituting Eq. (2) in Eq. (0) the difference DFD is: 

     (3) 
and after dividing Eq. (3) of δt, the apparent motion 
constraint equation (MCE) also called the optical flow 
equation is obtained: 

  (4) 
where vx(x,y,t) = dx/dt and vy(x,y,t) = dy/dt are the x and y 
velocity components, respectively. In matrix form, for all 
pixels in the image Eq. (2.4) has the form: 

               (5) 
where                       is the spatial gradient of the image and 
It is the temporal gradient and v = (vx,vy)T is the transposed 
velocity vector. 
It can be assumed that the intensity along the motion 
trajectory changes slowly enough and that the spatial 
gradient along the motion direction is constant: 

                   (6) 
but requires that distortions and rotations in the image be 
negligible. Eq. 6 takes the following form: 

          (7) 

where  are the second derivatives in the 
image. Eq. 7 is difficult to implement because of the high-
frequency nature of the second derivative operator. 

Parametric method 
In the parametric method, a parametric motion model is 

introduced, which is the additional constraint to estimate the 
velocity field. Models account for deformations in the 
image. The most common transformations are affine, 
projective (linear) and nonlinear (quadratic) Fig. 11. In the 
affine model, the transformations are in orthographic 
projection (rotation, square to parallelogram 
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transformation), while in the linear projective model, the 
transformations are in perspective projection. In the affine 
model with equation: 

vx = a1 + a3x + a5y   vy = a2 + a4x + a6y       (8) 
the unknowns x and y are the coordinates and vx and vy the 
pixel velocity. The projective model is described by 
equations: 

   (9) 
The most realistic model for describing the motion of an 

object in an image is the quadratic model. It accounts for the 
basic transformations in the image, but has no specific 
physical correspondence. It is described by the equations: 

    (10) 
 

 

 

 
Fig. 11 – Spatial coordinate transformations 
 
Differential method 
The differential method of Horn and Shunck [9] [10] is 

well suited for small displacements and is based on Taylor's 
order. Its goal is to find the vector field that satisfies an 
apparent motion constraint equation in each of the image 
pixels. Let Jfux be the error with respect to the equation of 
the pixel p(x,y,t) of the image: 

          (11) 
All neighbouring pixels are assumed to have similar 

motion. This uses the Juniformite error, which is low if the 
velocity vector field is smooth. 

The method iteratively minimizes the energy J(v): 

      (12) 
with λ weighting factor. To minimize the error, the Euler-
Lagrange equations are used. Convergence occurs when the 
error is less than a selected threshold or when a maximum 
number of iterations is reached. 

V. MOTION ESTIMATION BY TRACKING GEOMETRIC 
ELEMENTS 

In the first image, simple geometric elements (points, 
lines, segments, contours) are extracted and then followed 
frame by frame in the rest of the sequence. Tracking is done 
by matching them in two consecutive images under a set 
criterion. Some methods use the equation of motion 
constraint to track geometric elements and their operation is 
somewhat similar to the methods explained above. [11]  

The main advantage of these methods is their simplicity 
and speed. But they depend a lot on the extraction density 
of the geometric elements. Furthermore, they are poorly 

effective in occlusion. 
Extract points in an image 
Here it involves only the extraction and mapping of 

points and geometric shapes from points in an image, 
because this is an element that occurs in all real objects. 
There are three main classes of point detectors in the 
literature: 

– The first class is contour based. [12] [13] CSS detector 
is based on edge detection from which points of interest are 
extracted. 

– The second class uses pattern correlation using circular 
masks with SUSAN detector. [14] Each point in the image 
is scanned with the circular mask and the pixels included in 
the mask having a value close to that of the center pixel are 
counted. Depending on a set threshold, it is determined 
whether a point of interest is detected or not. 

– The third class is based on direct measurement in the 
image. This one is the most used. It is more robust than the 
other two classes and requires neither contour extraction nor 
approximate knowledge of interest points. The following is 
a brief presentation of some point detectors belonging to the 
third class. 

One such detector, invariant under rotation and 
translation, uses the second derivatives of an I Beaudet 
image. [15] [16] If H is the Hessian of an image I at point p 
with coordinates (x,y): 

         (13) 

with  second derivatives, then the detector is 
the determinant of H multiplied by a constant C 

         (14) 
A point p is considered a point of interest when the 

absolute value of k is greater than a threshold fixed 
empirically. 

The KR detector may be based on the curvature of the 
image surface multiplied by the gradient norm at the point p 
= (x,y) [17]: 

    (15) 
The detector is built based on the autocorrelation of the 

Gaussian smoothed image. [18] The autocorrelation is 
calculated over a window W of a certain size. Let p = (x,y) 
be a point in image I, then the Harris detector is: 

      (16) 
where G(σ) is the Gaussian variance and are the spatial 
gradients of image I at point p. The eigenvalues [λ1,λ2] of the 
matrix M(p) allow to distinguish whether the point p = (x,y) 
is a point of interest or not. 

– If λ1 and λ2 are small compared to a threshold fixed 
according to the image, the region under consideration has 
a constant intensity.  

– If λ1 >> λ2, the domain has a contour. 
– If λ1 and λ2 are large compared to the threshold, the 

region has a corner and therefore a point of interest. 
The Harris detector best meets two main Schmid criteria 
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[20]: repeatability (equal number of points detected during 
a change in scene illumination) and information content 
(detected points being different from each other) can be 
concluded, that 

Characterization of extracted points 
The problem of finding invariants in an image consists of 

searching for quantities characteristic of the image, 
regardless of viewpoint, lighting conditions, geometric 
transformations, scale changes, etc. All the detectors 
presented in the previous paragraph are invariant to 
rotations and translations in the image.  

There are geometric invariants using the geometry of a 
set of points (Euclidean distance between two points or 
angle between three points). There are differential invariants 
accounting for the point intensity value and its derivatives., 
Lowe defined a SIFT (Scale Invariant Feature Transform) 
[19] feature invariant descriptor that is based on the 
gradients in eight directions of the pixels near the point of 
interest and yields, for each point of interest, a descriptor of 
dimension 128 .It is invariant to changes in illumination and 
geometric transformations. 

Dot matching 
Point matching consists of finding the primitives 

extracted in one image in the next image using a similarity 
criterion. This correspondence is used to estimate the 
transformation (displacement in the case of visual 
processing) between the two images. 

The simplest criteria for measuring similarity is a window 
correlation criterion around the point of interest. For 
example, SSD represents the sum of the squared differences 
between the parts corresponding to the two windows. The 
SAD represents the sum of the absolute values of the 
differences between the corresponding parts. The 
transformation between the two images is calculated using 
the previous correlation criteria. It is based on the 
assumption that the offset between the images is small (a 
realistic assumption in the case of a video sequence). We 
can then consider that if a point of interest is in image I(t) at 
position (x,y), then that point in image I(t + 1) will be found 
near (x,y). And therefore the correlation peak will give the 
location of the corresponding point in the second image. 

There are other methods for computing transformations 
such as relaxation techniques or techniques involving graph 
theory. 

Motion estimation method 
As part of an APS visual control system, motion 

estimation must be performed with a fast, accurate and 
robust image analysis algorithm. In the previous paragraph, 
a brief overview of the different classes of possible methods 
for performing the visual control task of APS was given. 

Different methods are described and compared with the 
constraints of the APS visual control task. As a direct 
consequence of this, an image analysis algorithm based on 
a combination of motion and geometric analysis methods is 
proposed that is robust to disturbances while maintaining 
good target position precision. 

For this purpose, we start from two existing algorithms, 
chosen for their good properties for each of the two classes 
of methods. The proposed algorithm is based on the KLT 
algorithm [21] for point feature extraction and the RMRm 
algorithm for image motion analysis. This approach can be 
compared to global/local search approaches. In fact, in the 
proposed algorithm, the motion analysis behaves as a global 

motion search in the image, and the tracking of geometric 
elements as a local refinement of the target search. The 
developed algorithm is presented below. 

VI. PYRAMID ANALYSIS 

A. Analysis with reduced resolution 
A sequence of images of the same scene but at different 

resolution levels is analyzed. To generate the series, the 
original full-resolution image is convolved (shrunk) with a 
low-pass filter. This operation is similar to defocusing the 
camera observing the scene. Filtering selects the best 

 and        (17) 
Here, σ is the Gaussian variance, allowing the filter 

bandwidth to be adjusted. 
Since the image is a discrete signal, it is necessary to 

make a discrete approximation of G(x) and G(y) as 
multidimensional vectors to perform the convolution. For 
speed, sequentially shrink the image with the two filters 
G(x) and G(y). With variance σ = 1, the size is p = 4 with a 
filter: 

     (18) 

,  
where 1/246 is the normalization factor (the sum of the 
kernel factors). 

A multi-resolution representation is therefore a series of 
images representing the same captured scene, but at 
progressively lower levels of resolution by applying a low-
pass filter. 

B. Pyramidal structure 
The filtering operation allows to subsample an image 

without losing information. This approach leads to an image 
representation with a pyramidal structure with n levels (Fig. 
11).  

The base of the pyramid contains the original image, 
which comes from a camera, for example. Each subsequent 
level of the pyramid contains a lower resolution image than 
the previous one representing a subsampling of the previous 
image by a factor of N along each axis. It is obtained by 
filtering the image from the previous level (Fig. 12) Then 
the image is reduced by a factor N keeping only one pixel of 
N2 to obtain a smaller image. In practice, the filtering and 
subsampling operations are performed simultaneously. 

The pyramidal structure has several advantages: 
– The image dimensions of each level of the pyramid as 

a sub-sample are divided by N compared to the previous 
level, making the pyramid representation a very compact 
structure. If N = 2, it requires only 33% more memory than 
the full resolution image alone. 

– Filtering is quick and easy. Each level is generated by 
linearly filtering the previous level. The same filter can be 
reused because the previous frame has already been 
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reduced, which shifts the effective cutoff frequency. A small 
filter can be applied level by level, which makes building a 
pyramid very fast. 

In the considered estimation algorithm is used a pyramid 
structure with a v-shaped estimation scheme (Fig. 11). It is 
generated using a sequence of images captured by a camera. 
A pyramid of this type is used in the KLT and RMRm 
algorithms. In Fig. 12 at each level of the pyramid the factor 
is 2 in each direction. 

The pyramidal approach eliminates noise by reducing the 
scale and resolution of the image. Moreover, the coarse-
resolution image does not contain the small details of the 
original image, which improves the convergence of the 
algorithm. For example, for a large inter-image offset, the 
pyramidal structure makes it possible to initialize the 
estimate at a smaller scale level and therefore with reduced 
inter-image offset. 

 

 
Fig. 2.8 11 Pyramid representation          
           
 
 
 
 
 
 
 
Fig. 12 – Gaussian pyramid 

C. KLT algorithm 
For extracting points in the image and tracking these 

points, the KLT algorithm is very effective. First, the 
general idea of the algorithm is discussed  and then its 
specific implementation. 

General idea 
Given the presence of noise, motion model 

approximations, and the need for more than one equation 
per pixel, the displacement of several adjacent pixels 
described by a single model is considered to solve for 
motion. The feature points P that are tracked do not 
represent a pixel, but the center of an analysis window W 
containing a set of pixels p. All feature point extraction and 
observation calculations are done in this window. 

The first step is to extract the tracking points. The Harris 
detector is used for this purpose. Let G be the following 
matrix: 

         (19) 
with gx and gy being the spatial gradients along x and y at 
point p. A feature point is considered a good candidate for 
monitoring if: 

min(λ1,λ2) < λ. 
where λ1 and λ2 are the eigenvalues of G and λ is a threshold 
defined according to the observed scene. 

The second step is to trace the extracted points in the 
following image. An image I at times t and t + τ is given. 
Under the hypothesis that the light intensity is conserved, 
then: 

I(x,y,t + τ) = I(x + vx,y + vy,t)       (20) 
where v = (vx,vy) is the velocity of point P = (x,y). Thus, an 
image at time t + τ can be obtained by moving any point in 
the current image at time t, with an appropriate 
transformation. 

The vector v = (vx,vy) is a function of both the position of 
the point P and all motions of the pixels in the analysis 
window W. An affine model of the amount of motion, taking 
deformations into account, allows a better representation of 
the form: 

v = DP + d with  and  (21) 
D is the deformation matrix and d the translation of the 
center of the analysis window defined by the point P. The 
displacement of P between the original image at time t and 
the next image at time t + τ is: 

I((1+D)P + d, t + τ) = I(P,t)        (22) 
where I is the 2x2 identity matrix. 

The estimation of the motion vector v is reduced to an 
optimization problem of finding the elements of the matrix 
D and the coordinates of the vector d minimizing the 
residual for the analysis window: 

       (23) 
where W is the analysis window, p is a pixel of that window. 
We can approximate the Light Intensity Model to be 
approximated by the first-order summation of Taylor's 
series: 

I((p + v), t + τ) = I(p, t + τ) + ∇I(p, t + τ)T.v     (24) 
Where ∇I(p, t + τ)T.v = (gx, gy)  represents the spatial 

gradient of the image computed at point p. The residual is: 

    (25) 
The minimization of E is implemented iteratively with the 

estimate of the velocity vk at iteration k as follows: 
Tzk = e             (26) 

and gives a 6x6 linear system to solve. Here 

,  
and  

where  



P. MARINOV.: VISUAL CONTROL OF AUTONOMOUS VEHICLES WITH AN ON – BOARD CAMERA 

and  
A convergence criterion is introduced for the behavior of 

the residual E to distinguish between good and bad points. 
If the criterion is met, the point is considered a point of 
interest and continues to be tracked, otherwise the point is 
eliminated. 

Actual realization 
The actual realization is implemented in three stages: 
• Create points and follow the first stage of the general 

idea of the algorithm. 
• Tracking and is based on the second stage of the main 

idea of the algorithm, introducing certain simplifications. 
• The third stage is checking points to eliminate bad 

points. 
The first stage is described above. 
In the second tracking stage, the estimation of the affine 

deformation matrix D in the analysis window W depends 
strongly on its size. The limitation of real-time operation 
requires the use of small window sizes. Additionally, to 
achieve faster results is to consider only pure translations. 

Thus the vector v reduces to: 
v = d             (27) 

which simplifies the calculation of the residual E: 

     (28) 
where dk is the estimate of vector d at iteration k. Which 
gives a 2x2 matrix G and to solve a linear system of two 
equations with two unknowns for each iteration k: 

  Gdk = e            (29) 

 and  
The residual E is minimized with the iterative Newton-
Raphson method. 

In the third stage when checking points, two criteria are 
used to eliminate bad points, which are applied during 
observation: 

– One criterion uses convergence: if Newton-Raphson 
does not converge after a maximum number of iterations, 
then the point is eliminated. 

– The second criterion uses the average value of the 
intensity difference between the two calculation windows: 
if the average value is greater than a fixed threshold, the 
point is eliminated. 

At the end of the third stage, Gaussian pyramid 
construction is applied to each tracking image with different 
resolutions. The division factor is 2, i.e. the size of an image 
at level n corresponds to dividing by two the size of the 
image at level n-1. The evaluation starts at the lowest 
resolution (highest level of the pyramid) and then projects 
to the next level until the highest resolution is reached. The 
pyramidal structure allows the Newton-Raphson method to 
be initialized at a coarser, less noisy level to obtain better 
performance. This also makes it possible to calculate larger 
displacements. 

Fig. 14 illustrates the KLT algorithm. Here, the area 
spanning the points of interest simply corresponds to the 
area of the image to be tracked, and the magnification of this 

area showing the different computational windows W and 
their centers: the points of interest P. 

 

 
Fig. 13 Illustration of the KLT algorithm 

 

RMRm algorithm 
The RMRm algorithm is used to estimate the global motion 
pattern in the image. It uses the following affine 2D model: 

   (30) 
where p = (x,y)  is the position of a point in the image, 
(a1,...,a6) are the model coefficients and (vx,vy) is the velocity 
vector at point p. To obtain the coefficients of the model, the 
equation of the apparent restriction of motion for each point 
p is solved: 

      (31) 
where ∇I(pi,t) is the spatial gradient at point pi, It(pi,t) is the 
temporal gradient at point pi, and V (p,t) = (vx,vy). 
In general, the RMRm algorithm uses two consecutive 
images obtained from the camera and consists of two steps. 
In the first step, two Gaussian pyramids are constructed. The 
separation factor between each level is two. The image size 
at level n corresponds to half the image size at level n – 1. 
This allows the estimation of large displacements. In the 
second step, the assessment itself is performed. Let θt be the 
six-parameter vector of the affine motion model at time t to 
be estimated. The first evaluation of this vector is done at 
the top of the pyramid (lowest resolution). It is minimized 
with respect to θt by the following criterion: 

         (32) 
where 

 
with p the set of points in the image, With the evaluation 

support, ∇I(p,t) the spatial gradient of I at point p, It(p,t)  the 
time derivative of I at point p, Vθt the velocity vector 
computed at point p by applying the model defined by the 
current estimate value of θt and ρ a robust estimator. In this 
case, ρ is the two-weighted Tukey loss function [22]. This 
estimator allows during the iterative process to weigh the 
adequacy of the motion of point p with the current estimate 
of the motion model θt. The weaker this adequacy, the closer 
the weight is to zero. This estimator allows discarding points 
whose motion is abnormal with respect to the general 
motion and therefore makes the estimation more robust. 
Given the nonlinearity of C(θt), a process based on 
successive approximations of C(θt) is used. The estimate of 
θt at iteration k is: 

          (33) 
where  represents the refinement given by the estimate 
at iteration k. Let pk be the estimate of the position of point 
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p at iteration k. Each increment is obtained by minimizing 
the following error with respect to  : 

        (34) 
The process is repeated and increments are accumulated 

until a predefined convergence criterion is reached. The 
estimate at the finest resolution level is initialized from the 
value obtained at the coarser resolution level. The RMRm 
algorithm uses an iterative weighted least squares 
estimation process. This requires only the calculation of the 
derivatives of the spatiotemporal intensity function. 

The RMRm algorithm takes into account variations in 
light intensity and Eq. 31 takes the form: 

     (35) 
where ξ is a scalar representing the change in light intensity 
to be estimated. 

VII. CONCLUSION  
In summary, the techniques used relate to the study of 

visual control, i.e. for the management of a closed system, 
thanks to visual information extracted from the images 
received by the camera using a suitable image analysis 
algorithm. 

In order to perform visual control tasks of APS, a robust 
motion estimation is required, taking into account the 
quality of the processed images and the required high 
precision due to the size of the characteristic objects in the 
images. For this purpose, it is proposed to combine two 
motion estimation methods: a method for stable dominant 
motion estimation using a parametric model and a method 
based on the extraction and tracking of characteristic points 
in the image. The two methods are based on the two 
algorithms summarized above, KLT for point tracking and 
RMRm for motion model estimation. 
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