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On the Solvability of a Fourth-Order Initial Value 
Problem Under Barrier Strips Conditions 
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Abstract—This article is devoted to the existence of global 

solutions of the initial value problem for fourth-order 
nonlinear ordinary differential equation. To prove the 
established existence results we use a global existence 
theorem obtained in our previous work by a  topological 
method, that is, the problem for the solvability of the 
considered initial value problem is replaced by the 
problem for the existence of a fixed point of a suitable 
introduced operator, the existence of a fixed point 
follows from the topological transversality theorem. The 
application of the global existence theorem needs a 
priori bounds which follow from imposed barrier strips 
conditions. In addition to an existence result, a result 
guaranteeing the existence of at least one positive, increasing 
(non-negative, non-decreasing), convex solution is also 
obtained. 
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I. INTRODUCTION 
1We study the existence of global solutions to the initial 

value problem (IVP) 
 

𝑥𝑥(4) = 𝑓𝑓(𝑡𝑡,𝑥𝑥,𝑥𝑥′ ,𝑥𝑥′′ , 𝑥𝑥′′′), 𝑡𝑡 ∈ [0,1],                (1) 
 

𝑥𝑥(0) = 𝐴𝐴,𝑥𝑥′(0) = 𝐵𝐵, 𝑥𝑥′′(0) = 𝐶𝐶, 𝑥𝑥′′′(0) = 𝐷𝐷,        (2) 
 

where 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷 ∈ ℝ, and 𝑓𝑓(𝑡𝑡,𝑥𝑥,𝑝𝑝, 𝑞𝑞, 𝑟𝑟) is a scalar function 
defined for (𝑡𝑡, 𝑥𝑥, 𝑝𝑝, 𝑞𝑞, 𝑟𝑟) ∈ [0,1] × 𝐷𝐷𝑥𝑥 × 𝐷𝐷𝑝𝑝 × 𝐷𝐷𝑞𝑞 × 𝐷𝐷𝑟𝑟 , 
here the sets 𝐷𝐷𝑥𝑥 ,𝐷𝐷𝑝𝑝,𝐷𝐷𝑞𝑞 ,𝐷𝐷𝑟𝑟 ⊆ ℝ can be bounded. 

The well-known Peano theorem guarantees a local 
solution to problem (1), (2) if 𝑓𝑓(𝑡𝑡,𝑥𝑥,𝑝𝑝, 𝑞𝑞, 𝑟𝑟)  is continuous 
and bounded in a neighborhood of (0,𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷), see for 
example P. Hartman [4]. 

The solvability of IVPs has been studied in W. 
Mydlarczyk [7] and N. Faried et al. [2]. The first article 
considers the problem 

 

𝑢𝑢′′′(𝑡𝑡) = 𝑔𝑔�𝑢𝑢(𝑡𝑡)�, 𝑡𝑡 > 0, 
 

𝑢𝑢(0) = 𝑢𝑢′(0) = 𝑢𝑢′′(0) = 0, 
 

where 𝑔𝑔: (0,∞) → [0,∞) is continuous. The second one is 
devoted to the fifth-order differential equation  
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,  

𝑡𝑡 ∈ ℝ, with initial conditions 
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= 0, 𝑠𝑠 = 0,1,2,3, 
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where 𝐴𝐴 is a self-adjoint positively defined operator and 
𝐴𝐴𝑗𝑗 , 𝑗𝑗 = 1,2,3,4,5, are linear unbounded operators. 

Numerical methods for fourth-order IVPs have been used 
in K. Hussain et al. [5], S. J. Kayode et al. [6] and I. Singh 
and G. Singh [8]; a Runge-Kutta type method, a block2 
method and the adomian decomposition method, 
respectively. 

In our considerations we use a priori bounds. They are 
provided under the following assumptions. 

 
(H1) There are constants 𝐹𝐹𝑖𝑖,𝐿𝐿𝑖𝑖, i = 1,2, such that 
 

𝐹𝐹2 < 𝐹𝐹1 ≤ 𝐷𝐷 ≤ 𝐿𝐿1 < 𝐿𝐿2, [𝐹𝐹2,𝐿𝐿2] ⊆ 𝐷𝐷𝑟𝑟 , 
 

𝑓𝑓(𝑡𝑡,𝑥𝑥,𝑝𝑝, 𝑞𝑞, 𝑟𝑟) ≤ 0                             (3)  
for (𝑡𝑡,𝑥𝑥,𝑝𝑝,𝑞𝑞, 𝑟𝑟) ∈ [0,1] × 𝐷𝐷𝑥𝑥 × 𝐷𝐷𝑝𝑝 × 𝐷𝐷𝑞𝑞 × [𝐿𝐿1,𝐿𝐿2], 
 

𝑓𝑓(𝑡𝑡,𝑥𝑥,𝑝𝑝, 𝑞𝑞, 𝑟𝑟) ≥ 0                                 (4) 
for (𝑡𝑡,𝑥𝑥,𝑝𝑝,𝑞𝑞, 𝑟𝑟) ∈ [0,1] × 𝐷𝐷𝑥𝑥 × 𝐷𝐷𝑝𝑝 × 𝐷𝐷𝑞𝑞 × [𝐹𝐹2,𝐹𝐹1]. 
 

(H2) There are constants   −∞ < 𝑚𝑚𝑖𝑖 ,𝑀𝑀𝑖𝑖 < ∞, 𝑖𝑖 = 0,3����, 
such that 

 

[𝑚𝑚0 − 𝜎𝜎,𝑀𝑀0 + 𝜎𝜎] ⊆ 𝐷𝐷𝑥𝑥 , [𝑚𝑚1 − 𝜎𝜎,𝑀𝑀1 + 𝜎𝜎] ⊆ 𝐷𝐷𝑝𝑝, 
 

[𝑚𝑚2 − 𝜎𝜎,𝑀𝑀2 + 𝜎𝜎] ⊆ 𝐷𝐷𝑞𝑞 , [𝑚𝑚3 − 𝜎𝜎,𝑀𝑀3 + 𝜎𝜎] ⊆ 𝐷𝐷𝑟𝑟 , 
 

where 𝑓𝑓(𝑡𝑡, 𝑥𝑥,𝑝𝑝, 𝑞𝑞, 𝑟𝑟) is continuous on the set [0,1] × 𝐽𝐽,  
𝐽𝐽 = [𝑚𝑚0 − 𝜎𝜎,𝑀𝑀0 + 𝜎𝜎] × [𝑚𝑚1 − 𝜎𝜎,𝑀𝑀1 + 𝜎𝜎] × 

              × [𝑚𝑚2 − 𝜎𝜎,𝑀𝑀2 + 𝜎𝜎] × [𝑚𝑚3 − 𝜎𝜎,𝑀𝑀3 + 𝜎𝜎],  
and 𝜎𝜎 > 0 is a sufficiently small. 
 

Let us recall that the strips [0,1] × [𝐿𝐿1,𝐿𝐿2] and 
[0,1] × [𝐹𝐹2,𝐹𝐹1] of (H1) are called barrier ones, in this case 
for the third derivative of the eventual solutions 𝑥𝑥 ∈ 𝐶𝐶4[0,1] 
to a suitable family of boundary value problems (BVPs) 
containing IVP (1), (2).  

We use the a priori bounds to apply the basic existence 
theorem given in R. Agarwal and P. Kelevedjiev [1]. In fact, 
it is a variant of A. Granas et al. [3], Chapter I, Theorem 5.1 
and Chapter V, Theorem 1.2. To formulate this theorem we 
consider the BVP 

 

𝑥𝑥(4) + а(𝑡𝑡)𝑥𝑥′′′ + 𝑏𝑏(𝑡𝑡)𝑥𝑥′′ + 𝑐𝑐(𝑡𝑡)𝑥𝑥′ + 𝑑𝑑(𝑡𝑡)𝑥𝑥 = 
                          = 𝑓𝑓(𝑡𝑡, 𝑥𝑥, 𝑥𝑥′,𝑥𝑥′′,𝑥𝑥′′′), 𝑡𝑡 ∈ [0,1], (5) 

 

𝑉𝑉𝑖𝑖(𝑥𝑥) =  𝑟𝑟𝑖𝑖 , 𝑖𝑖 = 1,2,3,4, (6) 
 

where а,𝑏𝑏, 𝑐𝑐, 𝑑𝑑 ∈ 𝐶𝐶([0,1],ℝ),  𝑓𝑓: [0,1] × 𝐷𝐷𝑥𝑥 × 𝐷𝐷𝑝𝑝 × 𝐷𝐷𝑞𝑞 ×
𝐷𝐷𝑟𝑟 → ℝ, 

𝑉𝑉𝑖𝑖(𝑥𝑥) = �[𝑎𝑎𝑖𝑖𝑗𝑗𝑥𝑥0
(𝑗𝑗) +

2

𝑗𝑗=0

𝑏𝑏𝑖𝑖𝑗𝑗𝑥𝑥1
(𝑗𝑗)], 𝑖𝑖 = 1,4,����� 
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with ∑ (𝑎𝑎𝑖𝑖𝑗𝑗2 +2
𝑗𝑗=0 𝑏𝑏𝑖𝑖𝑗𝑗

2) > 0, 𝑖𝑖 = 1,4����,  and 𝑟𝑟𝑖𝑖 ∈ ℝ, 𝑖𝑖 = 1,4.����� 
Introduce also the following family of BVPs  
 

𝑥𝑥(4) + а(𝑡𝑡)𝑥𝑥′′′ + 𝑏𝑏(𝑡𝑡)𝑥𝑥′′ + 𝑐𝑐(𝑡𝑡)𝑥𝑥′ + 𝑑𝑑(𝑡𝑡)𝑥𝑥 = 
                    = 𝑔𝑔(𝑡𝑡, 𝑥𝑥, 𝑥𝑥′,𝑥𝑥′′,𝑥𝑥′′′,𝜆𝜆), 𝑡𝑡 ∈ [0,1],                  (5)λ 

 

with boundary conditions (6), where 𝜆𝜆 ∈ [0,1], the function 
g is defined on [0,1] × 𝐷𝐷𝑥𝑥 × 𝐷𝐷𝑝𝑝 × 𝐷𝐷𝑞𝑞 × 𝐷𝐷𝑟𝑟 × [0,1], and 
𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑 are as above. 

Let 𝐵𝐵𝐶𝐶 denote the set of functions satisfying (6), and 𝐵𝐵𝐶𝐶0 
denote the set of functions satisfying the homogenous BCs 
(6), that is,  

𝑉𝑉𝑖𝑖(𝑥𝑥) =  0, 𝑖𝑖 = 1,4����. 
 

Finally, let 𝐶𝐶𝐵𝐵𝐵𝐵4 [0,1] = 𝐶𝐶4[0,1]∩𝐵𝐵𝐶𝐶 and 𝐶𝐶BC0
4 [0,1] =

𝐶𝐶4[0,1]∩ 𝐵𝐵𝐶𝐶0. 
Now we are ready to formulate our basic tool. 
 

Theorem 1.1. [Theorem 4, [1]]. Assume that: 
(i)     Problem (5)0, (6) has a unique solution 𝑥𝑥0 ∈ 𝐶𝐶4[0,1]. 
(ii)    Problems (5), (6) and (5)1, (6) are equivalent. 
(iii)   The map 𝐿𝐿ℎ:𝐶𝐶BC0

4 → 𝐶𝐶[0,1], defined by 
 

𝐿𝐿ℎ𝑥𝑥 = 𝑥𝑥(4) + а(𝑡𝑡)𝑥𝑥′′′+ 𝑏𝑏(𝑡𝑡)𝑥𝑥′′ + 𝑐𝑐(𝑡𝑡)𝑥𝑥′ + 𝑑𝑑(𝑡𝑡)𝑥𝑥, 
 

 is one-to-one. 
(iv)   Each solution 𝑥𝑥 ∈ 𝐶𝐶4[0,1] to family (5)λ, (6) satisfies 
the bounds 
 

𝑚𝑚𝑖𝑖 ≤ 𝑥𝑥(𝑖𝑖)(𝑡𝑡) ≤ 𝑀𝑀𝑖𝑖  𝑓𝑓𝑓𝑓𝑟𝑟 𝑡𝑡 ∈ [0,1], 𝑖𝑖 = 0,4,����� 
 

 where the constants −∞ < 𝑚𝑚𝑖𝑖 ,𝑀𝑀𝑖𝑖 < ∞, 𝑖𝑖 = 1,4���� are 
independent of 𝜆𝜆 𝑎𝑎𝑎𝑎𝑑𝑑 𝑥𝑥. 
(v)    There is a sufficiently small σ> 0, such that 
 

[𝑚𝑚0 − 𝜎𝜎,𝑀𝑀0 + 𝜎𝜎] ⊆ 𝐷𝐷𝑥𝑥, [𝑚𝑚1 − 𝜎𝜎,𝑀𝑀1 + 𝜎𝜎] ⊆ 𝐷𝐷𝑝𝑝,  
 

[𝑚𝑚2 − 𝜎𝜎,𝑀𝑀2 + 𝜎𝜎] ⊆ 𝐷𝐷𝑞𝑞, [𝑚𝑚3 − 𝜎𝜎,𝑀𝑀3 + 𝜎𝜎] ⊆ 𝐷𝐷𝑟𝑟, 
 

 and the function 𝑔𝑔(𝑡𝑡,𝑥𝑥,𝑝𝑝,𝑞𝑞, 𝑟𝑟, 𝜆𝜆) is continuous for 
(𝑡𝑡,𝑥𝑥,𝑝𝑝,𝑞𝑞, 𝑟𝑟, 𝜆𝜆) ∈ [0,1] × 𝐽𝐽 × [0,1],  
 where 

𝐽𝐽 = [𝑚𝑚0 − 𝜎𝜎,𝑀𝑀0 + 𝜎𝜎] × [𝑚𝑚1 − 𝜎𝜎,𝑀𝑀1 + 𝜎𝜎] × 
  × [𝑚𝑚2 − 𝜎𝜎,𝑀𝑀2 + 𝜎𝜎] × [𝑚𝑚3 − 𝜎𝜎,𝑀𝑀3 + 𝜎𝜎], 

 

 and 𝑚𝑚𝑖𝑖 ,𝑀𝑀𝑖𝑖 , 𝑖𝑖 = 0,3���� are as in (iv). 
Then boundary value problem (5), (6) has at least one 

solution in 𝐶𝐶4[0,1]. 
In this paper the equation (5)λ has the form 
 

𝑥𝑥(4) = 𝜆𝜆𝑓𝑓(𝑡𝑡,𝑥𝑥,𝑥𝑥′, 𝑥𝑥′′,𝑥𝑥′′′), 𝑡𝑡 ∈ [0,1].             (1)λ 
 

In fact, we apply Theorem 1.1 on the family of BVPs (1)λ, 
(2), which is of the form (5)λ, (6), and on the IVP (1), (2), 
which is of the form (5), (6).   

II. A PRIORI BOUNDS 
In this part we state results, which assure the a priori 

bounds from (iv) for the eventual 𝐶𝐶4[0,1]-solutions to the 
family IVPs (1)λ, (2). 

Lemma 2.1. Let 𝑥𝑥 ∈ 𝐶𝐶4[0,1] be a solution to (1)λ, (2) and 
(H1) hold. Then  

 

𝐹𝐹1 ≤ 𝑥𝑥′′′(𝑡𝑡) ≤ 𝐿𝐿1 for 𝑡𝑡 ∈ [0,1]. 
 

Proof. Suppose that there is a 𝑡𝑡 ∈ [0,1] for which 
𝑥𝑥′′′(𝑡𝑡) > 𝐿𝐿1. Then, from the continuity of  𝑥𝑥′′′(𝑡𝑡) on the 
interval [0,1] and from 𝑥𝑥′′′(0) ≤ 𝐿𝐿1 it follows that the set  

 

𝑆𝑆− = {𝑡𝑡 ∈ [0,1]:𝐿𝐿1 < 𝑥𝑥′′′(𝑡𝑡) ≤ 𝐿𝐿2} 
 

is not empty and there is a φ ∈ 𝑆𝑆− such that 𝑥𝑥(4)(𝜑𝜑) > 0. 
Since 𝑥𝑥(𝑡𝑡) is a C4[0,1]-solution to differential equation (1)λ, 
we have in particular  

 

𝑥𝑥(4)(𝜑𝜑) = 𝜆𝜆𝑓𝑓�𝜑𝜑, 𝑥𝑥(𝜑𝜑),𝑥𝑥′(𝜑𝜑), 𝑥𝑥′′(𝜑𝜑),𝑥𝑥′′′(𝜑𝜑)�. 
But, 
 

 (𝜑𝜑, 𝑥𝑥(𝜑𝜑),𝑥𝑥′(𝜑𝜑),𝑥𝑥′′(𝜑𝜑),𝑥𝑥′′′(𝜑𝜑)) ∈  𝑆𝑆− × ℝ3 × (𝐿𝐿1,𝐿𝐿2].  
 

This means that we can use (3) to conclude that 
𝑥𝑥(4)(𝜑𝜑) ≤ 0. The obtained contradiction shows that   

 

𝑥𝑥′′′(𝑡𝑡) ≤ 𝐿𝐿1 for  𝑡𝑡 ∈ [0,1]. 
 

Similarly, using (4), we establish  
 

𝐹𝐹1 ≤ 𝑥𝑥′′′(𝑡𝑡) for  𝑡𝑡 ∈ [0,1]. 
 

Lemma 2.2. Let 𝑥𝑥 ∈ 𝐶𝐶4[0,1] be a solution to (1)λ, (2) and 
(H1) hold. Then  

 

|𝑥𝑥(𝑡𝑡)| ≤ |𝐴𝐴| + |𝐵𝐵| + |𝐶𝐶| +𝑚𝑚𝑎𝑎𝑥𝑥{|𝐹𝐹1|, |𝐿𝐿1|} , 𝑡𝑡 ∈ [0,1], 
 

|𝑥𝑥′(𝑡𝑡)| ≤ |𝐵𝐵| + |𝐶𝐶| +𝑚𝑚𝑎𝑎𝑥𝑥{|𝐹𝐹1|, |𝐿𝐿1|} , 𝑡𝑡 ∈ [0,1], 
 

|𝑥𝑥′′(𝑡𝑡)| ≤ |𝐶𝐶| +𝑚𝑚𝑎𝑎𝑥𝑥{|𝐹𝐹1|, |𝐿𝐿1|} , 𝑡𝑡 ∈ [0,1]. 
 

Proof. By the mean value theorem, for each 𝑡𝑡 ∈ (0,1] 
there exists an 𝜂𝜂 ∈ (0, 𝑡𝑡) such that 

 

𝑥𝑥′′(𝑡𝑡)− 𝑥𝑥′′(0) = 𝑥𝑥′′′(𝜂𝜂)(𝑡𝑡 − 0), 𝑡𝑡 ∈ (0,1], 
 

|𝑥𝑥′′(𝑡𝑡)| ≤ |𝑥𝑥′′(0)|+|𝑥𝑥′′′(𝜂𝜂)||𝑡𝑡|, 𝑡𝑡 ∈ (0,1], 
 

|𝑥𝑥′′(𝑡𝑡)| ≤ |𝐶𝐶| + |𝑥𝑥′′′(𝜂𝜂)|, 𝑡𝑡 ∈ [0,1]. 
 

But from Lemma 2.1 we know that   
 

𝐹𝐹1 ≤ 𝑥𝑥′′′(𝑡𝑡) ≤ 𝐿𝐿1, 𝑡𝑡 ∈ [0,1], 
that is,  

|𝑥𝑥′′′(𝑡𝑡)| ≤ 𝑚𝑚𝑎𝑎𝑥𝑥{|𝐹𝐹1|, |𝐿𝐿1|} , 𝑡𝑡 ∈ [0,1], 
 

and in particular 
 

|𝑥𝑥′′′(𝜂𝜂)| ≤ 𝑚𝑚𝑎𝑎𝑥𝑥{|𝐹𝐹1|, |𝐿𝐿1|}. 
Thus,  

|𝑥𝑥′′(𝑡𝑡)| ≤ |𝐶𝐶| +𝑚𝑚𝑎𝑎𝑥𝑥{|𝐹𝐹1|, |𝐿𝐿1|} , 𝑡𝑡 ∈ [0,1]. 
 

To prove the bound for |𝑥𝑥′(𝑡𝑡)|, we use again the mean 
value theorem. Now, for each 𝑡𝑡 ∈ (0,1] there is a 𝜁𝜁 ∈ (0, 𝑡𝑡) 
such that 

 

𝑥𝑥′(𝑡𝑡)− 𝑥𝑥′(0) = 𝑥𝑥′′(𝜁𝜁)(𝑡𝑡 − 0), 𝑡𝑡 ∈ (0,1] , 
 

|𝑥𝑥′(𝑡𝑡)| ≤ |𝑥𝑥′(0)|+|𝑥𝑥′′(𝜁𝜁)||𝑡𝑡|, 𝑡𝑡 ∈ (0,1] , 
 

|𝑥𝑥′(𝑡𝑡)| ≤ |𝐵𝐵| + |𝑥𝑥′′(𝜁𝜁)|, 𝑡𝑡 ∈ [0,1], 
 

|𝑥𝑥′(𝑡𝑡)| ≤ |𝐵𝐵| + |𝐶𝐶| +𝑚𝑚𝑎𝑎𝑥𝑥{|𝐹𝐹1|, |𝐿𝐿1|} , 𝑡𝑡 ∈ [0,1]. 
 

Finally, we apply the Lagrange theorem on 𝑥𝑥(𝑡𝑡). For each 
𝑡𝑡 ∈ (0,1] there is a  𝜈𝜈 ∈ (0, 𝑡𝑡) for which 

 

𝑥𝑥(𝑡𝑡) − 𝑥𝑥(0) = 𝑥𝑥′(𝜈𝜈)(𝑡𝑡 − 0), 𝑡𝑡 ∈ (0,1], 
 

|𝑥𝑥(𝑡𝑡)| ≤ |𝑥𝑥(0)| + |𝑥𝑥′(𝜈𝜈)||𝑡𝑡|, 𝑡𝑡 ∈ (0,1], 
 

|𝑥𝑥(𝑡𝑡)| ≤ |𝐴𝐴| + |𝑥𝑥′(𝜈𝜈)|, 𝑡𝑡 ∈ [0,1], 
 

|𝑥𝑥(𝑡𝑡)| ≤ |𝐴𝐴| + |𝐵𝐵| + |𝐶𝐶| +𝑚𝑚𝑎𝑎𝑥𝑥{|𝐹𝐹1|, |𝐿𝐿1|} , 𝑡𝑡 ∈ [0,1]. 
Lemma 2.3. Let (H1) holds and (H2) holds for 

𝑀𝑀0 = |𝐴𝐴| + |𝐵𝐵| + |𝐶𝐶| +𝑚𝑚𝑎𝑎𝑥𝑥{|𝐹𝐹1|, |𝐿𝐿1|} ,𝑚𝑚0 = −𝑀𝑀0, 

𝑀𝑀1 = |𝐵𝐵| + |𝐶𝐶| + 𝑚𝑚𝑎𝑎𝑥𝑥{|𝐹𝐹1|, |𝐿𝐿1|} ,𝑚𝑚1 = −𝑀𝑀1, 

𝑀𝑀2 = |𝐶𝐶| +𝑚𝑚𝑎𝑎𝑥𝑥{|𝐹𝐹1|, |𝐿𝐿1|} ,𝑚𝑚2 = −𝑀𝑀2, 

𝑀𝑀3 = 𝐿𝐿1,𝑚𝑚3 = 𝐹𝐹1. 
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Then there are constants  𝑚𝑚4 𝑎𝑎𝑎𝑎𝑑𝑑  𝑀𝑀4 such that 
𝑚𝑚4 ≤ 𝑥𝑥(4)(𝑡𝑡) ≤ 𝑀𝑀4, 𝑡𝑡 ∈ [0,1]. 

Proof. Because of the continuity of 𝑓𝑓(𝑡𝑡,𝑥𝑥,𝑝𝑝, 𝑞𝑞, 𝑟𝑟) on the 
set [0,1] × 𝐽𝐽, there exist constants 𝑚𝑚4 and  𝑀𝑀4 such that  

 

𝑚𝑚4 ≤ 𝑓𝑓(𝑡𝑡, 𝑥𝑥, 𝑝𝑝,𝑞𝑞, 𝑟𝑟) ≤ 𝑀𝑀4  for  (𝑡𝑡,𝑥𝑥,𝑝𝑝,𝑞𝑞, 𝑟𝑟) ∈ [0,1] × 𝐽𝐽. 
Since from Lemmas 2.1 and 2.2 we have 

(𝑥𝑥(𝑡𝑡),𝑥𝑥′(𝑡𝑡),𝑥𝑥′′(𝑡𝑡), 𝑥𝑥′′′(𝑡𝑡)) ∈ 𝐽𝐽 for 𝑡𝑡 ∈ [0,1], equation (1)λ 
implies  

𝑚𝑚4 ≤ 𝑥𝑥(4)(𝑡𝑡) ≤ 𝑀𝑀4  for  𝑡𝑡 ∈ [0,1]. 
 

Corollary 2.4. Let 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷 ≥ 0 and (H1) hold with 
𝐹𝐹1 ≥ 0. Then each solution 𝑥𝑥(𝑡𝑡) ∈ 𝐶𝐶4[0,1] to (1)λ, (2) 
satisfies the bounds 

 

𝐴𝐴 ≤ 𝑥𝑥(𝑡𝑡) ≤ 𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶 + 𝐿𝐿1, 𝑡𝑡 ∈ [0,1], 
 

𝐵𝐵 ≤ 𝑥𝑥′(𝑡𝑡) ≤ 𝐵𝐵 + 𝐶𝐶 + 𝐿𝐿1, 𝑡𝑡 ∈ [0,1], 
 

𝐶𝐶 ≤ 𝑥𝑥′′(𝑡𝑡) ≤ 𝐶𝐶 + 𝐿𝐿1, 𝑡𝑡 ∈ [0,1]. 
 

Proof. By Lemma 2.1 we have 𝑥𝑥′′′(𝑡𝑡) ≥ 𝐹𝐹1 ≥ 0, 𝑡𝑡 ∈
[0,1], which means that 𝑥𝑥′′(𝑡𝑡) is non-decreasing on [0,1] 
and so  

𝑥𝑥′′(𝑡𝑡) ≥ 𝐶𝐶, 𝑡𝑡 ∈ [0,1]. 
 

Besides, by applying Lemma 2.2, we get 
 

𝑥𝑥′′(𝑡𝑡) ≤ 𝐶𝐶 + 𝐿𝐿1, 𝑡𝑡 ∈ [0,1]. 
 

Next, using 𝑥𝑥′′(𝑡𝑡) ≥ 𝐶𝐶 ≥ 0 for 𝑡𝑡 ∈ [0,1] and Lemma 
2.2, we establish 

 

𝐵𝐵 ≤ 𝑥𝑥′(𝑡𝑡) ≤ 𝐵𝐵 + 𝐶𝐶 + 𝐿𝐿1, 𝑡𝑡 ∈ [0,1]. 
 

The bound for 𝑥𝑥(𝑡𝑡) follows similarly. 

III. EXISTENCE  RESULTS 
 

Theorem 3.1. Let (H1) holds. Let in addition (H2) holds 
for 

𝑀𝑀0 = |𝐴𝐴| + |𝐵𝐵| + |𝐶𝐶| + max{|𝐹𝐹1|, |𝐿𝐿1|} ,𝑚𝑚0 = −𝑀𝑀0, 

𝑀𝑀1 = |𝐵𝐵| + |𝐶𝐶| + max{|𝐹𝐹1|, |𝐿𝐿1|} ,𝑚𝑚1 = −𝑀𝑀1, 

𝑀𝑀2 = |𝐶𝐶| + max{|𝐹𝐹1|, |𝐿𝐿1|} ,𝑚𝑚2 = −𝑀𝑀2, 

𝑀𝑀3 = 𝐿𝐿1,𝑚𝑚3 = 𝐹𝐹1. 

Then IVP (1),(2) has at least one solution in 𝐶𝐶4[0,1]. 
 Proof. We will show that the family of BVPs (1)λ, (2) and 

the IVP (1), (2) satisfy all hypotheses of Theorem 3.1. By 
standard reasoning check that (i) is fulfilled, see the proof of 
Theorem 2.5 of T. Todorov [9]. Apparently (ii) also holds. 
To check (iii) we establish, by standard reasoning, that for 
an arbitrary y(t) ∈ C[0, 1] the IVP  

 

𝑥𝑥(4) = 𝑦𝑦(𝑡𝑡), 
 

𝑥𝑥(0) = 0, 𝑥𝑥′(0) = 0,𝑥𝑥′′(0) = 0, 𝑥𝑥′′′(0) = 0, 
 

has a unique solution in 𝐶𝐶4[0,1], that is, the map  
𝛬𝛬ℎ: 𝐶𝐶BC0

4 [0,1] → 𝐶𝐶[0,1], defined by 𝛬𝛬ℎ𝑥𝑥 = 𝑥𝑥(4), is one-to-
one. Hence, (iii) holds. Furthermore, for each solution 
𝑥𝑥(𝑡𝑡) ∈ 𝐶𝐶4[0,1] to (1)λ, (2) we have 
 

𝑚𝑚𝑖𝑖 ≤ 𝑥𝑥(𝑖𝑖)(𝑡𝑡) ≤ 𝑀𝑀𝑖𝑖 , 𝑡𝑡 ∈ [0,1], 𝑖𝑖 = 0,4,����� by Lemma 2.3. 
 

Therefore, (iv) also holds. Finally, (v) follows from the 
continuity of 𝑓𝑓 on the set 𝐽𝐽. Thus, we can apply Theorem 
3.1 to conclude that the assertion is true. 

Under a suitable combination of the signs of 𝐴𝐴,𝐵𝐵,𝐶𝐶 and 
𝐷𝐷, (H1) guarantees solutions with important properties. 

 

Theorem 3.2. Let 𝐴𝐴,𝐵𝐵 > 0(𝐴𝐴 = 𝐵𝐵 = 0),𝐶𝐶 ≥ 0,𝐷𝐷 ≥ 0. 
Suppose (H1) holds with 𝐹𝐹1 ≥ 0 and (H2) holds for 

 
𝑚𝑚0 = 𝐴𝐴,𝑀𝑀0 = 𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶 + 𝐿𝐿1,𝑚𝑚1 = 𝐵𝐵 + 𝐶𝐶, 

 𝑀𝑀1 = 𝐵𝐵 + 𝐶𝐶 + 𝐿𝐿1, 
 

𝑚𝑚2 = 𝐶𝐶,𝑀𝑀2 = 𝐶𝐶 + 𝐿𝐿1,𝑚𝑚3 = 𝐹𝐹1,𝑀𝑀3 = 𝐿𝐿1. 
 

Then IVP (1), (2) has at least one positive, increasing 
(non-negative, non-decreasing), convex solution in 𝐶𝐶4[0,1]. 

Proof. Following the proof of Theorem 3.1, we establish 
that there is a solution 𝑥𝑥(𝑡𝑡) ∈ 𝐶𝐶4[0,1]. Now, the bounds 
𝑚𝑚𝑖𝑖 ≤ 𝑥𝑥(𝑖𝑖)(𝑡𝑡) ≤ 𝑀𝑀𝑖𝑖 , 𝑡𝑡 ∈ [0,1], 𝑖𝑖 = 0, 1, 2, follow from 
Corollary 2.4. Actually Corollary 2.4 implies in particular 

 
 

𝑥𝑥(𝑡𝑡) ≥ 𝐴𝐴 > 0,𝑥𝑥′(𝑡𝑡) ≥ 𝐵𝐵 > 0   (𝑥𝑥(𝑡𝑡) ≥ 0, 𝑥𝑥′(𝑡𝑡) ≥ 0), 
 

 𝑥𝑥′′(𝑡𝑡) ≥ 𝐶𝐶 ≥ 0 for 𝑡𝑡 ∈ [0,1], 
 

which yields the assertion. 

IV. AN EXAMPLE 
 

Consider the initial value problem 
 

𝑥𝑥(4) = 𝑃𝑃𝑛𝑛(𝑥𝑥′′′), 𝑡𝑡 ∈ [0,1], 
 

𝑥𝑥(0) = 𝐴𝐴,𝑥𝑥′(0) = 𝐵𝐵,𝑥𝑥′′(0) = 𝐶𝐶,𝑥𝑥′′′(0) = 𝐷𝐷, 
 

where the polynomial 𝑃𝑃𝑛𝑛(𝑟𝑟),𝑎𝑎 ≥ 2, has simple zeros 𝑧𝑧1 and 
𝑧𝑧2 such that 𝑧𝑧1 < 𝐷𝐷 < 𝑧𝑧2. 
 

Obviously, there is a 𝜃𝜃 > 0 such that 
 

𝑧𝑧1 + 𝜃𝜃 ≤ 𝐷𝐷 ≤ 𝑧𝑧2 − 𝜃𝜃 
 

and 

𝑃𝑃𝑛𝑛(𝑝𝑝) ≠ 0  for  𝑟𝑟 ∈  � ((
2

𝑖𝑖=1
𝑧𝑧𝑖𝑖 − 𝜃𝜃, 𝑧𝑧𝑖𝑖 + 𝜃𝜃)\{𝑧𝑧𝑖𝑖}). 

 

Let 𝑃𝑃𝑛𝑛(𝑟𝑟) > 0  for 
 

      𝑟𝑟 ∈ (𝑧𝑧1 − 𝜃𝜃, 𝑧𝑧1) and 𝑃𝑃𝑛𝑛(𝑟𝑟) < 0 for 𝑝𝑝 ∈ (𝑧𝑧2, 𝑧𝑧2 + 𝜃𝜃);  
 

analogously we can consider the other cases. Then (H1) 
holds for 𝐹𝐹2 = 𝑧𝑧1 − 𝜃𝜃,𝐹𝐹1 = 𝑧𝑧1,𝐿𝐿1 = 𝑧𝑧2, 𝐿𝐿2 = 𝑧𝑧2 + 𝜃𝜃. Since 
𝑃𝑃𝑛𝑛(𝑟𝑟) is continuous, (H2) also holds. So, we can apply 
Theorem 3.1 which means the considered problem has at 
least one solution in 𝐶𝐶4[0,1]. 
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