
PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 2738-8549, 2738-8530 VOL. 74, NO. 3, YEAR 2024 
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Abstract—We study the solvability of a two-point boundary 

value problem for nonlinear third-order ordinary differential 

equation. To prove the established existence results, we use a 

well-known global solvability theorem obtained by a 

topological method which means that the problem for the 

solvability of the considered boundary value problem is 

replaced by the problem for the existence of a fixed point of a 

suitable introduced operator. The application of the global 

theorem requires a priori bounds. These are obtained using the 

barrier strips technique. A result guaranteeing positive or non-

negative, concave solutions is given also. The existence results 

are illustrated by an example. 
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I. INTRODUCTION 
 

We consider the differential equation 
 𝑥′′′ = 𝑓(𝑡, 𝑥, 𝑥′, 𝑥′′), 𝑡 ∈ (0,1), (1) 

 

with boundary conditions (BCs) 
 𝑥(0) = 𝐴,   𝑥(1) = 𝐵,   𝑥′(1) −   𝑥′(0) = 𝐶 (2) 
 

where 𝐴, 𝐵, 𝐶 ∈ ℝ, and 𝑓(𝑡, 𝑥, 𝑝, 𝑞) is a scalar function, 

defined for (𝑡, 𝑥, 𝑝, 𝑞) ∈ [0,1] × 𝐷𝑥 × 𝐷𝑝 × 𝐷𝑞 , here the 

sets 𝐷𝑥 , 𝐷𝑝, 𝐷𝑞 ⊆ ℝ can be bounded. 
A number of authors study the solvability of boundary 

value problems (BVPs) for equations of the form 
 𝑥′′′ = 𝑓(𝑡, 𝑥), 𝑡 ∈ (0,1). 

 

Such works are A. Cabada [3], with BCs  
 𝑥(𝑖)(0) − 𝑥(𝑖)(1) = 𝛾𝑖 ,  𝛾𝑖 ∈ ℝ, 𝑖 = 0,1,2, 
 

and Zh. Liu et al. [20] where the BCs are 
 𝑥(0) = 𝑥′(0),  𝛼𝑥′(1) + 𝛽𝑥′′(1) = 𝛾,  𝛾 > 0,  𝛼, 𝛽 ≥ 0. 
 

 

BVPs for equation (1) with various BCs have been 

studied in R. P. Agarwal et al. [1], J. R. Graef et al. [4], A. 

Granas et al. [5], M. Grossinho et al. [6], P. Kelevedjiev and 

Z. Todorov [8], Y. Li and Y. Li [9], D. M. Zhang and  Y. U. 

Lu [10] and Y. Zhang and M. Pei [11].  

To prove the existence of solutions to (1), (2), we apply 

the basic existence theorem from R. P. Agarwal et al. [2]. It 
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is a variant of [5], Chapter V, Theorem 1.1, and its 

formulation requires to consider the BVP 
 𝑥(𝑛) + ∑ 𝑠𝑘𝑛−1

𝑘=0 (𝑡)𝑥(𝑘) = = 𝑓(𝑡, 𝑥, 𝑥′, … , 𝑥(𝑛−1) ), 𝑡 ∈ (0,1),  

(3) 

                  𝑉𝑖(𝑥) =  𝐴𝑖 , 𝑖 = 1, 𝑛̅̅ ̅̅ ̅, (4) 
  

where 𝑠𝑘(𝑡), 𝑘 = 0, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,  are continuous on [0,1], 𝑓: [0,1] × 𝐷0 × 𝐷1 × … × 𝐷𝑛−1 → ℝ, 
 𝑉𝑖(𝑥) = ∑[𝑎𝑖𝑗𝑥(𝑗)(0) +𝑛−1

𝑗=0 𝑏𝑖𝑗𝑥(𝑗)(1)], 𝑖 = 1, 𝑛,̅̅ ̅̅ ̅ 

 

where 𝑎𝑖𝑗   and 𝑏𝑖𝑗 are constants such that  ∑ (𝑎𝑖𝑗 2 +𝑛−1𝑗=0 𝑏𝑖𝑗 2) > 0, 𝑖 = 1, 𝑛̅̅ ̅̅ ̅,  and 𝐴𝑖 ∈ ℝ, 𝑖 = 1, 𝑛.̅̅ ̅̅ ̅ 

For 𝜆 ∈ [0,1] consider also the family of BVPs 
 𝑥(𝑛) + ∑ 𝑠𝑘𝑛−1

𝑘=0 (𝑡)𝑥(𝑘) = = 𝑔(𝑡, 𝑥, 𝑥′, … , 𝑥(𝑛−1), 𝜆), 𝑡 ∈ (0,1),  

(3)𝜆 

 

with boundary conditions (4). Here, the function g is defined 

on [0,1] × 𝐷0 × 𝐷1 × … × 𝐷𝑛−1 × [0,1], and 𝑠𝑘(𝑡), 𝑘 =0, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,  𝑉𝑖 ,    𝐴𝑖 , 𝑖 = 1, 𝑛,̅̅ ̅̅ ̅ are as above. 

Let 𝐵𝐶 denote the set of functions satisfying (4), and 𝐵𝐶0 denote the set of functions satisfying the homogenous 

BCs (4), that is,  𝑉𝑖(𝑥) =  0, 𝑖 = 1, 𝑛̅̅ ̅̅ ̅. 
 

Finally, let 𝐶𝐵𝐶𝑛 [0,1] = 𝐶𝑛[0,1] ∩ 𝐵𝐶. 

Theorem 1.1. Assume that: 

(i) Problem (3)0, (4) has an unique solution 𝑥0 ∈ 𝐶𝑛[0,1]. 
(ii) Problems (3), (4) and (3)1, (4) are equivalent. 

(iii) The map 𝛬ℎ: 𝐶BC0𝑛 → 𝐶[0,1], defined by  𝛬ℎ𝑥 = 𝑥(𝑛) + ∑ 𝑠𝑘𝑛−1
𝑘=0 (𝑡)𝑥(𝑘), 

is one-to-one. 
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(iv) Each solution 𝑥 ∈ 𝐶𝑛[0,1] to family (3)λ, (4) satisfies 

the bounds 
 𝑚𝑖 ≤ 𝑥(𝑖)(𝑡) ≤ 𝑀𝑖  𝑓𝑜𝑟 𝑡 ∈ [0,1], 𝑖 = 0, 𝑛,̅̅ ̅̅ ̅ 
 

where the constants −∞ < 𝑚𝑖 , 𝑀𝑖 < ∞, 𝑖 = 1, 𝑛,̅̅ ̅̅ ̅ are 

independent of 𝜆 𝑎𝑛𝑑 𝑥. 

(v) There is a sufficiently small σ>0, such that 
 [𝑚𝑖 − 𝜎, 𝑀𝑖 + 𝜎] ⊆ 𝐷𝑖, 𝑖 = 0, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 
 

and the function 𝑔(𝑡, 𝑝0, 𝑝1, … , 𝑝𝑛−1, 𝜆) is continuous on [0,1] × 𝐽 × [0,1], where 
 𝐽 = [𝑚0 − 𝜎, 𝑀0 + 𝜎] × [𝑚1 − 𝜎, 𝑀1 + 𝜎] × … × × [𝑚𝑛−1 − 𝜎, 𝑀𝑛−1 + 𝜎], 
 

and 𝑚𝑖 , 𝑀𝑖 , 𝑖 = 0, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are as in (iv). 

Then boundary value problem (3), (4) has at least one 

solution in 𝐶𝑛[0,1]. 
Let us notice that the considered BVP (1), (2)  is a 

particular case of boundary value problem (3), (4) and we 

can use Theorem 1.1 with 𝑛 = 3. 

In our consideration, the equation (3)λ has the form 
 𝑥′′′ = 𝜆𝑓(𝑡, 𝑥, 𝑥′, 𝑥′′), 𝑡 ∈ [0,1]. (1)λ 

 

In fact, we apply Theorem 1.1 on the family of BVPs 

for (1)λ, (2), which is of the form (3)λ, (4). Moreover, we 

need results, which assure the a priori bounds from (iv) for 

the eventual 𝐶3[0,1]-solutions to the family boundary value 

problems (1)λ, (2). These auxiliary results rely on the 

following assumptions: 

(H1) There are constants 𝐹𝑖,𝐿𝑖, i = 1,2, such that 
 𝐹2 < 𝐹1 ≤ 𝐶 ≤ 𝐿1 < 𝐿2, [𝐹2, 𝐿2] ⊆ 𝐷𝑞 , 𝑓(𝑡, 𝑥, 𝑝, 𝑞) ≥ 0  for (𝑡, 𝑥, 𝑝, 𝑞) ∈ [0,1] × 𝐷𝑥 × 𝐷𝑝 × [𝐿1, 𝐿2], 𝑓(𝑡, 𝑥, 𝑝, 𝑞) ≤ 0  for (𝑡, 𝑥, 𝑝, 𝑞) ∈ [0,1] × 𝐷𝑥 × 𝐷𝑝 × [𝐹2, 𝐹1]. 
(H2) There are constants 𝐹𝑖′,𝐿𝑖′ , i = 1,2, such that 
 𝐹2′ < 𝐹1′ ≤ 𝐶 ≤ 𝐿1′ < 𝐿2′ , [𝐹2′, 𝐿2′ ] ⊆ 𝐷𝑞 , 𝑓(𝑡, 𝑥, 𝑝, 𝑞) ≤ 0 

 for (𝑡, 𝑥, 𝑝, 𝑞) ∈ [0,1] × 𝐷𝑥 × 𝐷𝑝 × [𝐿1′ , 𝐿2′ ], 𝑓(𝑡, 𝑥, 𝑝, 𝑞) ≥ 0 

 for (𝑡, 𝑥, 𝑝, 𝑞) ∈ [0,1] × 𝐷𝑥 × 𝐷𝑝 × [𝐹2′ , 𝐹1′]. 
 

(H3) There are constants 𝑚𝑖 ≤ 𝑀𝑖 , 𝑖 = 0,2̅̅ ̅̅ , such that 
 [𝑚0 − 𝜎, 𝑀0 + 𝜎] ⊆ 𝐷𝑥,  [𝑚1 − 𝜎, 𝑀1 + 𝜎] ⊆ 𝐷𝑝,  [𝑚2 − 𝜎, 𝑀2 + 𝜎] ⊆ 𝐷𝑞,  

and 𝑓(𝑡, 𝑥, 𝑝, 𝑞) is continuous on[0,1] × 𝐽, where 𝐽 = [𝑚0 − 𝜎, 𝑀0 + 𝜎] × [𝑚1 − 𝜎, 𝑀1 + 𝜎] × × [𝑚2 − 𝜎, 𝑀2 + 𝜎] 
and 𝜎 > 0 is sufficiently small. 

Let us recall, the conditions (H1) and (H2) are of barrier 

strips type, see P. Kelevedjiev [7]. The barrier strips 

technique has been used also in [1, 8, 10, 11]. 
 

II. EXISTENCE RESULTS 
 

The proofs of the following two lemmas can be found in 

R. P. Agarwal et al. [1]. 

Lemma 2.1. (Lemma 2, [1])  Let  𝑥 ∈ 𝐶3[𝑎, 𝑏] be a solution 

to (1)𝜆. Suppose (H1) holds with [0,1] replaced by [𝑎, 𝑏] 
and 𝑥′′(𝑏) = 𝐶. Then 
 𝐹1 ≤ 𝑥′′(𝑡) ≤ 𝐿1  for  t ∈ [𝑎, 𝑏]. 
 

Lemma 2.2. (Lemma 3, [1])  Let 𝑥 ∈ 𝐶3[𝑎, 𝑏] be a solution 

to  (1)𝜆. Suppose (H2) holds with [0,1] replaced by [𝑎, 𝑏] 
and 𝑥′′(𝑎) = 𝐶. Then 
 𝐹1′ ≤ 𝑥′′(𝑡) ≤ 𝐿1′  𝑓𝑜𝑟 𝑡 ∈ [𝑎, 𝑏]. 
 

Lemma 2.3. Let 𝑥 ∈ 𝐶3[0,1] be a solution of family (1)𝜆, 

(2). Assume that (H1) and (H2) hold. Then 
 𝑚𝑖𝑛 {𝐹1, 𝐹1′ } ≤ 𝑥′′(𝑡) ≤ 𝑚𝑎𝑥 {𝐿1, 𝐿1′  }, 𝑡 ∈ [0,1].  
 

Proof. We know 𝑥′(𝑡) is continuous and differentiable in 

[0,1]. Therefore we can apply Lagrange theorem, according 

to which there is a 𝜇 ∈ (0,1), such that 
 𝑥′(1) − 𝑥′(0) = 𝑥′′(𝜇)(1 − 0), 𝑥′′(𝜇) = 𝑥′(1) − 𝑥′(0) = 𝐶 

(5) 

 

It is not difficult to see that the conditions of Lemma 2.1 are 

satisfied on the interval [0, μ]. According to this lemma we 
have 
 𝐹1 ≤ 𝑥′′(𝑡) ≤ 𝐿1 𝑓𝑜𝑟 𝑡 ∈ [0, 𝜇]. 
 

On the other hand Lemma 2.2 yields 
 𝐹1′  ≤ 𝑥′′(𝑡) ≤ 𝐿1′   𝑓𝑜𝑟 𝑡 ∈ [𝜇, 1]. 
 

As a result, we get the statement in the whole interval [0,1]. 
 

Lemma 2.4. Let 𝑥(𝑡) ∈ 𝐶3[𝑎, 𝑏] be a solution of family (1)𝜆, (2). Assume that (H1) and (H2) hold. Then 
 |𝑥′(𝑡)| ≤  |𝐵 − 𝐴| + 𝑚𝑎𝑥 {|𝐹1 |, |𝐹1′ |, |𝐿1 |, |𝐿1′ |}, 𝑡 ∈ [0,1], 
 |𝑥(𝑡)| ≤ |𝐴| + |𝐵 − 𝐴| + max {|𝐹1 |, |𝐹1′ |, |𝐿1 |, |𝐿1′ |},   𝑡 ∈ [0,1], 
Proof. According to the mean value theorem there is a            𝜈 ∈ (0,1), such that 
 𝑥(1) − 𝑥(0) = 𝑥′(𝜈)(1 − 0),  
i.e., 𝑥′(𝜈) = 𝐵 − 𝐴. 
 

Now for each 𝑡 ∈ (𝜈, 1), there is a 𝜉 ∈ (𝑣, 𝑡), with the 

property 
 𝑥′(𝑡) − 𝑥′(𝜈) = 𝑥′′(𝜉)(𝑡 − 𝜈), 

 𝑥′(𝑡) = 𝑥′(𝜈) + 𝑥′′(𝜉)(𝑡 − 𝜈), 
 |𝑥′(𝑡)| = |𝑥′(𝜈) + 𝑥′′(𝜉)(𝑡 − 𝜈)| ≤ ≤ |𝑥′(𝜈)| + |𝑥′′(𝜉)(𝑡 − 𝜈)| = = |𝐵 − 𝐴| + |𝑥′′(𝜉)||𝑡 − 𝜈| ≤ |𝐵 − 𝐴| + |𝑥′′(𝜉)|. 
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But, | 𝑥′′(𝜉)| ≤ 𝑚𝑎𝑥 {|𝐹1|,|𝐹1′|,|𝐿1|,|𝐿1′ |} by Lemma 2.3. Thus, 
 |𝑥′(𝑡)| ≤ |𝐵 − 𝐴| + max {|𝐹1 |, |𝐹1′ |, |𝐿1 |, |𝐿1′ |} 

 

for 𝑡 ∈ [𝜈, 1]. Similarly, for each 𝑡 ∈ [0, 𝜈), there is 

an  𝜂 ∈ (𝑡, 𝜈), such that 

 

 

 𝑥′(𝜈) − 𝑥′(𝑡) = 𝑥′′(𝜂)(𝜈 − 𝑡), 
 

from where, as above, obtain 
 |𝑥′(𝑡)| ≤ |𝐵 − 𝐴| + max {|𝐹1 |, |𝐹1′ |, |𝐿1 |, |𝐿1′ |} for  𝑡 ∈ [0, 𝜈] and so 
 |𝑥′(𝑡)| ≤ |𝐵 − 𝐴| + max {|𝐹1 |, |𝐹1′ |, |𝐿1 |, |𝐿1′ |} for  𝑡 ∈ [0,1]. (6) 

 

Next, again from the mean value theorem, for all              𝑡 ∈ (0,1], there is a 𝜃 ∈ (0, 𝑡) for which 
 𝑥(𝑡) − 𝑥(0) = 𝑥′(𝜃)(𝑡 − 0), 

 𝑥(𝑡) = 𝑥(0) + 𝑥′(𝜃)𝑡, 
 

from where, using (6), establish the bound for  | 𝑥(𝑡)|.    
  

Theorem 2.5. Let (H1) and (H2) hold. Let in addition (H3) 

hold for 
 𝑀0=|A|+|B-A|+max {|𝐹1 |, |𝐹1′ |, |𝐿1 |, |𝐿1′ |}, 𝑚0=-𝑀0, 

 𝑀1=|B-A|+max {|𝐹1 |, |𝐹1′ |, |𝐿1 |, |𝐿1′ |}, 𝑚1=-𝑀1,  
 𝑀2=max {|𝐿1 |, |𝐿1′ |}, 𝑚2= min {|𝐹1 |, |𝐹1′|}. 

 

Then BVP (1),(2) has at least one solution in 𝐶3[0,1]. 
 

Proof. We will check that the family of BVPs (1)𝜆, (2) and 

the BVP (1), (2) satisfy all hypotheses of Theorem 1.1. To 

verify (i), we have to show that the BVP 
 𝑥′′′ = 0, 𝑥(0) = 𝐴, 𝑥(1) = 𝐵, 𝑥′(1) − 𝑥′(0) = 𝐶, 
 

has a unique solution. The general solution of the 

differential equation is 
 𝑥(𝑡) = 𝑐1 + 𝑐2 𝑡 + 𝑐3 𝑡2 
 

with 𝑥′(𝑡) = 𝑐2 + 2 𝑐3 𝑡 
 

Next, to find a solution to the BVP, we use the BCs and 

obtain the system 
 |𝑐1                   = 𝐴𝑐1 + 𝑐2 + 𝑐3 = 𝐵                2𝑐3 = 𝐶 

Its determinant is 
 |1 0 01 1 10 0 2| = 2(−1)3+3 |1 01 1| = 2.1.1 = 2 ≠ 0. 
 

Consequently the system has a unique solution (𝑐1∗, 𝑐2∗, 𝑐3∗), 

and 
 𝑥(𝑡) = 𝑐1∗ + 𝑐2∗ 𝑡 + 𝑐3∗ 𝑡2 
 

is the unique solution of the BVP, that is, (i) of Theorem 1.1 

holds. Apparently (ii) also holds. Next, by standard 

reasoning, we check that for an arbitrary 𝑦(𝑡) ∈ 𝐶[0,1] the 

BVP 
 𝑥′′′ = 𝑦(𝑡), 

 𝑥(0) = 0, 𝑥(1) = 0, 𝑥′ (1) − 𝑥′(0) = 0, 
 

has a unique solution in 𝐶3[0,1]. So, the map Λℎ: 𝐶𝐵𝐶03 [0,1] → C[0,1], defined by Λℎ𝑥 = 𝑥′′′, is one-to-

one. Thus, (iii) holds. Furthermore, for each solution 𝑥(𝑡) ∈𝐶3[𝑎, 𝑏]  to (1)𝜆, (2) we have 
 𝑚0 ≤ 𝑥(𝑡) ≤ 𝑀0, 𝑡 ∈ [0,1], by Lemma 2.4, 
 𝑚1 ≤ 𝑥′(𝑡) ≤ 𝑀1, 𝑡 ∈ [0,1], by Lemma 2.4, 

 𝑚2 ≤ 𝑥′′ (𝑡) ≤ 𝑀2, 𝑡 ∈ [0,1], by Lemmas 2.3. 
 

Because of the continuity of 𝑓 on [0,1]×J, there are 

constants 𝑚3 and 𝑀3 such that 
 𝑚3 ≤ 𝜆𝑓(𝑡, 𝑥, 𝑝, 𝑞) ≤  𝑀3 
 for 𝜆 ∈ [0,1]  and (𝑡, 𝑥, 𝑝, 𝑞) ∈ [0,1] × 𝐽. But, for 𝑡 ∈(0,1)we have   (𝑥(𝑡), 𝑥′(𝑡), 𝑥′′ (𝑡)) ∈ 𝐽. Thus, the equation (1)𝜆,  implies 
 𝑚3 ≤ 𝑥′′′(𝑡) ≤ 𝑀3 𝑓𝑜𝑟 𝑡 ∈ [0,1]. 
 

Hence, (iv) also holds. Finally, (v) follows again from the 

continuity of 𝑓 on the set J. Therefore, we can apply 

Theorem 1.1 to conclude that the assertion is true. 

 Under a suitable combination of the signs of A,B,C and 

D, (H1) and (H2) guarantee solutions with important 

properties. 
      

Theorem 2.6. Let 𝐴, 𝐵 > 0 (𝐴 ≥ 0, 𝐵 ≥ 0) 𝑎𝑛𝑑 𝐶 < 0. 

Suppose (H1) and (H2) hold with 𝐿1, 𝐿1′ ≤ 0 and (H3) holds 

for 𝑚𝑖 , 𝑀𝑖 , 𝑖 = 0,1,2, as in Theorem 2.5. Then BVP (1), (2) 

has at least one positive (non-negative), concave solution in 𝐶3[0,1]. 
Proof. According to Theorem 2.5, BVP (1), (2) has a 

solution 𝑥(𝑡) ∈ 𝐶3[𝑎, 𝑏]. For this solution we know that 
   𝑥′′(𝑡) ≤ 𝑚𝑎𝑥 {𝐿1, 𝐿1′ } ≤ 0, 𝑡 ∈ [0,1], 
 

from where the assertion follows immediately. 
 

Example 2.7. Consider the BVP 
 𝑥′′′ = 𝑃𝑛  (𝑥′′ ), 𝑡 ∈ [0,1], 

 𝑥(0) = 2,   𝑥(1) = 1,   𝑥′(1) − 𝑥′ (0) = −4, 
 

where the polynomial 𝑃𝑛(𝑟), 𝑟 ≥ 2 has simple zeros 𝑟1  and 𝑟2  such that 𝑟1 < −4 < 𝑟2 < 0. 

Consider the case 
 𝑃𝑛  (𝑟) >  0 for  𝑟 ∈ (𝑟2 , 𝑟2 + 𝜃) 

and  𝑃𝑛  (𝑟)  <  0 for ∈ (𝑟1 − 𝜃, 𝑟1  ) 
 

where 𝜃 > 0 is such that 𝑟1 + 𝜃 ≤ −4 ≤ 𝑟2 − 𝜃, 
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  𝑟2 + 𝜃 ≤ 0,  
and 𝑃𝑛 (𝑟) ≠ 0  𝑓𝑜𝑟 𝑟 ∈ 𝑈𝑖=22 ((𝑟𝑖 − 𝜃, 𝑟𝑖 + 𝜃)\{𝑟𝑖}); 
 

in the other cases, for the sign of  𝑃𝑛  (𝑟) around the zeros, 

the reasoning is analogous. It is not difficult to see that (H1) 

is satisfied for  
 𝐹2 = 𝑟1 − 𝜃, 𝐹1 = 𝑟1, 𝐿1 = 𝑟2  and  𝐿2 = 𝑟2 + 𝜃, 

 

 (H2) is satisfied for 
 

 𝐹2′ = 𝑟1 , 𝐹1′ = 𝑟1 + 𝜃,  𝐿1′ = 𝑟2 − 𝜃 and 𝐿2′ = 𝑟2 , 
 

and (H3) is obvious. So, we can apply Theorem 2.6 to 

conclude that the considered problem has a positive, 

concave solution in 𝐶3[0,1].  
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