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Abstract—This research explores the possibilities for 

application of Model Predictive Control (MPC) in greenhouse 

management to enhance climate precision and energy 

efficiency. Greenhouses play a crucial role in global food 

production, but maintaining ideal growing conditions is 

resource intensive. The study proposes an MPC strategy, 

empirically validated in a dynamic greenhouse environment, 

demonstrating its superiority in minimizing energy costs and 

achieving optimal resource consumption. Emphasizing 

alignment with Industry 4.0 principles, the research integrates 

MPC into modern agricultural practices, contributing to low 

energy consumption and reduced water and pesticide use. An 

experimental model simulates a commercial growth chamber, 

providing a platform for comprehensive testing under various 

scenarios. Despite inherent limitations, the model allows 

rigorous evaluation of different strategies, highlighting 

improved temperature control and energy efficiency. The 

study outlines innovative principles, emphasizing advantages 

such as intuitiveness, applicability to diverse processes, and 

robust constraint handling. Challenges, including accurate 

process modelling, are acknowledged. The findings promise to 

help revolutionizing greenhouse management, advancing the 

industry toward a more sustainable and technologically 

advanced future. 

 
Index Terms— Energy Efficiency, Climate Optimization, 

Model Predictive Control (MPC), Greenhouse Management. 

I. INTRODUCTION 

Greenhouses are pivotal for global food production, yet 

optimizing growing conditions remains resource intensive. 

The global population is on the rise, yet the availability of 

cultivable land remains restricted [1]. In regions like South 

Africa, where only about 11% of the land is deemed suitable 

for cultivation, this limited resource is gradually 

diminishing [2, 3]. The severity of the food insecurity issue 

is evident and presents a substantial challenge [4, 5]. To 

tackle this problem, there's a growing global adoption of 

greenhouse cultivation [6]. Greenhouses create an optimal 

setting for crop growth, shielding plants from adverse 

weather conditions such as extreme cold, heavy rain, and 

other challenges. Consequently, crops grown within 

greenhouses often achieve higher yields compared to those 

cultivated outdoors [7]. Research points to approximately 

5.4 million hectares of global greenhouse cultivation, 

significantly contributing to 60% of the world's vegetable 

consumption [8].  This study analyses the possibilities of 

refining classical greenhouse systems through Model 
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Predictive Control (MPC). Employing rigorously1 inferred 

linearized models and a sophisticated generalized predictive 

control strategy cantered on predefined setpoints, authors 

study empirical validation of MPC in dynamic greenhouse 

environments. The research unveils an optimal MPC 

strategy for climate control, aiming to minimize total energy 

costs while ensuring adherence to prescribed climatic 

conditions. The dynamic model, encompassing multiple 

inputs and outputs, enables precise energy cost calculations. 

Benchmarking against optimal control strategies reveals the 

proposed MPC strategy's superior energy efficiency and 

cost-effectiveness. Beyond immediate applications, the 

study advocates integrating MPC into modern agriculture, 

aligning with Industry 4.0 principles and smart farming. 

Emphasizing technological solutions for real-time 

monitoring and control, the research meticulously compares 

traditional and MPC methods, enhancing indoor 

microclimate conditions. Addressing challenges in warm 

climates, the study proposes a robust MPC framework 

integrating an artificial neural network-based model and a 

production management strategy. Rigorous simulations 

demonstrate superior temperature control and energy 

utilization estimation compared to conventional MPC 

methodologies, contributing to greenhouse automation 

development. The findings promise transformative impacts 

on efficiency, sustainability, and precision in greenhouse 

crop production, signalling a technologically advanced and 

environmentally sustainable future. 

II. EXPERIMENTAL MODEL AND TEST BENCH 

To assess the efficacy of the proposed Model Predictive 

Control (MPC) strategies in enhancing the efficiency and 

sustainability of greenhouse crop production, a 

meticulously designed prototype of a production unit was 

developed. This prototype emulates the dimensions of a 

standard commercial growth chamber, serving as a realistic 

and scalable platform for experimental validation. The 

controlled environment within the prototype integrates 

seamlessly with an array of sensors and actuators, enabling 

precise climate control and resource management akin to 

real agricultural conditions. The inclusion of diverse sensors 

facilitates comprehensive data collection, providing detailed 

insights into the dynamic greenhouse conditions. 

Strategically positioned actuators in the experimental 

model exert control over crucial environmental variables, 

such as temperature, humidity, and resource exchange. 
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However, inherent limitations arise from the constraints of 

these actuators and external environmental influences, 

particularly the cooling capacity constraints of the 

thermoelectric cooler, impacting the achievable range of 

temperature control. Acknowledging these limitations, the 

experimental model offers a valuable platform for 

evaluating MPC strategies, demanding a nuanced approach 

to model predictive control due to controllability 

constraints. 

The network of sensors and actuators forms the backbone 

of real-time data collection and control within the 

experimental model. Sensors strategically placed 

throughout the greenhouse continuously monitor key 

parameters like temperature, humidity, and carbon dioxide 

concentration. Actuators, including those governing the 

thermoelectric cooler, heating systems, and ventilation, 

respond to MPC algorithms' instructions, ensuring the 

maintenance of desired environmental conditions. 

To comprehensively evaluate the proposed MPC 

strategies, diverse test scenarios are devised, encompassing 

varying environmental conditions, disturbances, and 

external interferences. These scenarios aim to validate the 

robustness and adaptability of the control strategies under 

diverse operating conditions. Rigorous data collection and 

analysis protocols, involving time-series data from sensors 

and actuators alongside environmental variables, are 

applied to quantify improvements in performance and 

energy efficiency resulting from the application of MPC in 

the greenhouse environment. 

III. ADVANTAGES OF MPC IN GREENHOUSE MANAGEMENT 

The advantages of the system can be categorized in: 

• Intuitiveness and Ease of Setup: A primary strength of 

Model Predictive Control (MPC) lies in its inherent 

intuitiveness, rendering it particularly attractive to 

individuals with limited control knowledge. 

Simultaneously, the straightforward setup of MPC 

algorithms enhances accessibility and applicability, 

contributing to its widespread adoption. 

• Applicability to a Variety of Processes: MPC's 

versatility is demonstrated by its applicability across a 

broad spectrum of processes, spanning those 

characterized by simple dynamics to intricate systems 

with prolonged delay times, non-minimum phase 

characteristics, or instabilities. Its innate ability to 

handle multivariate systems further amplifies its utility, 

accommodating diverse operational scenarios. 

• Dead Time and Disturbance Compensation: MPC 

inherently addresses dead times in processes and 

adeptly integrates feedforward control mechanisms to 

counteract measured disturbances. This feature 

significantly enhances the controller's adaptability, 

making it well-suited to contend with real operational 

challenges encountered in various contexts. 

• Implementation of Linear Control Laws: The resultant 

controller derived from MPC design embodies a linear 

control law, noted for its efficiency and ease of 

implementation. This simplicity facilitates the practical 

application of MPC in the context of greenhouse 

climate control, emphasizing its viability in real-world 

scenarios. 

• Constraint Handling: MPC excels in handling 

constraints within management systems. The 

systematic integration of constraints during the design 

phase ensures that the controller operates within 

predefined limits, thereby enhancing overall system 

stability and robustness. 

• Future Reference Considerations: MPC proves 

especially advantageous when future reference values 

are known, a circumstance often encountered in 

applications such as robotics or batch processes. This 

feature enables a more specific and anticipatory control 

approach, enhancing precision in controlling dynamic 

systems. 

• Open Methodology with Potential for Future 

Expansion: Built on fundamental principles, MPC 

offers an open methodology that accommodates future 

extensions and adaptations. This inherent flexibility 

ensures its continued relevance in evolving technology 

landscapes, positioning MPC as a dynamic and 

enduring control strategy. 

IV. CHALLENGES AND CONSTRAINTS 

While the merits of Model Predictive Control (MPC) in 

regulating greenhouse climates are evident, it is imperative 

to acknowledge the accompanying challenges. The 

derivation of the control law, though conceptually 

straightforward for implementation, necessitates intricate 

calculations, particularly when considering constraints. The 

primary challenge resides in the assumption of an accurate 

process model, as the benefits derived hinge upon the 

alignment between the actual process and the employed 

model. 

The application of MPC in the realm of greenhouse crop 

production aligns with the inherent strengths of the 

methodology. By devising management strategies that 

minimize an objective function while adhering to time 

horizon constraints, MPC provides a systematic and 

anticipatory approach to climate management within 

greenhouses.  

The selection of an appropriate model for MPC in 

greenhouse crop production presents challenges related to 

robustness, feasibility, and computational complexity. 

Striking a delicate balance between capturing the dynamic 

intricacies of the system and ensuring computational 

efficiency is pivotal. Various model types, encompassing 

linear, nonlinear, steady-state, and stochastic models, 

introduce diverse trade-offs in addressing these challenges. 

Subsequent chapters will delineate the application of 

MPC in the developed experimental model, elucidating 

specific methodologies, implementation intricacies, and the 

empirical evaluation of its impact on greenhouse climate 

control. 

V. STUDY OF THE MODEL 

The execution and subsequent real-time validation of the 

model present specific challenges, encompassing aspects 

such as securing access to an actual installation, establishing 
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an effective communication interface linking the installation 

and the hardware intended for algorithm execution, and 

navigating the complexities associated with the hardware 

itself. The intricacies of conducting real-time tests are 

underscored by the observation that a review of Model 

Predictive Control (MPC) systems primarily references 

theoretical papers, with limited inclusion of applied papers 

presenting empirical measurement data. 

In the prototype implementation of control algorithms, 

meticulous attention is warranted for selecting an 

appropriate platform, designing effective communication 

interfaces interconnecting different systems, and choosing a 

programming language aligning with the overall system 

architecture. These considerations significantly impact 

aspects of control algorithm development, the range of 

available functionality, and potential constraints imposed on 

the algorithm. It is imperative to recognize that not all 

optimizers enjoy universal support across every hardware 

system or programming language. Additionally, the real-

time system's ability to interface with other systems is 

facilitated by standard network ports or analog and digital 

signals processed by input/output modules. 

Within this model, the main challenge involves 

determining the future values of variables at the present 

time, relying on predictions generated by a particular model. 

At each point in time, a time horizon is computed through a 

rolling time window that starts at that specific point in time 

and continues for a fixed duration. Therefore, only the initial 

values of the optimal control are considered during the 

optimization process. 

 
Fig. 1. MPC Diagram 

For example, at a given time, within a window with a 

moving horizon, the standard problem can be expressed by 

the following mathematical formulation: 

min
𝑢

1

2
∑[𝑥′(𝑘)𝑄𝑥(𝑘) + 𝑢′(𝑘)𝑅𝑢(𝑘)] + 𝑥′(𝑁)𝑃𝑥(𝑁)

𝑁−1

𝐾=0

 

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘)) 𝑘 = 0 … 𝑁 − 1 

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘 ≤ 𝑢𝑚𝑎𝑥  𝑘 = 0 … 𝑁 − 1 

Where: 

• Equation 1 is the function expressed as a quadratic 

function, i.e., the variables represent the deviation 

from the reference value, which is reported as 0. 

• Equation 2 is the function representing the future 

dynamic behaviour of the system according to a 

specific theoretical model. 

• Equation 3 represents the thresholds constraining 

management and where: 

o x(k) is a vector of state variables at time k. 

o u(k) is a vector of control variables at time k. 

o Q, P are semi-infinite positive quantities. 

o R is a certain positive number 

It is essential to note that the solution of this problem 

takes place at each time step within the corresponding 

rolling time horizon. The formulas themselves are not 

developed by the authors, but adapted according previous 

researches (available at the end of the paper). Therefore, the 

solution must be achieved within a reasonable time, ideally 

shorter than the duration of a time sample. Furthermore, 

emphasis is placed on applying only (1)u(1), which 

contributes to the robustness of the solution against potential 

inaccuracies in the forecast model. Challenges associated 

with model predictive control (MPC) encompass 

robustness, feasibility and computational considerations 

that depend on the chosen model. The overall model for the 

MPC problem involves striking a reasonable balance 

between the computational complexity required to solve the 

optimization problem and the ability to adequately represent 

the dynamic aspects of the system. The MPC approach, 

characterized by a quadratic cost function and lack of 

constraints, can correspond to the linear-quadratic regulator 

(LQR) problem. Nevertheless, research has shown that the 

MPC subjected to constraints can be approximated to a 

constrained LQR controller where the weight matrix Q and 

R is related to the state and control variables. Therefore, the 

quadratic program problem can be addressed either by an 

LQR optimization model or by an MPC. 

Essentially, most systems are stochastic and nonlinear in 

nature. Therefore, the use of a generalized MPC system 

architecture (or algorithm) does not have the ability to give 

a sufficiently accurate representation of the full system 

dynamics. Especially in the case of highly nonlinear 

dynamics (as is the case for the greenhouse system), a 

nonlinear representation of the system is unavoidable. For 

the sake of simplicity, we can adopt the following 

formulation as a classical nonlinear description of the 

discrete-time system: 

𝑥(𝑡 + 1) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑣(𝑡)) 

𝑦(𝑡) = ℎ(𝑥(𝑡), 𝑢(𝑡), 𝑣(𝑡)) 

With this nonlinear representation of the system, we 

obtain the following framework for nonlinear MPC: 

𝑉𝑁(𝑥, 𝑢) = ∑ 𝑙(𝑥𝑘 , 𝑢𝑘 , 𝑟𝑘)+𝑉𝑓(𝑥𝑁)

𝑁−1

𝑘=0

 

Subject to: 

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) 

𝑦𝑘 = ℎ(𝑥𝑘 , 𝑢𝑘) 

𝑥0 = 𝑥(𝑡) 

𝑢𝑘 ∈ 𝑈 
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𝑥𝑘 ∈ 𝑋 

The algorithm in this case can be described as follows:  

• Input: equation of a nonlinear system 

𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑣(𝑡)) и 𝑥(𝑥(𝑡), 𝑢(𝑡), 𝑣(𝑡)) with 

computed/predicted chorissant N, fringes U and 

X. 

• Initially, the zero (initial) status of x(t) is set. 

• Solve the given equation for input parameters 

𝑢∗ = (𝑢0
∗ , … , 𝑢𝑁−1

∗ ) 

• t gets the value t+1 

• we return 1. 

To explain, the following simulation experiment is 

proposed: run two simulations where the algorithm is used 

to control the greenhouse system. In the first example, the 

proposed algorithm will be used to track a reference 

temperature with respect to the air temperature in the 

greenhouse itself. By means of the second example, the 

objective will be to increase the yield of the greenhouse crop 

while maintaining the air temperature in the greenhouse 

between a set minimum and maximum limit. In both 

simulations to track the reference temperature and to 

maximize the yield will be used as the equations of the 

nonlinear system that are needed in the optimization 

framework of the proposed algorithm. Subsequently, it is 

quite possible to use the same algorithms to improve the 

other variables in the overall system to build full control and 

synchrony in the conditions (such as irrigation system, 

humidity, illumination, etc.). 

The main factors that influence the greenhouse system are 

mainly determined by external weather conditions. 

Therefore, in both simulations conducted in this study, the 

external inputs were based on the measured meteorological 

conditions. These meteorological data were obtained from 

the Food and Agriculture Organization (www.fao.org) and 

are shown in the figure below. The bottom graph illustrates 

solar radiation, while the top graph represents outdoor 

temperature, outdoor absolute humidity, wind speed, 

outdoor carbon dioxide concentration as well as deep soil 

temperature. We assume that the signals for outdoor carbon 

dioxide concentration and deep soil temperature remain 

constant at 0.1 g/m3 and 10°C, respectively. Furthermore, 

at each time index, a random variable derived from a 

standard normal distribution multiplied by 0.01 is added to 

these constants. 

 
Fig. 2. Meteorological situation 

 During the experiment, the aim is to follow a reference 

value for the air temperature in the greenhouse while 

minimizing the input control. In addition, a limit is set for 

changes in the control inputs to prevent abrupt changes in 

the position of the ventilation mechanism or the temperature 

of the heating system, as such changes can cause fatigue and 

potential failure of the actuators. Actuator inputs are subject 

to limitations imposed by the physical constraints of the 

actuators. Specifically, we assume that the heating agent 

temperature is limited between 10 °C and 80 °C, while the 

opening of the ventilation system is limited between 0% and 

100%. 

 𝑢
𝑚𝑖𝑛 ∑ ||𝑇𝑔,𝑘 − 𝑟𝑘||𝑄

2 + ||𝑢𝑘|| 𝑅
2

𝑁−1

𝑘=0

+ ||𝑢𝑘 − 𝑢𝑘−1|| 𝑅𝛥
2  

𝑥𝑘+1 = 𝑓𝑔(𝑥𝑘 , 𝑢𝑘)𝑦,   ∀𝑘 ∈ {0, … , 𝑁 − 1} 

𝑥0 = 𝑥̂(𝑡) 

𝑢𝑙 ≤ 𝑢𝑘 ≤ 𝑢𝑢,   ∀𝑘 ∈ {0, … , 𝑁 − 1}  

In two simulations made for 𝑟∆ = 10 and another with 

𝑟∆ = 1 the differences are clearly observed. 

The figures graphically illustrate this difference.  

 

 
Fig. 3. Temperatures 

 

 
Fig.4. Control Data 

Complementing the goal of building a benchmark for 

optimal temperature control, another capability of MPC 

may be related to optimizing the crop yield itself. Using 

climate and crop models, this model can be integrated to 

maintain an optimal growth environment while balancing 

input costs and yield enhancement. The main objective is to 

keep the temperature within certain limits. Constraints are 

imposed to ensure that the greenhouse air temperature 

remains within the desired range. However, external signals 

http://www.fao.org/


PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 2738-8549, VOL. 74, NO. 1, YEAR 2024 

can push the system outside the desired limits, creating 

situations where the logic of the built MPC becomes 

unworkable. In such a case, the optimization algorithm may 

take the following form: 

 𝑢
𝑚𝑖𝑛 ∑ − 𝑚𝐹,𝑘 + || 𝑢𝑘|| 

2
𝑅

+ 

𝑁−1

𝑘=0

𝜆∈|| ∈ || 1 

𝑥𝑘+1 = 𝑓𝑔(𝑥𝑘 , 𝑢𝑘)𝑦,   ∀𝑘 ∈ {0, … , 𝑁 − 1} 

𝑥0 = 𝑥̂(𝑡) 

𝑢𝑙 ≤ 𝑢𝑘 ≤ 𝑢𝑢,   ∀𝑘 ∈ {0, … , 𝑁 − 1}  

𝑥𝑙 − 𝜖 ≤ 𝑥𝑘
𝑇𝑒𝑚𝑝

≤ 𝑥𝑢+∈  ,   ∀𝑘 ∈ {0, … , 𝑁 − 1} 

∈≥ 0 

Here we assume that 𝑚𝐹,𝑘 expresses the weight of the 

foetus at time k. 

In fact, many plant species have shown very positive 

effects and high-quality features from CO2 enrichment by 

increased dry weight, plant height, number of leaves and 

flowers, and lateral branching [9]. 

As variables, 𝑥𝑙и 𝑥𝑢are lower and upper bounds also, as 

𝑟𝑐𝑜2
 shows the limits of the CO2 in the system. In two 

different simulations with different levels of 𝑟𝑐𝑜2
 100 and 

500, we observe different readings. 

The graphs below also illustrate the result of the study. 

Subject to temperature limits within requirements (15 to 22 

degrees) and two different values of 𝑟𝑐𝑜2
 of 100 and 500 

respectively, we observe changes in the productivity 

readings of the system. 

 

 
Fig. 5. System Data 

 
Fig. 6. Yield Data 

 
Fig. 7. Control Data 

Character Definition 

β Efficiency of heat absorption 

T Factor of conversion from C to K 

C Heat Capacity 

k Coeff. Of Heat transfer 

V Volume of heater 

ζ Rate of vents 

ω Humidity 

VI. DISCUSSION 

The contributions of the research outlined in this chapter 

encompass three principal facets: 

1. Development of Generic Models for Open-Source 

Greenhouse Energy Systems: 

- Creation of generic control and emulation models for 

various greenhouse energy systems, encompassing 

components such as thermal energy storage, 

combined heat and power systems, heat pumps, gas 

boilers, district heating networks, artificial neural 

networks, and photovoltaics. 

- Establishment of these models as generic open-

source platforms, facilitating reusability and 

adaptability to users' specific models. 

- Contribution to greenhouse energy system 

modelling, enabling rapid alignment with users' 

unique energy systems during simulation and testing 

in the conceptual design phase. 

2. Development of a Detailed Model for Greenhouse 

Energy System Emulation: 

- Presentation of a comprehensive guide outlining the 

step-by-step development of a detailed emulation 

model tailored to a specific greenhouse grower. 

- Partial validation of the emulation model through 

benchmarking simulation results against in-situ 

measurements, assessing model accuracy. 

- Provision of recommendations to enhance the 

fidelity of the emulation model. 

3. Demonstration of an Economic Model Predictive 

Control (MPC) Planning Strategy for Greenhouse 

Energy Systems: 

- Proposal of an economic MPC for greenhouse 

energy systems based on an energy hub model. 

- Objective of minimizing operating costs while 

meeting thermal and electrical demands of the 

greenhouse, while respecting physical operating 

constraints. 

- Identification of the flexibility in using diverse 
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systems through the proposed MPC, demonstrating 

the potential for economic benefits through strategic 

dispatch of greenhouse energy systems. 

- Confirmation of the feasibility of applying MPC to 

greenhouse energy planning, underscoring potential 

economic benefits and contributing to the transition 

from research simulation to real-world application. 

Indeed, by incorporating advanced data processing and 

intelligent metering technologies, farmers can leverage 

management systems. These systems facilitate the 

supervision of energy requirements and the automatic 

control of the indoor microclimate within greenhouses [10]. 

The results of this study highlight the transformative 

potential of the proposed MPC strategies in greenhouse crop 

production. The economic advantages and efficiency gains 

make it imperative to recommend the implementation of this 

new technology, especially given the overwhelming 

reliance on natural ventilation and manual humidification in 

current greenhouse management systems. Existing 

greenhouse control systems relying on manual intervention 

to set reference values for temperature, heating rate, 

humidity and fogging rate are error prone. The manual 

approach not only increases labour costs but also 

complicates greenhouse management. MPC's proposed 

strategies provide a reliable alternative by automating the 

management process and reducing the risks associated with 

manual interventions. 

Given the obvious benefits, sites operating in horticulture 

are strongly advised to adopt this new technology. Adopting 

MPC strategies can effectively eliminate errors, reduce 

labour costs, and streamline the management of greenhouse 

systems. Moving to automated management is consistent 

with the principles of efficiency, precision, and resource 

optimization. The proposed project lays the foundation for 

future advances in greenhouse management systems. The 

following recommendations provide a roadmap for 

extending and implementing the research results: 

- Future control systems could explore the integration of 

multi-objective optimization techniques. This would 

involve optimizing parameters not only to reduce 

power consumption, but also to minimize losses in the 

equipment and simultaneously increase the precision of 

the actuators. Such a comprehensive approach is 

consistent with the overarching goal of sustainable and 

resource-efficient greenhouse management. 

- Extending the scope of greenhouse control to include 

CO2 regulation represents a significant opportunity for 

improvement. Incorporating MPC's CO2 management 

strategies can contribute to optimizing plant growth 

conditions, further enhancing the sustainability and 

productivity of greenhouse crop production. 

- The proposed MPC strategies, although rigorously 

studied in a controlled environment, need to be 

practically applied in the field. Real-world applications 

will allow a comprehensive assessment of controller 

behaviour under a variety of environmental conditions 

and over an extended period. 

- Nevertheless, research indicates that microgrids can 

attain elevated performance levels by employing 

advanced control algorithms. These algorithms rely on 

predicted future conditions, optimize storage device 

utilization, and prefer optimal approaches over 

heuristic-based ones [11]. Furthermore, from a control 

perspective, the power system community suggests the 

adoption of Model Predictive Control (MPC). MPC is 

favoured for its foundation on system predictions and 

its incorporation of feedback mechanisms adept at 

managing uncertainties and constraints. This makes it 

particularly appealing for systems reliant on renewable 

energy forecasts [12]. 

Although the present study provides a sound basis, it is 

essential to recognize its limitations. The proposed 

management strategy was analysed for a limited period in a 

semi-closed greenhouse, and experimental validation was 

limited by resource availability. Future studies should 

address these limitations by extending the analysis to 

different crops, greenhouses with different configurations, 

and conduct experiments to validate the proposed MPC 

strategies. The formulation of the used and proposed 

formulas is based on deep investigation and adaptation of 

many existing researches, but mainly studies for Robust 

Predictive Control and Soft Constraints in MPC [13] [14]. 

The recommended adoption of MPC strategies in 

greenhouse crop production implies a paradigm shift 

towards efficiency, precision, and sustainability. The 

outlined future extensions and implementations serve as a 

guide to advance the current state of greenhouse 

management systems, paving the way for transformative 

practices in horticulture and agriculture. Ongoing research 

and practical implementations will contribute to improving 

and expanding the application of MPC in greenhouse 

management. 

VII. CONCLUSION 

This paper introduces an innovative control strategy, 

developed through experimentation, tailored for the 

efficient operation of a microgrid-powered greenhouse. 

Leveraging Model Predictive Control (MPC), the strategy 

optimally regulates the microclimate by managing energy 

and water flows for various greenhouse processes, including 

irrigation, artificial lighting, CO2 enrichment, 

dehumidification, ventilation, and heating. Widely applied 

in greenhouse control, the Model Predictive Control (MPC) 

strategy is extensively explored. Notably, research in [15] 

delves into the MPC strategy's application for greenhouse 

temperature control. In a related study [16], an MPC 

controller is introduced to effectively regulate indoor 

temperature. An additional investigation [17] focuses on a 

robust MPC strategy tailored for greenhouse systems, 

demonstrating enhanced robustness compared to 

conventional MPC approaches.  The optimization models 

account for uncertainties in renewable energies, loads, and 

weather forecasts. Demonstrating the efficacy of the 

optimization method, the resulting control strategies prove 

suitable for managing energy in greenhouse devices, 

adhering to microclimate setpoint signals, and complying 

with mandatory operating constraints, even in the presence 

of uncertainty. 

To facilitate practical application, considering inherent 

modelling uncertainties and external disturbances in real-
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world scenarios, a proposed hierarchical control approach is 

advocated. This approach operates at different levels, with 

the top-level defining reference values for environmental 

factors in the greenhouse. In the lower layer, Model 

Predictive Control (MPC) controllers efficiently monitor 

these reference trajectories. This hierarchical structure 

enhances adaptability and robustness, addressing real-world 

challenges encountered in greenhouse management. 
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