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Abstract — Discrete stochastic control algorithms for wind 

turbine generators based on Wiener filter theory are explored 

in this paper. This approach is very effective in operation in a 

tracking regime. A discrete controller is designed by taking 

into attention functional and magnitude constraints. The 

application of Wiener filter design permits to extend the 

problems range: extrapolation of the input signal and 

controller direct design based on Diophantine equation instead 

of functional constraints in the classical design method. This 

approach simplifies the design procedure. The frequency 

characteristics of the optimal system and of the controller by 

variable wind speed are analyzed. The system performance is 

investigated in the frequency domain as well as by the error 

standard deviation under variable wind speed. 

 
Index Terms — Wind turbine, tracking regime, Discrete 

Wiener filter, functional and magnitude constraints, direct 

design based on Diophantine equation 

I. INTRODUCTION 

The wind turbine generators (WTG) as renewable energy 

sources have an essential role in the “green” energy 

production. The wind generation capacity has increased 

rapidly since 2000. Many countries in Europe have achieved 

high levels of wind power production, for example Denmark 

(41%), Portugal (24%), Ireland (24%), Germany (21%), and 

Spain (19%). The increased importance of the green energy 

production including wind energy sources lead to the 

improvement of technologies in design and implementation 

of WTGs and their control systems. Due to variable energy 

source it is very important for the control systems to ensure 

high performance of WTG operation in both regimes: 

“partial load operation” or extract the maximum power 

from the wind and “operation on a rated power”. That 

means the control system of WTG should track a variable 

speed reference. At wind speed variation in a wide range, it 

is important to ensure a high value of the power efficiency 

factor. Its theoretical maximum is
max 0.593pC  , known as 

Betz limit. The power factor of modern wind turbines is 

about 0.45 and it is quite below the theoretical value. The 

efforts in many research works are focused on the design of  
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impproved control algorithms which satisfy the require-

ments of the system performance (stability and efficient 

operation) under variable wind speed. 

The control strategies are investigated in detail in [1] - 

[4]. In the literature a wide range of research related to 

control algorithms are presented. They vary from classical to 

adaptive, predictive, multi-variable and robust control 

systems with different modifications [5]. Most of the 

commercial wind turbine use proportional–integral (PI) 

blade-pitch controller [6] to regulate the rotor speed. As 

stated in [7], a joint operation of two controllers is used to 

realize a trade-off between speed regulation and load 

reduction: the main pitch controller is used for speed control 

while the individual pitch controller is used for load 

reduction. Both controllers are based on LQR control law 

with an extra integral state (LQRI) in order to cancel the 

steady-state error for a step wind speed disturbances and 

Kalman filter for system states and disturbance estimation. 

A similar approach is applied in [8]. The requirements to 

ensure a high system performance at wind variation in wide 

ranges lead to application of robust control [9] - [13]. In [10] 

the wind turbine is presented by a model with uncertainty 

whose parameters depend on the wind speed. By using the 

technique of μ-synthesis a two degree-of-freedom (2DOF) 

controller is designed. To suppress the negative effect of the 

random variation of the wind speed robust control schemes 

have been investigated in [13]. It is recommended to apply 

2H controller in applications where disturbance rejection 

and noise attenuation are crucial, and 
infH  controller – in 

applications when the robustness to model uncertainties is 

important.  

In this paper discrete control algorithms based on optimal 

stochastic filtering theory are explored. Motivation for this 

is given by the importance of the task to improve the control 

system performance in the tracking regime in order to keep 

a high value of the power efficiency factor. Also the 

stochastic nature of the wind is our motivation to apply the 

Wiener theory for optimal filtering and forecasting [14] - 

[16]. This paper is continuation of our research presented in 

[17]. In section II the discrete controller structure involving 

functional and magnitude constraints is presented. In section 

III an application of discrete Wiener filter design by 

extrapolation of the input signal is presented.  

The new idea in this paper is the functional constraints 

from the classical method to be replaced by direct design 

based on Diophantine equation. This modification of the 

classical design method simplifies its application and as a 

result the controller structure determination. 

https://worldpopulationreview.com/continents/europe-population
https://worldpopulationreview.com/countries/denmark-population
https://worldpopulationreview.com/countries/portugal-population
https://worldpopulationreview.com/countries/ireland-population
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II. DISCRETE WIENER FILTER DESIGN. PROBLEM 

FORMULATION 

The discrete Wiener filter design is based on the 

minimization on the mean square error of the system
2

0( )M kT   , which is determined as a difference from the 

outputs of the desired transformation of a random process 

0 0( )y kT  and the output of the real system 
0( )y kT  as it is 

shown in Fig.1. 

      0 0 0 0kT y kT y kT   . (1) 
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Fig. 1. Generalized error formulation 

 

In this block diagram 
0 ( )W z is the desired transformation 

of the random process 
0( )s kT and ( )W z is the discrete 

transfer function of the real system in presence of a 

measurement noise
0( )n kT . The system error can be 

expressed by the impulse responses of the real system 

0( )w kT  and desired transformation 
0 0( )w kT  presented in the 

following form: 
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This presentation is essential for the relationship between 

the mean square error, correlation functions and their 

spectral density functions [15], [16], [18]. 
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where 
0 0( )yR mT  is the autocorrelation function of the 

desired transformation 
0 0( )y kT ; 

0 0( )y xR mT  is the cross 

correlation function between the desired output 
0 0( )y kT  and 

the input of the real system 
0( )x kT ; 

0( )xR mT  is the cross 

correlation function of the real system input signal 
0( )x kT  

with applied additive noise. In the case of statistically 

independent desired random signal 
0( )s kT and measurement 

noise 
0( )n kT , their cross correlation function and spectral 

density function are zero and the mean square error is 

determined by the spectral density functions of the input 

signals: 
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where the desired transformation of the random signal 

0( )s kT  is 
0 ( ) 1W z   when a tracking regime is required; 

( )W z  is the transfer function of the real system, ( )sS z  is 

the spectral density function of the random signal (for 

example wind velocity), and ( )nS z  - the noise spectral 

density function.  

The optimal transfer function with taking into account 

functional constraints is [15], [16], [18]: 
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where  z  and  1z 
 are obtained as a result from the 

factorization of the sum of random signal s and 

measurement noise n spectral density functions.  

 
1( ) ( ) ( ) ( )s nS z S z z z    , (6) 

where the poles and zeros of  z  are located in the unit 

circle, and for 1( )z - outside it. The expression 
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is obtained after separation of the expression in the brackets 

in physically feasible part and physically unfeasible part 

(unstable part), ( )E z  is the non-minimal phase part of the 

discrete model, and 1( )E z  - its minimal phase discrete 

presentation. With taking into account the magnitude 

constraints the optimal transfer function is modified as 

follows:  
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The function K presents the magnitude constraints of one or 

several variables, and   is a Lagrange multiplier. 

 
1( ) ( ) ( )K z Y z Y z , 

2
( ) 1 ( )nK z W z


  . (9) 

At a given discrete transfer function of the plant model
nW , 

the controller structure can be obtained: 
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III. WIENER PREDICTION FILTER  

The discrete Wiener prediction filter is based on the 

minimization of the generalized mean square error. With 

taking the both functional and magnitude constraints of the 

control signal, the mean square error is presented by the 

expression: 

 2 2Q M M u         
, (11) 

hence 
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The optimal feasible discrete system with functional and 

magnitude constraints is: 
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where ( )z  and 1( )z   are obtained in accordance with (6).  

The prediction time is presented by a number of samples

0

l
T


 . The magnitude constraints of the control signal are 

presented by (9), where   is a Lagrange multiplier, which is 

obtained from the constraint 
u dD D concerning the 

variance of the control signal and its admissible values. 

IV. DYNAMICS DESCRIPTION OF THE WIND ENERGY 

CONVERSION SYSTEM (WECS) 

The wind turbine generators comprise three dynamical 

subsystems. They are aero dynamical, mechanical and 

electrical subsystems (Fig. 2). The basic elements of the 

aero dynamical subsystem are the turbine rotor (wind 

wheel), hub and blade pitching system. The main 

components of the mechanical subsystem are the drive train 

(shaft) and the gearbox. The turbine rotor and generator 

converting the turbine mechanical power into electrical 

power and electronic converters are elements of the electro-

mechanical subsystem.  

Wind
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subsystem

Mechanical 

subsystem

Electro-

mechanical 
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r
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g

v

WTGS 

controller


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Fig. 2. Block diagram of the WECS subsystems 

A. Wind dynamics modeling 

The wind speed is regarded as a non-stationary random 

process, which consist of two components [3], [9]:  

 ( ) ( ) ( )s tv t v t v t  , (14) 

where ( )sv t is a low-frequency component which describes 

the slow variations in the wind speed, and ( )tv t  - high-

frequency component which is the turbulence model. The 

turbulence comprises all wind speed variations in the 

frequency band above the spectral gap. There are two 

widely accepted wind turbulence models. Von Karman wind 

turbulence model is characterized by irrational power 

spectral density function [3], [4], [9]:  
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and the Kaimal spectrum 
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The time constant 
VT  determines the turbulence frequency 

band, while 
VK  refers to the turbulence power. In the time 

domain 
VT  is a measure of the correlation time. These two 

parameters depend on the average wind speed and on the 

terrain topology. For example, the coefficients in (15) can be 

approximated by the expressions [3]:  

 20.475
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v
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L
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v
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m

L
T

V z
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where
vL  is correlation length of the turbulence, 

v  is the 

turbulence intensity. To generate a random process with a 

Karman spectrum a shaping filter should be designed having 

the transfer function: 
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This transfer function is not a rational function and the 

standard approach for a shaping filter design cannot be 

applied. In [19] an approach based on the relationship 

between the real frequencies characteristics ( )P   and the 

step response is proposed. In many applications the auto 

correlation function can be approximated by the 

expressions: 
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We suppose the following simple approximation by (20) 

 1 2

1 2( )xK a e a e
   


 

  , (21) 

where the parameters 1 2 1 2, , ,a a    are obtained from the 

optimization procedure for minimization of the integral of 

square error (ISE) criterion between spectral density 

function (15) and Furrier transform of the approximation 

(21) for a given wind speed: 

https://en.wikipedia.org/wiki/Rational_function
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  1 1 2 2

2 2 2 2

1 2

2 2
( )x

a a
F K

 


   
 

 
. 

The model parameters for different values for the wind 

speed are given in Table 1. 

 
TABLE I 

AUTO CORRELATION FUNCTION PARAMETERS  

Wind speed 

mV  [m/s] 1a  2a  1  2  

6 0.0138 0.0220 0.0420 0.0420 

8 0.0117 0.0220 0.0478 0.0478 

10 0.0077 0.0242 0.0533 0.0532 

12 0.0100 0.0204 0.0592 0.0591 

16 0.0170 0.0234 0.3574 0.0635 

18 0.0201 0.0204 0.0648 0.3068 

 

The discrete spectral density function is:  

 1( ) ( ) ( ) (0)s x x xS z R z R z R     , (22) 

where ( )xR z  is the Z-transform of the discrete auto 

correlation function (21). For the wind speed model 

approximation, the following expression can be obtained: 
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where 1 0 2 0

1 2,
T T

d e d e
  

  . 
The noise n applied on the system input describes all 

measurement inaccuracies and the influence of all additional 

disturbances which cannot be measured. We suppose this 

signal is a white noise with a spectral density function: 

   2

0/nS z N Т . (24) 

With taking into account a constant component (slow 

variation) in the random process (wind speed), we obtain the 

spectral density function of the random signal s:  
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B. Aero dynamical subsystem modelling  

The aero dynamical torque of the wind turbine is a non-

linear function with respect to the wind speed v and the 

torque coefficient ( , , )TC v   . The last one depends on the 

pitch angle  , the wind speed and the turbine angular 

velocity   

 3 20.5 ( , , )a TT R v C v   . (26) 

where  is the air density  and R – radius of the 

turbine rotor [m].  

The turbine mechanical power is  

 2 30.5 ( , , )W TP R v C v    

where the torque coefficient ( , , )TC v    depends on the 

power efficiency factor ( , , )PC v    in accordance with the 

relationship 


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T

C
C

 
 


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where   is the turbine tip-speed ratio which may be 

determined from the expression  


R

v


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Hence the aero dynamic torque acting on the turbine 

blades is  


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R v C
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 


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More detailed descriptions of this subsystem can be 

found in [3], [4], [9]. 

C. Mechanical subsystem modeling 

The most commonly used realization of the drive train 

model utilized as an element of the WECS model in the 

power system operation analysis is based on a two-mass 

model [3]-[5],[9]. The turbine and its hub are modeled as a 

first part, the generator and the gear as the other mass. The 

rotor shaft model is represented by the damping and 

stiffness coefficients.  

( / ) ( / )w

w a w g e w g

d
J T K D

dt


     
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      , (31) 
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d
J T K D
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      


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w

w

d

dt


  , g

g

d

dt


  ,

0w w w     ,
0g g g     , 

where 
0w and 

0g  are the wind wheel (turbine rotor) and 

the generator rotor speed [rad/s] in the steady state, aT  is the 

rotor torque, gT - the generator torque [Nm], wJ  and gJ - 

turbine and generator moment of inertia [kgm
2
] respectively, 

K – stiffness coefficient [Nm/rad], and 
eD is the damping 

coefficient [Nms/rad],  - gear ratio coefficient. More 

detailed models of WTG subsystems are presented in [3], 

[4], [9], [27].  

The complicated nonlinear model of WTG as well as the 

non-stationary stochastic process describing the dynamic 

behavior of the wind with irrational spectral function make 

the controller design a non-trivial task. The approximation 

by first order plus time delay model (FOPTD) is widely 

used simple model in many industrial applications. They 

lead to simple implementation of conventional controllers. 

In many cases concerning dynamical modeling in aero-

dynamics, thermodynamics, mechanical and electromecha-

nical engineering, chemical industry etc., these models 

cannot present the special features of the plant. A nonlinear 

simulation model of the WTG system is created in this 

research assuming a two-mass model. The model parameters 

are shown in Table II. 

 
 

 3[ / ]kg m
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TABLE II 

WTGS PARAMETERS 

 

The plant dynamics can be approximated by a third-order 

non-minimal phase model with oscillating behavior [23]: 

 
 
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K Т s
W s

T s T s T s
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. (33) 

The parameters of the model (33) are determined by using 

an optimization procedure based on the minimization of the 

ISE criterion. The error is determined on the base of the 

responses of the linear model (33) and the nonlinear plant 

model created in accordance with (26) - (32) for a given 

control signal (pitch angle) and wind dynamics presented by 

(25). A set of models (33) is obtained for different values of 

the average wind speed shown in Table III. 

 
TABLE III 

MODEL PARAMETERS 

[ / ]mV m s  8 10 12 16 18 

mK  1.05 1.62 2.47 3.15 3.63 

3 [ ]mT s  8.375 5.453 5.463 5.003 1.524 

1 [ ]mT s  2.942 5.212 6.015 4.961 2.831 

  1.1 1.3 1.3 1.6 1.37 

2 [ ]mT s  200 294 325 200 205 

Discrete models are obtained assuming a sample time 

0 6T  s and ZOH method. In Fig. 3 their frequency charac-

teristics are shown. It can be seen the magnitude response 

varies in the low-frequency range with about 10dB.  

 
Fig. 3. Bode diagram for a set of models 

V. DISCRETE STOCHASTIC DESIGN METHODS 

The main goal of control system design of WTG is to 

ensure stability and optimal operation in both regimes:  

 partial load operation; 

 operation at a rated power 

at all operating points. The references in these regimes are 

determined as follows:


 
opt

ref v
R

 for “partial load 

operation”, where 
opt is the optimal value of the tip-speed 

ratio, and n

ref

a

P

T
   for a “rated power operation”. These 

control strategies change depending on the wind conditions 

It is very important to   improve the control system 

performance in the regime “partial load operation” in order 

to keep the power efficiency factor close to its maximum 

value. One approach to ensure a high performance in a 

tracking regime is to apply Wiener filter design theory. 

Following the design procedure presented in section 3, a set 

of discrete Wiener filter for different values of the average 

wind speed are designed. In Fig. 4 the frequency 

characteristics of the optimal system are shown.  

The following constraints are considered in the design 

procedure: 

a. functional constraints of the type 1( )E z z N  , 

where 1( ) 1abs N  ; 

b. magnitude constraint of the control signal variance  

maxu uD D  

The transfer function of the optimal system is obtained by 

desired transformation of the input stochastic signal 0 1W 

and constraints concerning non-minimal phase properties of 

the model and control signal limitation (the variance of the 

blades pitch angle is limited to 16 deg
2
).  

The controller structure is obtained applying (10). The 

existence of a non-minimal phase term in the plant model 

leads to unstable controller structure. In this case in design 

procedure should be obligatory taken into account functional 

constraints involved from the plant model. In Fig. 4a Bode 

plot of the optimal system by variable wind speed 

[6,18] /mV m s is shown, and in Fig.4b – the correspon-

ding frequency characteristics of the optimal system with 

functional and magnitude constraints. It can be noticed the 

system keeps its tracking performance in the frequency 

range up to 24.10 rad/s. The values of the magnitude 

response in the low-frequency range become not equal to 

one when constraints are involved in the design procedure. 

In this case the optimal system has a non-zero steady-state 

error. The frequency characteristics of the controllers shown 

in Fig.4c have properties of lead-lag controller. The 

coefficient varies in the range of 12 dB depending of the 

wind speed. 

In this paper we propose a modification of the classical 

design method. It consists of optimal filter design with 

magnitude constraints only. The controller design is 

determined by a direct design based on Diophantine 

equation [21], [22], [25], [26] by taking into attention 

functional constraints involved from the model. 

Rotor radius R=40 m 

Shaft damping coefficient 
6 20.9510 /eD Nm rad  

Shaft stiffness   72.510 /K Nm rad  

Gear ratio coefficient 67.5   

Wind speed cut-out  25 /cut outv m s  

Wind speed cut-in  3 /cut inv m s  

Air density 31.25 /kg m   

Rotor inertia moment  5 249.510wJ kg m  

Generator inertia moment  
235.18gJ kg m  
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(а) 

 
(b) 

 
(c) 

Fig. 4.  Bode plot by variable wind speed: (a) of the optimal system,  
(b) of the optimal system with constraints, (c) of the controller 

 

The control signal is obtained from the following 

polynomial equation: 

            ,R z u z T z r z S z y z   

where R, T and S are appropriate degree polynomials and 

r and y are the system reference and the output respectively. 

The transfer function ( ) / ( )y z r z  is the desired (optimal) 

transfer function ( ) ( ) / ( )W z B z A z , obtained by Wiener 

filter design method. In this case we obtain a simpler Wiener 

filter since the functional constraints are included in the 

procedure of selection of polynomials R, S and T.  

If the plant model has a non-minimal phase part ( )E z , 

the numerator has to be presented in the following form: 

      B z B z E z  

The numerator of the desired system is presented in the form
'

d dB EB , which includes the non-minimal phase of the 

plant model, and the polynomial R comprises the rest of 

terms which contain minimal phase terms of the polynomial 

B i.e. 'R B R . The equation associated with the 

polynomials determination in (36) takes the form:  


 '

0

'

0

,

,

d

d

AR ES B A A

T B A

 


 

where 0A  is a characteristic polynomial of an additional 

filter. Thus the characteristic equation of the closed-loop 

system has the form: 


0 dAR BS B A A   

The following expressions for the polynomials R, S и T are 

determined:  

5 4 3 2( ) 2.779 2.863 1.292  

0.216   0.0002 

R z z z z z

z

    

 
 

2( ) 0.361 0.473 0.141S z z z    

5 4 3 2( ) 5.32 22.789 30.219 6.432

12.489 6.241

T z z z z z

z

    

 
 

 

They are established from the already found optimal transfer 

function from (14), and separated non-minimal phase part of 

the plant model      1.642Е z z  .  

The input random signal can be predicted for a given time 

interval 
0lT   if in the design procedure 

0 ( ) lW s z  and 

by using (13) [24].  

In Fig. 5 the power efficiency factor by a wind speed 18 

m/s is shown. It can be noticed the control system ensures 

high values of the power efficiency, but quite below to the 

theoretical maximum of 0.593. In Fig. 6 the tip-speed ratio 

by variable wind speed is presented. Remember the tip-

speed ratio   depends on the current values of the wind 

speed and the turbine rotational speed. To keep the optimal 

value of  is a necessary condition to obtain a high value of 

the power efficiency factor. 

 

 

Fig. 5.  Power efficiency factor at wind speed 18 m/s 
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Fig. 6.  Tip-speed ratio at wind speed 18 m/s 

 

 
Fig. 7.  Turbine rotational speed [rad/s] at wind speed 18 m/s 

 

The control system performance in the tracking regime is 

shown in Fig. 7 and in Fig.8 and Fig.9 - the blade pitch 

angle and the turbine mechanical power at a wind speed 18 

m/s. These simulation results are obtained by using a 

nonlinear plant model. The turbine rotational speed tracks 

the variable reference very well and the system performance 

can be evaluated by the standard deviation of the error from 

Fig. 1.  
 

TABLE IV 
STANDARD DEVIATION OF THE ERROR AND CONTROL SIGNAL  

(WIENER FILTER) 

Wind 

speed 
[m/s] 

8 10 12 16 18 

_opt c  0.1702 0.2469 0.1527 0.2006 0.3031 

opt  37.410  37.410  37.510  
37.710  37.810  

u  0.0437 0.0413 0.0519 0.0607 0.0931 

 
Fig. 8.  Blade pitch angle at wind speed 18 m/s 

 
Fig. 9.  Turbine power at wind speed 18 m/s 

 

The values of the error standard deviation for the optimal 

system without constraints 
opt  and with constraints 

_opt c  

for different values of the average wind speed are presented 

in Table IV. It can be seen the error standard deviation 

increases significantly when constraints are taken into 

account.  

It is interesting to compare the obtained results for the 

error and control signal standard deviation with the 

corresponding characteristics obtained by using a 

conventional controller. By application a discrete PID 

controller with parameters tuned by a minimization a cost 

function, the system performance evaluated by standard 

deviation is presented in Table V. It can be noticed the 

standard deviation of the error as well of the control signal 

increase significantly in the case of discrete PID application. 

The reason for this is the Wiener filter design and the 

regulator based on it implies the statistical characteristics of 

the random process (the wind speed). This fact convincingly 

confirms the advantages of the proposed approach of 

Wiener filter application in the control systems operating in 

presence of stochastic processes. 

 
TABLE V 

STANDARD DEVIATION OF THE ERROR AND CONTROL SIGNAL  

(PID CONTROLLER) 

Wind 
speed 

[m/s] 

8 10 12 16 18 

PID  0.2049 0.1368 0.0943 0.0753 0.0378 

u  0.5959 0.4998 0.4629 0.2319 0.3588 

VI. CONCLUSION 

In this paper we explore the task of speed and power 

control of wind turbine in the regime “partial load 

operation”. In this regime it is very important to improve the 

control system performance by tracking the variable 

reference signal in order to keep the power efficiency factor 

close to its maximum value. One approach to ensure a high 

performance in the tracking regime is to apply Wiener filter 

design theory. Discrete control algorithms based on Wiener 

filter design are investigated. They are focused on the 

stochastic nature of the input signal (wind speed) as well as 

functional and magnitude constraints involved with the plant 

model. The extrapolation of the input signal based on 

Wiener filter design is discussed. We propose a modification 

of the classical design method applying a discrete controller 

design by solving a Diophantine equation instead of 
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functional constraints. This modification simplifies Wiener 

filter design. The analysis of the control system performance 

is based on the frequency characteristics of the optimal 

system as well as on the error standard deviation. The error 

and the control signal standard deviation are compared with 

the corresponding results by application a discrete PID 

controller which emphasizes the advantages of the proposed 

approach. 
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