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Abstract – This paper considers the problem of smooth 

function approximation of certain nondifferentiable nonlinear 

characteristics by applying Pade series. Unified approach for 

this approximation is presented, which is based on using the 

ideal relay characteristic to describe the nonlinear effect of the 

approximated nonlinearity. The ideal relay serves as a 

switching device to carry out changes in the nonlinear element 

behavior. The main idea of the presented approach is to 

transform the problem of smooth function approximation of 

certain nonlinear characteristics to the problem of smooth 

function approximation of the ideal relay characteristic. The 

jumping in the relay behavior is replaced by parameterized 

hyperbolic tangent function, which on its own turn is described 

in terms of an exponential function. Furthermore, Pade series 

is used to approximate the exponential function in the 

hyperbolic tangent expression. Some popular nonlinear 

characteristics are considered and the approximation 

mechanism is explained by considering different ranges of 

operation for the input argument. The approximation power is 

increased by using parametrization of the hyperbolic tangent 

function. 

 

Index Terms—hyperbolic tangent function, ideal relay, 

nondifferentiable nonlinearities, Pade series, smooth function 

approximation 

I. INTRODUCTION 

Most physical processes in practice contain elements with 

nonlinear characteristics. A specific feature of such 

processes is the inability to apply linear methods for system 

analysis and design. In order to overcome such problems is 

to apply system linearization around the operating point. 

The linearization techniques allow using linear techniques 

for nonlinear control problems. One of the difficulties of 

using linear techniques is the range of system operation, i.e. 

the operating signals should be small and the system 

behavior is reliable only in small neighborhood around the 

equilibrium position. Therefore, linearization requires and 

introduces some limitations on the system behavior.  
Another problem with linearization is the requirement for 

differentiability of the nonlinear characteristics under 

consideration. The condition for differentiability of non-

linear characteristics is additional limitation over the system 

description. In this sense, linearization is reliable only when 

the nonlinear element characteristics are continuous and 

have unique derivatives around the point of operation. Non-

linear systems, whose characteristics are not differentiable 

around the point of operation, are not linearizable. Such 

characteristics include relays, all kinds of linearizable. Such 
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characteristics include relays, all kinds of hysteresis 

characteristics, backlash, saturation, dead zone and others. 

For some of these characteristics, the nonlinear part is not 

essential for the system operation. Such characteristics can 

be replaced by certain linear characteristics. For some other 

characteristics however, the nonlinear part is essential for 

system operation and they cannot be replaced by linear 

models. Such characteristics include abrupt changes in 

system behavior or discontinuous jumps in the nonlinearity 

description. One possible approach for such system element 

description is to replace the nondifferentiable part with а 

certain analytic approximation and to use the differentiable 

approximation for solving the system problems.  

One possible application of this approach is when the 

nonlinear system is presented in terms of Volterra series. 

Two main difficulties in using Volterra series represen-

tations are the series convergence and the Volterra kernels 

computation. These difficulties are consequence of using 

nondifferentiable nonlinearities in system description. One 

possible way to avoid such difficulties is to use their 

analytical approximation. Another application of the analy-

tic approximation approach is the sliding mode operation in 

robotics. In sliding mode operation, the system trajectory 

switches abruptly from one regime of operation to another. 

The switching behavior is governed by using the relay 

element in the control algorithm implementation. The relay 

type switching in the system behavior leads to chattering in 

the performance of the switching mechanism. The fast relay 

switching leading to chattering causes also fast oscillation of 

the state variables. When analyzing the sliding mode 

operation, such kind of performance is not desirable. The 

usual approach to reduce the effect of such behavior is to 

use analytic approximation of the relay switching operation. 

In many other applications, the ideal relay characteristic 

having jump at the zero point, is replaced by the 

characteristic of saturation, which has continuous kind of 

behavior. One more application of the analytic approxi-

mation approach is when using the Lyapunov theory for 

exploring system stability and design. It is well known that 

the Lyapunov function needs to be differentiable. The 

analytic approximation approach allows differentiation at 

the point of switching. 

This paper considers the problem of analytic appro-

ximation of certain nondifferentiable nonlinear character-

ristics. The nondifferentiable nonlinear characteristics, 

which are presented are some popular static nonlinearities. It 

is shown that, the nondifferentiable nonlinear characteristics 

can be presented by using the ideal relay characteristic. The 

ideal relay characteristic exhibits jump behavior from one 

level to another. This jump behavior serves to model the 

switching performance between positive and negative levels 

of operation. Therefore, in order to approximate smoothly 
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the nondifferentiable nonlinear characteristic, it is desirable 

to use analytic approximation of the ideal relay. The ideal 

relay analytic approximation is achieved by using Pade 

series representation. The factors, which increase the 

accuracy of such approximation, are also considered. 

II. ANALYTIC APPROXIMATION OF THE IDEAL RELAY 

CHARACTERISTIC 

The ideal relay characteristic can be presented by the 

following expression: 

  ( )     ( )  {
     
     
     

          (1) 

This characteristic is nondifferentiable at the point    , 

where the relay behavior changes with jump. Therefore, the 

relay characteristic at this point is not only 

nondifferentiable, but it is also discontinuous. The 

discontinuous jump of any nonlinear characteristic imposes 

heavy limitations for its analytic approximation. Therefore, 

in order to assure differentiability, one has to look for some 

popular practical approximation procedures. There exists no 

convergent Taylor series representation of the relay 

characteristic, which is due to the jump behavior at the zero 

point. Orthogonal series representations have also very slow 

rate of convergence. One possible solution of the 

approximation problem for the ideal relay (1) is by 

employing gate functions [5]. By using the mechanism of 

gate function approximation, we present the relay 

characteristic in terms of a hyperbolic tangent function as: 

                  ( )     ( )      (  ),          (2) 

where   is a parameter, determining the error of 

approximation [4]. Figure 1 shows the gate function 

approximation of the ideal relay, for different values of the 

parameter  . It is shown that, for small values of the 

parameter,     (- - -) or     (….), the gate function 

clearly deviates from the true characteristic. For medium 

values      (-.-.-), the error of approximation clearly 

reduces, while for       (---) or larger than hundred, the 

error of approximation is very small.   
 

 
Fig. 1. Hyperbolic tangent approximation of the ideal relay 

The computer representation of the hyperbolic tangent 

function is discussed in [2]. We consider a floating point 

base   with   fractional digits. It is shown that there exist 

four different regions, where the     ( ) is computed. In 

the interval from zero to       , the hyperbolic tangent 

function representation is     ( )   , which is the Taylor 

series expansion, truncated to the first term. The upper 

bound value is determined as:        √  
(    )  ⁄  and for 

double precision representation,               
  . In the 

interval from        to        ,     ( ) is represented by 

accurate rational polynomial approximation, developed in 

[3]. The value of the upper bound is obtained as         
  (    )  ⁄ , which for double precision representation is 

computed as:               . The main interest for the 

hyperbolic tangent computation is the third interval from 

        to       , which is computed as     ( )    
 

     (  )
, which can be derived from using the formula 

    ( )  
   ( )    (  )

   ( )    (  )
. The value of the upper bound is 

computed as        (   )   ( )  ⁄  [2]. The value of 

       for double precision arithmetic is        

        . For values of   larger than       ,     ( )   . 

Since in the derivations to follow, we use the scaling 

parameter  , the range of operation is significantly reduced, 

and the argument of approximation is restricted to two 

intervals: for   [        ] and for         . In the first 

interval,     (  )    
 

     (   )
 and in the second 

interval     (  )   . In order to avoid using exponential 

terms in the denominator, we assume rational function 

approximation of the function    ( ) in terms of Pade 

series [4].  

The Pade series approximation of the exponential 

function is a rational function, which is developed from the 

Taylor series and contains as many parameters as the 

corresponding parameters in the Taylor series. For a Taylor 

series expansion with   parameters, a Pade series 

representation can be obtained as follows: 

     ( )  
          

       
 

         
       

 ,        (3) 

where        . In order to compute the Pade series 

parameters, we use the correspondence between Taylor 

series and Pade series coefficients, as follows [1]: 
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can be written as: 
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The above equality transforms to the following set of 

equations: 
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where in (5), we have considered the case      . The 

parameters   ,           can be obtained from the 

equations:   

     , 

          ,…,                           (6) 

Solving equations (5) and (6), we obtain the expression for 

    ( ) as follows:  
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                       ( )  
         

       
 

         
       

 ,          (7) 

where the parameters   ,            are computed as in  

[4]: 

      ,               ,              ,               ,      

          
  ,           

  ,               
  . 

We approximate the exponential function    (   )  
    (   ) and therefore, the Pade series approximations for 

the ideal relay characteristic on the interval   

[         ⁄ ] can be computed as:    ( )      (  )  

  
 

      (   )
. For          ⁄ , the value of the 

hyperbolic tangent function is one.  

 

Remark  
From the above derivations follows that, the approximation 

of the ideal depends to a great extend on the parameter  . 

The larger the parameter  , the smaller is the interval 

length, where the differentiable approximation is defined. 

The upper bound on this interval is        ⁄ , i.e. for 

     , the upper bound is        ⁄         . Howe-

ver, this circumstance does not create any difficulties for the 

approximation problem, since the discontinuous jump in the 

relay characteristic appears at     and the main effort to 

overcome the abrupt change in the jump behavior is exactly 

in the zero point and in close neighborhood around it. In this 

sense, no matter how small the approximation interval is, 

the goal of smooth replacement of the switching jump will 

be satisfied. 

III. SMOOTH FUNCTION APPROXIMATION OF 

NONDIFFERENTIABLE NONLINEARITIES 

The smooth approximation of the ideal relay charac-

teristic serves as a base for smooth function approximation 

of many other nonlinear characteristics. Consider first the 

dead zone nonlinear characteristic, which is presented in 

fig.2. 

                     ( )  {
  | |   

       
        

,                         (8) 

where   is a parameter, showing the length of the dead zone 

interval. In the case presented in fig.2, the parameter 

     . Obviously, at the points     , the dead zone 

nonlinear characteristic is not differentiable.   

 
Fig. 2. Dead zone nonlinear characteristic 

One possible way to approximate the dead zone nonlinearity 

is by using smooth approximation of the ideal relay element. 

The dead zone characteristic can be presented by the 

following expression:  

 ( )     (   )[   (   )   ]         
    (   )[   (    )   ]      (9) 

From expression (9) is clear that, when | |   ,    (  
 )     and the first term in expression (9) is zero, and 

similarly    (    )     and the second term in 

expression (9) is zero. When    , the first term in 

expression (9) is zero, since (   )   . The second term 

in expression (9) is also zero, since    (    )     . 

For    ,    (   )    and the first term in (9) is 

equal to (   ), while the second term in expression (9) is 

zero, since    (    )     . Similarly, for     , 

the first term in (9) is zero, since    (   )     , 

while the second term in (9) is equal to (   ). Obviously, 

the problem of dead zone characteristic smooth 

approximation reduces to smooth approximation of the 

ideal relay characteristic, which matter was discussed in 

section two. 

We consider now the characteristic of nonlinearity with 

saturation, presented in fig.3. The nonlinearity with 

saturation characteristic can be described by the following 

expression: 

      ( )  {
   | |   
     
       

,                         (10) 

 

 
Fig. 3. Nonlinearity with saturation characteristic 

 

where     and   
 

 
, (in fig.3,    ,     and    ). 

By using the ideal relay characteristic, we can write: 

 ( )       [   (   )     (   )]   

        [   (   )     (    )]          ( )  
                                            ( )                                    (11) 

where   ( )     (   )     (   )  and    ( )  
   (   )     (    ). From expression (11), it is 

clearly seen that, if | |   ,    (   )     and 

   (    )     and therefore,   ( )   . Since 

   (   )   , the first term   ( )    and therefore, 

 ( )    . If    , then the second term   ( )    and 

the first term   ( )   . Therefore,  ( )             
 . If     , then the second term   ( )     and the first 
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term is   ( )    and  ( )                , since 

    . If    , the first term   ( )    and the second 

term   ( )    and therefore,  ( )   . If     , then the 

first term   ( )    and the second term   ( )     and 

therefore,  ( )    . Thus, the expression (11) completely 

describes the behavior of the nonlinearity with saturation 

element. It is clear from (11) that, the only nondifferentiable 

part of this characteristic is the    ( ) function, which can 

be approximated by Pade series, which was shown in 

section 2. Using smooth function approximation for the 

ideal relay characteristic, we can smoothly approximate the 

saturation nonlinearity. 

Finally, we consider the ideal relay with dead zone 

characteristic, shown in fig.4. The mathematical description 

of the relay with dead zone can be written as follows: 

                  ( )  {
  | |   
     
       

,                  (12) 

where     and    , (in fig.4,       and    ). By 

using the relay characteristic    ( ), the relay with dead 

zone curve can be described by the expression: 

  ( )      [   (   )     (   )]  (13) 

It is clear that, if | |   ,  ( )   . For    ,  ( )    

and for     ,  ( )    . Similarly to the previous 

cases, developed above, the only nondifferentiable part in 

(12) is the    ( ) function. By using Pade series 

approximation of the sign function, we can develop 

nonlinear characteristic, which is differentiable on the whole 

interval of observation. 

 

 
Fig. 4. Ideal relay with dead zone characteristic 

 

By using Pade series approximation of the sign function, 

we can develop nonlinear characteristic, which is differ-

rentiable on the whole interval of observation. Therefore, we 

can develop smooth function approximation for the jump 

behavior of relay with dead zone and replace the 

discontinuous characteristic by a differentiable one.  

 

IV. CONCLUSION 

This paper considers the problem of smooth function 

approximation of certain nondifferentiable nonlinearities. 

The smooth function approximation approach is required, 

when time and space derivatives of certain functions is in 

the base of the applied nonlinear methods, like the 

Lyapunov based functions methods, the sliding mode 

operation and others. The presented approach is constructed 

by using smooth function approximation of the ideal relay 

characteristic. The ideal relay characteristic can be used to 

present some other nondifferentiable nonlinear charac-

teristics like, nonlinearity with saturation, dead zone and 

relay with dead zone nonlinearities. Therefore, the smooth 

function approximation of the relay characteristic can be 

used to obtain smooth approximation of the other nonlinear 

characteristics. Explicit relations are provided, which 

describe the behavior of these characteristics, thus avoiding 

the if-then-else algorithmic representation. The proposed 

approximation method uses the gate functions approach and 

is based on Pade series representation of the computed 

hyperbolic tangent function. The Pade series representation 

is utilized for rational function approximation of the ideal 

relay characteristic. In this terms, we derive rational func-

tion approximations of certain nondifferentiable nonlinear 

characteristics.     
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