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 
Abstract—The research of Brain–Computer Interface (BCI) 

and its utilization has significantly raised in the last years. A BCI 

system perceives and processes brain signals following five data 

processing stages: signal acquisition, signal preprocessing, data 

extraction and data classification and generation of control 

signals. Brain activity data to be used for BCI systems can be 

achieved through measurements of induced as well as evoked 

neuronal activity of the cortex. Motor imagery based BCI is a 

system wherein a person can generate prompted brain activity 

with the aid of imagining motor movements. In order to design 

and develop BCI system a relevant dataset is used. The 

acquisition of a dataset on which the BCI system is based is very 

important for the overall system performance. Many BCI 

datasets are available and can be used either for research 

purposes or for development of certain BCI system. The paper 

presents a procedure for design and conduction of EEG data 

acquisition for motor imagery mental tasks classification as well 

experimental results for usage of the data acquired using 

different classification approaches.  

 
Index Terms— Brain-computer interface, Classification, 

Electroencephalography, Motor imagery tasks  

 

I. INTRODUCTION 

A Brain–Computer Interface (BCI) based system allows 

human-computer interaction to be established using control 

signals produced from cerebrum activities without the 

interference of any nerves and muscles. 

Electroencephalography (EEG) is an approach for recording 

the cerebrum electrical activity through the scalp due to 

measurements of the activity of the neurons and thus the 

recorded EEG signals represent the electrical neural activity 

of the brain. EEG is considered as the most widely utilized 

approach for recording of cerebrum signals and has several 

important advantages: high temporal resolution, noninvasive, 

simple, easy and safely applied, portable and inexpensive [1, 

2]. EEG is the most common approach used for gathering 

brain signals for research and clinical studies of some of the 

brain functionalities as memory, vision, intelligence, motor 

imagery, emotion, perception and recognition, as well as for 

detection and diagnosis of some brain disorders and 

abnormalities such as epilepsy, stroke, dementia, sleep 

disorders, depression and trauma [3]. 
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The study of the cerebrum oscillations of the recorded EEG 

data and the association with the brain functionalities is 

widely studied research problem. The EEG brain oscillations 

are categorized in frequency bands (alpha, beta, gamma, 

delta, mu, theta) and are connected to several brain states or 

abilities [2]: alpha waves are connected to the states of 

relaxation, concentration, and in some cases attention; beta 

waves are connected to the states of alert, thinking and active 

concentration, gamma waves are associated with short term 

memory and identification of visual objects, sounds, or tactile 

sensitivity, delta waves are associated with deep sleep stages 

as well as with cortical plasticity in awake state, mu waves 

are detected as part of the range of the alpha wave and 

correspond to high motor neuronal activity, theta waves are 

recorded during a sleepy state and are usually observed for 

youngsters than in grown-ups brain activity and are 

associated with states of idling, creative inspiration, 

drowsiness, and deep meditation.  

The general EEG data processing for BCI systems can be 

summarized as comprising three main data processing stages: 

preprocessing stage aimed at the enhancement of the recorded 

raw data of the cerebrum activity through data normalization, 

noise and artifact filtering; feature extraction stage aimed at 

selection of low-dimensional set of discriminative features 

from the filtered data that adequately represent certain 

neuronal activities; classification stage aimed to assign 

certain category to the defined set of features and to convert 

them accordingly into control signals for given operation.  

The classification stage is actually responsible for 

identification of the correspondence between the recorded 

cerebrum neural activities to activity category based on 

differences and similarities of the captured signals. Different 

classification techniques are used for BCI data classification 

that can be categorized according to various criteria as 

generative and discriminative classifiers, static and dynamic 

classifiers, stable and unstable classifiers [1]. Despite the 

classification approach for the EEG data processing a 

relevant dataset is required and used. Many BCI datasets 

exists that are acquired and published for research and 

development of BCI systems targeted at research and clinical 

studies of brain functions and related activities.  
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Motor imagery based BCI is a system wherein a person can 

generate prompted brain activity with the aid of imagining 

motor movements. The design and the acquisition of an EEG 

dataset for motor imagery tasks is a long process that requires 

special attention at each of the steps including the recording 

devices and software, the experimental environment for data 

measurements, as well as the next stages of data processing.  

The paper presents a procedure for design and conduction 

of EEG data acquisition for motor imagery mental tasks 

classification as well experimental results for usage of the 

data acquired using several classification approaches. 

II. RELATED WORK 

The design of EEG experiments is targeted at supporting 

certain research question or studying certain aspects of brain 

function or malfunction. The experimental question in hand 

is the base for definition of a research hypothesis to be tested 

by the experimental data. Thus the design of an experiment is 

aimed at controlled manipulation of certain aspect of the 

research problem and measurement of the outcome of that 

manipulation to support the investigation of the research 

question.  

As suggested in [3] several important features characterize 

well-designed experiments: 

• The experiment should be as simple as possible to be 

carried out for the experimenter and easy to later reproduction 

by other researchers. 

• The experiment should test certain hypothesis and 

should provide fair estimates of the factor effects and 

associated risks. 

• The experiment should require minimum cost of running 

and should enable significant differences to be detected. 

• The experiment should include planning for data 

analysis and results interpretation. 

• The experiment should allow conclusions to be made 

that have wide validity. 

In order to prepare and conduct a well-designed EEG 

experiment all of the related aspects of the research problem 

in question as well as all various parameters with respect to 

the research hypothesis should be carefully considered. 

Many examples of EGG experiments designed to support 

given research hypothesis and BCI problems are described in 

the research studies. 

In [4] a system is designed to explicitly accommodate EEG 

data acquisition with participants having coarse and curly hair 

and the experimental results demonstrate that the designed 

system provides better measurements than other state-of-the-

art systems. Speech activity detection using EEG data is the 

research problem presented in [5] and the EEG experimental 

design is based on utilization of visual stimuli, such as 

reading and color naming as well as EEG signal 

measurements for speech activity detection. The research 

hypothesis in [6] is aimed at the investigation of the 

EEGtoText problem, i.e. the possibility for direct automatic 

generation of text reports based on EEG data. In [7] a EEG 

recording using polymer electrodes is studied and compared 

to a standard EEG based on experimental dataset. A hybrid 

stimulation recording approach based on new combined 

electrode for measurement of neuronal activity of transcranial 

electrical stimulation induced electric field distributions is 

described and experimentally evaluated in [8]. A wireless 

neural recording platform for sensing EEG data using an ear 

canal based equipment is suggested in [9]. The experimental 

evaluation based on the acquired EEG dataset demonstrates 

that the performance of the described system is better than 

several other systems used for detection of eye blinks and 

auditory steady-state response. A system that utilizes 

simultaneous scalp and ear-EEG recordings with common 

reference is proposed and experimentally evaluated in [10] 

based on 32 conventional scalp electrodes and 12 ear 

electrodes. The experimental dataset allows comparison to be 

made between conventional and ear electrodes and the 

analyses show that auditory steady-state responses and alpha-

band modulation measurements using ear-EEG modality are 

reliable for sensing cortex activity from regions located close 

to the ears. In [11] the experimentally evaluated research 

hypothesis is aimed at utilization of subcutaneous recording 

system for study of epilepsy and sleep-related disorders and 

compared to the possibilities provided by scalp EEG 

recordings. EEG-based long short-term memory network 

model is used in [12] for human emotion recognition and the 

suggested approach is experimentally evaluated for 

recognition of user preferences toward architectural design 

images based on EEG records of the cerebrum electrical 

activity. 

Even if the above mentioned studies are aimed at 

investigation of different research questions connected with 

BCI systems and are targeted to different stages of BCI data 

acquisition and processing, they all evaluate a research 

hypothesis based on carefully designed BCI experiments. In 

all of the provided research works EEG data acquisition is 

extremely important for the successful evaluation of the 

research hypothesis and the experimental assessment for the 

defined research question is highly dependent on the BCI 

dataset used and the quality of the recorded data. On the other 

hand, EEG data acquisition is very specific experiment that 

should be carefully designed and conducted as it includes 

usage of specialized hardware and software and is sensitive 

to both the environment as well as the participants in the 

experiment. 

III. EEG DATASETS FOR MOTOR IMAGERY MENTAL TASKS  

Motor imagery in view of the BCI systems is considered as 

imaginary motor movement without any physical movement 

of the person’s body. Many research studies are aimed at 

analyses of the recorded brain activity during the motor 

imagery task in an attempt to disclose the mental action based 

on the sensed data [13, 14, 15]. Various application areas can 

benefit from automatic detection and recognition of motor 

imagery mental tasks based on brain activity data including 

medicine, rehabilitation and sports [16, 17, 18, 19], robotics 

[20, 21, 22, 23], smart environment [24, 25], entertainment 

[26, 27, 28]. 

Among the different methods for recording the brain 

activity, EEG based BCI systems that utilize motor imagery 

mental tasks are most intensively studied and adopted in 

practical applications since EEG data provide sufficient 

measurement accuracy and are noninvasive and low cost 

approach for sensing neuronal activity of the cortex. 
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The challenges and critical issues for successful 

commercial usage of motor imagery EEG based BCI systems 

are connected with providing highly responsive and 

consistent BCI systems that require enhancements of the 

methodologies and algorithms used at each of the processing 

stages: data acquisition, data filtering, feature extraction, 

channel and feature selection, motor imagery training and 

classification [29]. The processing of EEG data requires 

relevant EEG dataset to be used. Comprehensive collections 

of some of the publicly available EEG datasets are listed at 

[30, 31, 32]. The collection of open access BCI datasets 

available at [33] developed under BNCI Horizon 2020 project 

comprises a list and provides access to 28 BCI datasets. BCI 

Competition datasets [34, 35, 36] comprise 13 datasets 

collected and provided by the Berlin Brain-Computer 

Interface team as part of their activities for organizing four 

issues of BCI Competitions between 2000 and 2008. The 

EEG datasets available at [37] is used for the research studies 

of motor imagery BCI described in [38] and is one of the 

largest publicly available EEG dataset consisting of EEG data 

from 52 subjects as well as EMG datasets and EEG data for 

non-task-related states. In [39] a very big EEG BCI dataset is 

described containing EEG recordings and mental imageries 

for 4 BCI interaction paradigms. A BCI dataset with multiple 

distractor conditions is also available for public access [40]. 

As part of the Brain Imaging Data Structure (BIDS) standard 

for the organization of neuroimaging data, 64 public EEG 

datasets are available at OpenNEURO web site [41] that can 

be used for different studies including motor imagery tasks. 

Several BCI datasets for motor imagery tasks are also 

available as part of the software platform OpenVibe for 

designing, testing and using BCI [42]. 

IV. DESIGN OF EEG EXPERIMENTS FOR MOTOR IMAGERY 

MENTAL TASK CLASSIFICATION 

Based on the general guidelines for design of experiments 

for EEG data acquisition [3] and the experimental protocols 

of the above mentioned datasets, EEG experiments for 

recording of motor imagery mental tasks is designed and 

conducted. 

A. Environment 

All experiments are conducted in a laboratory environment 

at the Technical University of Sofia. The experiment 

environment is a silent laboratory with fresh air, comfortable 

chair and a desk. The experiments are carried out in October 

2021 during several time slots: T1 (9:30–12:00), T2 (12:30–

15:00), T3 (15:30–18:00). The background noise level in the 

room is 37–39 decibels. 

B. Recording device and software 

The recording device for the acquisition of EEG data is 

Emotiv Epoc+ EEG Headset by Company Emotiv (Fig. 1). 

Emotiv Epoc+ is 14 channel EEG whole-brain sensing device 

with 9 axis motion sensors to detect head movements. The 

device allows fast set up time, uses saline-based electrodes, 

wet sensors with no sticky gels and wirelessly connects to PC 

and mobile devices. 

The recording software is a custom Python script using 

several libraries for data acquisition, recording, transfer and 

storage: websocket, datetime, json, ssl, time, sys, and cortex.  

Fig. 1. (a) Emotiv EPOC+ headset (b) Spatial mapping of the electrodes on 

the scalp, Reprinted from [43]. 

The software utilizes Emotiv Epoc+ data for given user, 

record name, record description, record length. It records the 

EEG data as band pass data and exports them as csv file to a 

destination folder. The data are recorded using laptop with 4x 

Intel Pentium CPU N4200 @ 1.10GHz, 4 GiB RAM, 

Windows 10 Pro Operating System.  

C. Questionnaire and Ethics Approval 

According to the general requirements and guidelines for 

design of EEG experiments all participants should be 

protected from mental, psychological, physical, social, and 

legal risks throughout the experimentation. Each participant 

in the EEG dataset acquisition has the right not to participate 

in the experiment and to withdraw from the experiment. The 

participants are provided with full information about the 

research experiments to be conducted. Their privacy and 

identity is protected.  

The participants are asked to fill out a printed questionnaire 

before the mental motor imagery experiment and data 

recording is conducted. The questionnaire comprises 

questions that are required in order to find out if the 

participant is eligible to take part in the EEG experiment and 

if the data recorded are relevant for inclusion in the EEG 

dataset. The answers to the questionnaire can also be used to 

analyze the results of the motor imagery mental task 

classification using the recorded data. The questions to be 

answered concern the state and the habits of the participant: 

taking any daily medications, existing health problems, 

experienced head injury or brain disorder, experienced 

cardiac disorder, existing skin allergy, smoking habits, usual 

sleep hours, usual time spend in front of a computer, times 

per week watching a movie, times 3D movie is watched, 

playing video games at all, playing Nintendo DS and 

Nintendo 3DS games, playing Sony Playstation games and 

3D games. 

D. Motor imagery instructions and experimental procedure 

All data are recorded in a synchronous (cue-paced) BCI 

paradigm. A visual action signal is used to instruct the 

participant to invoke given mental image corresponding to 

certain mental task. Motor imagery instructions are presented 

to the participants as a video file with total length of 3 minutes 

and 30 seconds and a content presented in Table 1.   

The video file comprises sequence of resting periods and 

mental task instructions for movement of an object 

(basketball). The mental tasks are right, left, up, down, push 

and pull movement of the object. After 40 seconds of resting 

period a basketball appears on the screen for 5 second 
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followed by 8 seconds period for left movement of the ball 

for the mental task left and 3 seconds resting period.  

The same is repeated in the video for each mental task as 

sequences of 10 seconds resting periods, another 5 seconds 

resting period, 8 seconds mental task for right, up, down, push 

and pull movement of the ball and 3 seconds resting period. 

The stimuli video ends with 30 seconds resting period. 

Even if participant is suggested not to move and to relax, 

some unexpected non-task-related and other motor imagery 

tasks are possible like eye movements, leg and hand 

movements, mouth chewing and head movements. Therefore, 

for each participant data for non-task-related and task (motor 

imagery)-related states are not recorder. 

E. Data format and structure 

Each recorded EEG trial is stored as csv file with 

timestamp for the recording time and the EEG data. The EEG 

channels for which data are recorded are as follows: The EEG 

channels for which data are recorded are as follows: AF3 

(Theta, Alpha, BetaL, BetaH, Gamma), F7 (Theta, Alpha, 

BetaL, BetaH, Gamma), F3 (Theta, Alpha, BetaL, BetaH, 

Gamma), FC5 (Theta,  Alpha, BetaL, BetaH, Gamma), T7 

(Theta, Alpha, BetaL, BetaH, Gamma), P7 (Theta, Alpha, 

BetaL, BetaH, Gamma), O1 (Theta, Alpha, BetaL, BetaH, 

Gamma), O2 (Theta, Alpha, BetaL, BetaH, Gamma), P8 

(Theta, Alpha, BetaL, BetaH, Gamma), T8 (Theta, Alpha, 

BetaL, BetaH, Gamma), FC6 (Theta, Alpha, BetaL, BetaH, 

Gamma), F4 (Theta, Alpha, BetaL, BetaH, Gamma), F8 

(Theta, Alpha, BetaL, BetaH, Gamma), AF4 (Theta, Alpha, 

BetaL, BetaH, Gamma). The EEG data of each trial are stored 

as csv file of size around 2 MB, ~ 70 row  2000 column. 

Each dataset is named with participant’s and questionnaire’s 

ID. 

V. EXPERIMENTAL RESULTS OF THE EEG DATASET 

CLASSIFICATION 

The EEG data for motor imagery tasks following the above 

described experimental procedure are acquired for six 

participants, three male and three female, at an age between 

22 and 39 years. The EEG dataset is processed according to 

the general data processing stages and are used for 

classification of motor imagery mental tasks using several 

classification algorithms: logistic regression, k-nearest 

neighbors, Support Vector Classifier (SVC) with linear 

regression, SVC with Radial Basis Function (RBF) 

regression and Gaussian training classifier. In addition, at the 

feature selection stage wavelet signal de-noising is adopted 

for noise reduction as described in [44] as well as genetic 

algorithm and 2-fold cross validation for proper feature 

selection as described in [45]. The recorded dataset 

The experimental results for the accuracy of classification 

of the EEG dataset using the utilized classification algorithms 

are given in Table 2. The results in table 2 also present the 

classification accuracy using wavelet signal de-noising as 

well as classification accuracy using genetic algorithm and 2-

fold cross-validation for feature selection. As can be seen the 

use of wavelet signal de-noising and genetic algorithm with 

2-fold cross validation for feature selection improves the 

classification accuracy. The overall accuracy is satisfactory 

(above 50%) for all classification algorithms. The best 

classification accuracy is achieved using k-nearest neighbor 

classifier with genetic algorithm based feature selection. 

Further improvement of the classification accuracy can be 

expected if the EEG dataset acquisition is extended with more 

recordings of each participants providing motor imagery 

training for the mental tasks. 

VI. CONCLUSION 

The paper presents a procedure for design and conduction 

of EEG data acquisition for motor imagery mental tasks 

classification. The experiment is designed in order to collect 

EEG data for motor imagery tasks and to evaluate several 

motor imagery task classification algorithms. The experi-

mental results using different classification approaches show 

satisfactory results that can be improved using wavelet signal 

de-noising, genetic algorithm and 2-fold cross validation at 

the feature selection data processing stage. 
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TABLE I 

EXPERIMENTAL PROCEDURE 

Number Task Duration 

 Resting period 30 sec. 

2 Resting period 10 sec. 

3 Left movement for mental task left 16 sec. 

4 Resting period 10 sec. 

5 Right movement for mental task right 16 sec. 

6 Resting period 10 sec. 

 Up movement for mental task up 16 sec. 

8 Resting period 10 sec. 

9 Down movement for mental task down 16 sec. 

 Resting period 10 sec. 

 Push movement for mental task push 16 sec. 

 Resting period 10 sec. 

13 Pull movement for mental task pull 16 sec. 

14 Resting period 10 sec. 

15 Resting period ~30 sec. 

 

TABLE 2 

TRAINING ACCURACY OF THE MOTOR IMAGERY TASK CLASSIFICATION  

Classifier Classification accuracy 
Classification accuracy 

with wavelet signal de-noising 

Classification accuracy  

with genetic algorithm and 2-fold cross-validation 

Logistic Regression 0.585 0.552 0.602 

K-nearest neighbors 0.685 0.696 0.700 

SVC Linear Regression 0.594 0.552 0.605 

SVC RBF Regression 0.620 0.610 0.538 

Gaussian Classification 0.514 0.516 0.539 
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