PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 2738-8549, 2738-8530 VOL. 74, NO. 2, YEAR 2024

Algorithm for Payment with POS Terminals in
Real Time

T.Pavlov, J.Ostrev, A.Marinchev, V.Galabov

Abstract— In recent years, real-time payments with POS
terminals have increased and their application is ubiquitous
(for example at 2022 they are about 77.4 million per hour).
Paying with POS terminals is also a convenience, which is a
preferred way of transferring amounts in electronic form.
Bank transaction information is related to the transfer
amount, bank card type, card issuer, card type, transaction
type and many other parameters. POS terminals are often
operated in more than one or two shifts per day. Existing
algorithms for POS terminals offer functionality, only for the
most important minimum amount of data for preparing
accounting documents. Very often POS terminals are used
with cash registers (Cash Register). In these cases, automated
data processing usually exists and data reporting is facilitated,
and when not, addition is relatively easier compared to adding
the functionality directly to the POS terminal software. The
proposed algorithm does not require the presence of a cash
register and provides the opportunity to receive detailed
reporting in a pre-selected period of time by the user.

Keywords—payments, POS terminals

I. INTRODUCTION

In this paper, we present an algorithm designed to process
data from POS terminal devices, providing comprehensive
accounting analysis without the need for additional
hardware such as cash registers. The proposed algorithm
aims to reduce costs, increase flexibility, improve reporting
capabilities and security, offer better customer service and
improve overall competitiveness for users who have POS
terminals but no cash registers.

By eliminating the need to purchase and maintain a
separate cash register, users can save money, adapt their
POS terminal settings more efficiently, and receive detailed
real-time reports.

The algorithm allows for easy development and
processing of both structured and unstructured data,
incorporating advanced machine learning techniques and
data analysis to identify patterns, anomalies and potential
fraud.

Users can easily generate custom reports and export them
in various formats.

The algorithm also allows the integration of robust
security measures, such as data encryption, two-factor
authentication, and regular system auditing. With the ability
to scale and continuous maintenance and update, the
proposed algorithm provides users who have POS terminals
but no cash registers a more cost-effective, flexible and

Received: 06.08.2024
Published: 08.09.2024
https://doi.org/10.47978/TUS.2024.74.02.007
Toshko Pavlov is with the Technical University of Sofia, 1000 Sofia,
Bulgaria (e-mail: t.pavlov@tu-sofia.bg)

efficient way to manage their financial transactions and
perform accounting analysis.

The data that is processed during a transaction represents
many parameters affecting the cardholder and the banks
between which the transfer takes place, but the focus is on
the pro-cessing of the given transaction and ensuring
security, which includes not only the transfer of data, but
and additional checks for the cardholder, PIN code
verifications, using addition-al parameters for information
carriers (chip or magnetic stripe), etc. [1], [2], [3], [4], [5]-
The most typical parameters are the type of transaction, the
amount of the transaction, the time it takes place, parameters
for the banks (only one bank is also possible) participating
in the transfer [5].

II. INFORMATION THAT POS TERMINALS WORK WITH

Most often, transactions at POS terminals are purchases,
but in reality, the number of possible transactions is several
dozen, as the construction and operation of all of them is
subject to numerous standards and specifications [1].

EMV (Europay MasterCard Visa) is a global electronic
transaction standard named after the three organizations that
established it. The new EMV standard enables EFTPOS
terminals worldwide to process chip-based debit and credit
cards [1], [2], [3], [4]-

A. Transactions

All transactions affect the development of the process
started by the cardholder from the moment the amount is
entered and confirmed through the POS terminal. All
possible transactions when paying with POS terminals in
real time contain a similar type of information [2], but what
differentiates them significantly is the type of transaction:

- Purchase

- Refund

- Tip

- Reversal (if no response is received in the card system)

- and many others

B. Bank cards

Bank card data is a subset of all information about a given
transaction. Although seemingly the same, bank cards differ
from each other. They have a chip and a magnetic stripe to
work with devices performing bank transactions. The most
common are Visa, Master Card, Diners Euro Card, etc.
Another characteristic parameter is the type of bank card -

Alexandar Marincheyv is with the Technical University of Sofia, 1000

Sofia, Bulgaria (e-mail: amar@tu-sofia.bg)
Vasil Galabov is with the Technical University of Sofia, 1000 Sofia,

Bulgaria (e-mail: vtg@tu-sofia.bg)

mailto:t.pavlov@tu-sofia.bg
mailto:amar@tu-sofia.bg
mailto:vtg@tu-sofia.bg

T.PAVLOV, et al.: ALGORITHM FOR PAYMENT WITH POS TERMINALS IN REAL TIME

debit or credit.

Important, basic and typical other parameters are:

- transaction type

- the time of the transaction (year, month, day, hour,
minute, second)

- the issuing bank of the card

- the receiving bank

- other parameters

C. Other data

POS terminals are often used in commercial
establishments, where work is done in two or even three
shifts. Algorithms for terminals produced by different
companies are relatively similar in terms of scenarios and in
the main scenario the focus is on transaction and
communication so that a POS terminal creates and executes
transactions and meets standards and requirements, not on
processing already implemented transactions, which is often
necessary for the user of the device. On the other hand, the
algorithms of two different POS terminals of different
manufacturing companies or different banks with which
they work (and this determines specific requirements for the
algorithms) use similar ways of processing the data, but in
reality they are different implementations because they are
various APIs and libraries to work with the device. Whit
other words the main algorithms offered for POS terminals
are directly related to those offered by their manufacturer
('Ingenico’, 'Gemalto', etc.) and they can be upgraded, but
without violating the functionality defined by standards
implemented.

III. GENERAL DESCRIPTION OF THE ALGORITHM

Most often, the different versions of software in POS
terminals offer only basic functionalities related to
transactions and the need for additional information about
the customer, when it needs to be carried out, can be usually
implemented using the Cash Register. This algorithm
belongs to the group of so-called ,Shift Report' algorithms,
but it does not require a connection to a cash register to
work. On the other hand, the presence or absence of the
Cash Register does not disrupt the normal operation of the
algorithm in the device, because it does not rely on data
from other devices external to the terminal. The proposed
algorithm affects only a part of the data that the POS
terminals work with only for the purpose of reporting
information and statistics in any upcoming and pre-selected
time interval by the user. It is added to existing software for
working POS terminals, can be upgraded and is oriented to
the needs of the user of the device, only for information
about already completed transactions, as well as the type of
presentation. The scenario of the algorithm and its
subordination is presented on (Figure 1).

Most often, the main algorithms (Figure 1) implementing
the transactions (T1,T2,T3 ...) basically do not care about
what the proposed algorithm processes, because they are
oriented to the banks and not to the client of the POS
terminal. More precisely, these basic algorithms also work
with the data of the proposed algorithm, but usually do not
keep statistics about them. During each individual
transaction (Figure 1), the algorithm reaches and retrieves
data about the card issuer (Visa, MasterCard and so on), the
type of card (debit, credit ...), the type of transaction

(purchase, refund, tip ...), performs the necessary processing
for summation and sorting and after completion of the
current transaction stores the data in an XML file that is
accessible at any time (from the main menu of the POS
terminal and stored in it) for reading/writing.

Main algorithm |

s 0 X TLT2T3c e p ¢
O OnO=OmO =
T 1213 The added algorithm ‘ N
o {ellellello} C <
r X1 p' New Time Period
LEGEND:
S - Start
E - End P,P' - Possible Print
ILI' - Initialization TLTL' - Transaction #1
X, X1 - XML files creation T2,T2' - Transaction #2
N - Possible New Time Perion T3,T3' - Transaction #3

Fig. 1. The scenario of the algorithm and its subordination.

In Figure 1 the duplicate steps in the basic and the added
algorithm represent only one example possible scenario of
operation of a POS terminal, when a time period is set only
once by the user for data processing. There is no restriction
on resetting a new period, setting new periods - regardless
of whether the already set period has started, or it has
started, but the data has not been used yet, etc., with other
words setting a new time period has the highest priority. In
this way, the last created (if any) time period is worked with.
If the time period is not set or the time period has expired,
the algorithm does not process data.

START A B c D
O— —1 — —1 }
END H G F E
O— —1 — —1 }
LEGEND:

A - Initializaton E - Data sorting

B - Access to data container F - Data creation

C - New Stack creation G - Data storing

D - Calculation H - Security confirmation

Fig. 2. Sequence diagram.

All actions affecting the algorithm - parallel processing
of data in the main algorithm of the POS terminal, presetting
a period of time in which it will work, parameters for issuer
and card type, as well as any transaction performed, do not
in any way violate the requirements and recommendations
of EMV, on which the main algorithm works (as well as its
autonomy) of a given POS terminal, regardless of whether
it is mobile, stationary or part of some system. Operations
that implement the algorithm for each transaction (for
example, transaction T1 of Figure 1) are:

- Access to data containers of the main algorithm

- Search and find parameters (time, type and type of card,
amounts, type of transaction, etc.)

- Summing and sorting

- Backing up data results

- Parallel and independent calculations

- Printing of current results at any time - after the
expiration of the time of the set period or during the set
period of time in which it works.

- Set or change for a new time period for work.

PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 2738-8549, 2738-8530, VOL. 74, NO. 2, YEAR 2024

In essence, the algorithm continuously collects data
during the communications of the POS terminal, processes
them and stores the current state in an XML file, and in this
practical implementation the parameters - start and end of
the working time, amounts by type of transaction, time in
which it is completed transaction, amounts by card issuer,
amounts by card type and total amounts, amounts by issuer
and card type and accounting documents by the user of the
POS terminal.

A sequence diagram for an authorized transaction type
(for example T1) is presented in Figure 2.

The algorithm does not necessarily require a set period to
work, but only if there is a set period, it starts automatically,
and a constant check function has been added to the main
algorithm - presence or absence of a set period for ‘Shift
Report’.

In every POS terminal there is software that meets the
requirements and standards of working with bank cards, and
it is usually built on C/C++ - the functionality that is realized
through the algorithm is added to it. For reasons of
portability, the current data (relating only to the algorithm)
are stored and processed in an independent and previously
created file for the purpose - for convenience in XML
format. In case of force majeure (for example, with
simultaneous overlap in the time of power outage and
battery failure), the recovery process for the device does not
reduce its quality level in any way (before the added
algorithm). In these cases, (and for the example of a force
majeure situation) when the power is restored, the saved
information is used fully automatically to reinitialize and
reach the state of the device to the current moment in time,
and the recovery process ends only with the loss of missing
potential transactions in the crash time period, but this is due
to the impossibility of their having been carried out. In fact,
for the complete processing of the data, data is written in a
separate new XML file for each transaction, which is only a
choice of operation of the proposed algorithm, and not
compliance with a restrictive requirement. In this way, the
main algorithm of the POS terminal when adding this
algorithm retains its autonomy, works with its own (usually
XML files) and does not require reworking.

A. Implementation of the algorithm

The proposed algorithm is designed and implemented in
an existing POS terminal software 'Gemalto', in which a
'Shift Report' functionality is added and does not work with
Cash Register, using C++ 11 language version and standard
versions of its libraries (STL), as well as 'Gemalto' company
libraries and APIs for working with the device. An older
version of the C++ language, for example C++98, can also
be used for the implementation of the algorithm. A class
diagram for a basic data type (an object of the CShift class)
is presented in Figure 3: Only the basic data members and
member functions for the CShift class are shown. An object
of this class is used to implement the algorithm - in an
independent parallel process (a thread that is created by
default after the typical initialization procedures typical of
working in POS terminals) in the main algorithm. The
algorithm is realized and implemented with C++/11.

Functions such as GetCurrentTime(), GetData(),

Calculation() perform the more essential operations of the
algorithm (presented in the class diagram for CShift). They
sequentially access the statistics data, and after each
transaction, the necessary update is added in variables and
XML file, which are current for the given time period, sums
by types and types of cards, also by types of transactions.
These calculations are performed in a separate thread
running in parallel to the main algorithm in the POS
terminal. Safe handling of shared resources (of the main
process and the additional algorithm thread) is implemented
with a CRITICAL_SECTION global object from the C++
standard STL library.

After the initial power-up of the device, a procedure for
initializing multiple parameters begins - data related to time,
device parameters and other auxiliary information. This
dataset as information is used by the main algorithms and a
part of it is needed for the proposed algorithm. Objects from
classes are used to protect when working with common
resources, such as data for working with bank transactions.
It is built in such a way that the existing minimum
sufficiency of parameters with which the main algorithm
works in the POS terminal is automatically accessed.
Additional new item is added to the main terminal menu for
possible user interaction. As an added process, in the
process of the normal operation of the terminal, the
algorithm processes the data for reporting and statistics,
which in this solution are:

- name of commercial establishment, address, etc.

- the previously selected time period (yyyy-mm-dd-hh-
MM-ss) (year-month-day-hour-minute-second)

- total number of transactions and total amount for the
time period - total number and total amount for transactions
by card issuer (Visa, MasterCard, Euro Card, Diners, etc.)

- total number and total amount for transactions by card
type (debit, credit)

- type of available currency (current amount at the end of
the given period).

Cshift

private:
TiXmlElement *m_rememberTransactionElement;
public:
cshift(void);
~CShift();
map<string,string> mShiftReport;
TiXmlDocument
TixmlElement

*m_transactionDb;
*m_currentTransactionElement ;

bool SetToZeroAllValues{void);
string GetTransactionData(string);
void SetTransactionData(string itemName,string itemValue);
int16 SerialiseToXml(TiXmlElement *txnSessionCache); // only what the pointer shows
intl6 UnSerialiseFromXml(TiXmlElement *txnSessionCache);
void DelTransactionData(const uint8* itemName);
int1é PrintKindofTransaction(const uint8* str_kind_transaction,
string str_get_count,
string str_get sum);
int16 PrintBalance(const uint8* str kind transaction,
string str_get sum);
string GetcurrentDate();
string GetCurrentTime();
string current_moment;
void WriteCurrentMoment(int start_end);
bool CreateXML(void);
bool bSetToZero;
bool Print(void);
bool Read(void);
bool InitialState(void);

const uint8* NewSum(const uint8* current sum,const uint8* amount);
string NewCount(string current_count);
bool Calculation(string current_suml, string amountl,

string current_sum?, string amount2,

string current_countl,

string current_count2);

Fig. 3. CShift class diagram.

T.PAVLOV, et al.: ALGORITHM FOR PAYMENT WITH POS TERMINALS IN REAL TIME

The algorithm is made up of several steps of calculations
(Figure 1), building on current existing ones, which are
carried out in the process of the normal operation of the POS
terminal, but this process works actually independently and
in parallel to the main process and dynamically these data
only are processed in it. This data is local to the device,
affects reporting and statistics in a summarized and broken
down form, and does not participate in the data transfer from
the POS terminal.

ANYpay Gateway Acquirer Network

Fig. 4. The subordination of the algorithm in an arbitrary transaction, in the
case 'Reversal'.

The user manages the process by requesting a period of
time and requesting data. This is done by adding items to
the main menu of the existing software. A new time period
can be re-claimed and then this triggers a reset if an old
claimed time period exists it is destroyed and new start and
end data validates a new time period. Information can be
requested at any time. The information about the reports is
stored in a separate added XML file and through it
information is accessed in emergency situations, for
example lack of standard power supply - visualization on
the display of the POS terminal or printed out at any time
(Figure 4). The subordination of the algorithm in an
arbitrary transaction, in the case 'Reversal', is given.

To facilitate reporting and statistics, data is processed for
a period of time previously selected by the user for the
transactions according to the following parameters:

- a period of time for a specific commercial object

- number and amount of 'Visa' card transactions

- number and amount of 'MasterCard' transactions

- number and amount of 'Diners' transactions

- number and total amount of 'Purchases'

- number and amount of 'Refund' transactions

- number and amounts of 'Reversal' transactions

- total

IV. CONCLUSION

Although the presented algorithm is implemented on
Gemalto POS terminals, it does not depend on the
manufacturer and type of terminal and can be implemented
in terminals manufactured by other companies. The addition
of the algorithm does not affect the main operation of the
terminal, but adds functionality related to reporting
documents and statistics, and the information it processes
can be upgraded. A separate thread is used for the algorithm,

which runs in parallel to the main process, some existing
archive files are used for the data, and the meantime the
existing software are not affected or disturbed. With the
proposed algorithm, time is saved when reporting
information at arbitrary moments of time and it is performed
according to precise statistics. Access to the information
added for reporting and statistics for a given period of time
can be done at any time after its entry until the time of
setting a new reporting period. The proposed algorithm also
solves issues such as random access to user-required data
for already completed transactions from a POS terminal not
working with a cash register, as well as the speed with which
the presentation of necessary and already processed data is
carried out in arbitrary times chosen by the user. For users
who have POS terminals but no cash registers,
implementing an algorithm that performs comprehensive
accounting analysis without the need for additional
hardware offers several advantages.

Reduced costs: By eliminating the need to purchase and
maintain a separate cash register, consumers can save
money.

Improved flexibility: Without the need for a cash register,
users can more easily adapt their POS terminal setup to meet
their specific needs.

Enhanced reporting: The algorithm can generate detailed
reports in real-time, helping to make informed decisions
about pricing, marketing and other business strategies.

Increased security: Direct processing of data from the
POS terminal reduces the risk of errors and improves
financial data protection measures.

Better customer service: Analytics capabilities allow for
more personalized service, tracking customer preferences
and immediate resolution of payment issues.

Competence: Investing in a modern, innovative algorithm
improves reputation and demonstrates users' commitment to
providing high-quality services. These benefits can lead to
improved efficiency, security, customer service and
competitiveness for consumers who choose to use the
algorithm instead of a traditional cash register.

ACKNOWLEDGMENT

The authors would like to thank the Research and
Development Sector at the Technical University of Sofia for
the financial support.

REFERENCES

[1] EMV2000 Integrated Circuit Card Specification for Payment
Systems Book 1 Application Independent ICC to Terminal Interface
Requirements Version 4.0 December, 2000

[2] EMV2000 Integrated Circuit Card Specification for Payment
Systems Book 2 - Security and Key Management Version 4.0
December, 2000

[3] EMV2000 Integrated Circuit Card Specification for Payment
Systems Book 3 Application Specification Version 4.0 December,
2000

[4] EMV2000 Integrated Circuit Card Specifications for Payment
Systems Book 4 Cardholder, Attendant, and Acquirer Interface
Requirements Version 4.0 December, 2000

[S] SETCo. Secure Electronic Transaction Specification — Books 1-4.
SETCo, 1997.

	I. INTRODUCTION
	II. Information that POS terminals work with
	III. General description of the algorithm
	A. Implementation of the algorithm

	IV. Conclusion
	Acknowledgment
	References

