
PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 2738-8549, 2738-8530 VOL. 74, NO. 2, YEAR 2024

Abstract— We are seeing an ever-increasing amount of real-

time systems. Many of these are embedded in a variety of field
devices requiring significant amounts of computation. Others
are connected to a large number of sensors and actuators. The
characteristic of all of them is that even the available increased
performance of modern processors designed for embedded
applications does not always meet the requirements. In this case,
the switch is to processors with many cores. Real-time control of
computational processes in multicore systems is a task of non-
trivial complexity. The paper presented here discusses some
aspects of the implementation of the RTOS microkernel for
ARM-based multicore control systems.

Index Terms— RTOS, distributed kernel, multicore ARM.

INTRODUCTION
1Today we see a ubiquitous usage of cyber-physical

systems – from washing machine controller to robots, cars,
etc. Most of these systems work real time. These means that,
according to one very useful explanation of Edward Lee, they
have not only to deliver exact result, but in exact time. The
real time world includes very small systems operating on
interrupt-driven manner to huge systems driven by Real-Time
Operating Systems (RTOS). The complexity of cyber-
physical systems increases permanently. They are covering
from multi-axes motion control to real-time image
recognition. These tasks need complex internal software
structure and cooperation of multiple programs working in
pseudoparallel manner.

Many providers of computers-on-chip started to produce
multicore systems to answer the need of high-performance
calculations together with more ordinary process input-output
and control.

Today there are many versions of RTOS, several of them
shown as “industrial standard”. Some examples (but not a full
list) are FreeRTOS [4], µC/OS-III [5], RTX[6]. They are very
flexible, they support both internal and external
communications, multitasking, synchronization,
deterministic priority scheduling. Several of them now have
versions supporting processors with several cores [7],
including some massively-parallel solutions based on ARMs
[8]. The overview of these systems encounters that they

Received: 06.08.2024
Published: 08.09.2024
https://doi.org/10.47978/TUS.2024.74.02.005

Ivan Evgeniev Ivanov , FA, Technical University of Sofia, 1000 Sofia,
Bulgaria (e-mail: iei@tu-sofia.bg).

Alexander Hotmar, FA, Technical University of Sofia, 1000 Sofia,
Bulgaria (e-mail: hotmar@tu-sofia.bg)

control cores as they are individual computers. The similar
control is known from the era of multiprocessor computers.
A single instance of the operating system is attached to a
single processor and manages it. Based on inter-processor
communication synchronization between actions attached to
corresponding processor takes place. As opposite – in case of
many (more than 4) processors, one of them is occupied only
by the operating system and all the others are attached to
some task according to OS decisions. Both these solutions are
well known, stable and implemented many times. The main
backward of these solutions is the fact that they are planned
to operate with variable number of tasks. This means that
some task can quit the system forever, some other can be
included in the execution list and so on. This makes the
system, supposed to be real-time similar to general purpose
system. The problem is in the fact that nobody can predict the
schedulability of such a system in a specific moment of its
work.

Working in the area of hard real-time applications several
year ago a group from the Advanced Systems Laboratory of
the Technical University of Sofia designed and developed a
small predictive real-time kernel named HARTEX (HArd
Real-Time Executive) [1] [2]. Constant execution time of
kernel operations is one of the most important characteristics
of this kernel. This kernel has very limited communication
support. It was designed before wide use of USB and of TCP
for real-time communication. But its main positive
characteristic was very small (few microseconds on the
processors of its era) switching time and as it was said –
constant time.

Most of the cyber-physical systems are embedded in some
machine/apparatus and they have known number of tasks,
moreover – this number of tasks is constant. They do not need
the powerful but cumbersome task management system
following the requirements of variable tasks number and the
procedure for task load/discard.

Following requirements of the industrial applications
developed by our team and need for simple observable kernel
for educational purposes a decision to port the HARTEX
kernel on a ARM core took place. In the previous years we
did some steps on this direction and ported it to a RENESAS
32 bit ARM core. Experiments were very successive but

Martin Minkov, FA, Technical University of Sofia, 1000 Sofia, Bulgaria

(e-mail: mminkov@tu-sofia.bg)
Vesselin Evgueniev Gueorguiev, FCST, Technical University of Sofia,

1000 Sofia, Bulgaria (e-mail: veg@tu-sofia.bg).
Desislava Georgieva, NBU, New Bulgarian University, Sofia, Bulgaria

(e-mail: author@ie-bas.org dvelcheva@nbu.bg).

Distributed RTOS Microkernel for Multicore
ARM-based Control Systems

Ivan Evgeniev Ivanov, Alexander Hotmar, Martin Minkov, Vesselin Evgueniev Gueorguiev
Desislava Georgieva

I. IVANOV, et al.: DISTRIBUTED RTOS MICROKERNEL FOR MULTICORE ARM-BASED CONTROL SYSTEMS

changes in scientific environment stopped next development.
The most important for that solution was the decision to run
all programs (system and users) on the same level (supervisor
mode).

The development of computer technology, the increase in
processor performance, the widespread use of real-time
systems and the features of the well-known RT OS
necessitated a return to the capabilities embedded in
HARTEX. One of the main challenges that were addressed to
some extent and which will be discussed further below is the
possibility of running an RT OS process on any available
processor if there are no specific hardware constraints.

 HARTEX – BASIC CHARACTERISTICS
Before starting with the evolution of HARTEX, here will

be presented general characteristics of this RT kernel.

The HARTEX kernel has the following task state diagram
(see Figure 1). The HARTEX kernel operates its task on
interruptible manner. That is why it has the five main statuses.
The first four of them are:

• active – the task is occupying CPU
• passive – the task is inactive and does not request

any CPU time
• ready - the task is ready for activation and waits

for CPU time
• preempted – the task has been on an active state

but CPU was attached to a more privileged task
and execution is suspended for a while

Additionally, there is one more task status – blocked task.
Blocked is a task which misses some resource and cannot

continue its work, e.g. task, waiting on a semaphore.
Basic characteristic of HARTEX is its task registering and

scheduling mechanism. Usually, task’s status is written in the
corresponding Task Control Block (TCB). In this case task
selection need to go through the TCBs to select the task for
some system action (e.g. CPU occupation or similar). To
avoid TCB search in HARTEX is implemented other
mechanism – the Boolean vector processing. The idea to use
Boolean vectors for task status registration is based on the
fact that usual cyber-physical system embedded in some
device has – 1) limited; 2) unchangeable number of tasks.
Additionally, this number is not very big. Here “big” means
not more that 20-30 task.

HARTEX uses fixed tasks priority mechanism: every
single task has a unique priority. To register 32 tasks, we need
32-bit Boolean vector. Today’s ARM processors mainly offer
internal 32-bit architecture, so tasks status words will fit
processor registers. In case of really big number of tasks (up

to 64) two registers will be needed.
The fast process managing is based on a distributed task

status hold in the following Boolean vectors:
• active task vector (ATV)
• pre-empted tasks vector (PTV)
• ready task vector (RTV)
• blocked tasks vector (BTV).

The number of the bit in the Boolean vector represents the
task priority, e.g. bit 1 means priority level 1. The bigger bit
number means higher priority.

All tasks ready for execution are marked in RTV. All pre-
empted task are marked in PTV. If a task is blocked this is
marked in BTV. In the ATV in marked the task currently
occupying CPU. This vector status words make possible to
select the active task after fixed number of Boolean
operations over the status vectors.

 Some previous versions of HARTEX were built on dual
priority mechanism where some “soft real-time” tasks have
fixed priorities but some other “hard real-time” tasks have
normal and high (promoted) priorities.

On Figure 2 are presented tasks status Boolean vectors.

One of the main characteristics of HARTEX is the fact that
the kernel and tasks share one address space. Depending on
processor some versions of HARTEX use system and user
priority for accessing memory regions and program resources
but some other do not. Every task has its own stack space.
Every task has its own list of systems resources used by it.
Here resource is everything sharable between more than one
task and/or having its own context. We will not discuss here
resource access discipline because this is out of scope of this
paper.

HARTEX MODIFICATIONS FOR MULTI-CORE
IMPLEMENTATION

As it was discussed before there are several ways to
implement OS for multicore processor. The discussed here
implementation of HARTEX is oriented to the STM32H745
single chip dual core controller. The motivation to use this
system has several elements but the main one is – it is Cortex-
based fully real-time oriented.

According to the original documentation [3] this system
has two processor cores – one Cortex-M4 and one Cortex-
M7. They share one and the same address space. There is one
exclusion – part of this space is accessible only for the M4
core and some other part – for M7 core. Here is used the word
“core” but it is a “processor” itself. In first assumption we
have the so-called symmetrical system architecture (see
Figure 3). here we have the so-called heterogeneous
architecture. This is because processors are not from one type.

Fig 1. Task status diagram of HARTEX kernel

active

ready

passive

preemtedblocked

Fig. 2. Task status Boolean vectors

Bit # N-1 N-2 N-3 N-4 N-5 N-6 N-7 ….. 1 0

1

1 1

1 1 1

1 1

1

ATV

PTV

RTV

BTV

PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 2738-8549, 2738-8530 VOL. 74, NO. 2, YEAR 2024

If they were identical, we will have “homogeneous”
architecture.

Because all cores have access to the memory, this enables
implementation of OS kernel possible to dispatch tasks
between cores. To have this dispatching possible the first
requirement is to have possibility to execute binaries

compiled for every core on the other core. This requirement
is covered only on 50%. Binaries for M4 (according to ARM
documentation) can be executed on M7 core. The other is not
possible in general.

More detailed logical structure of the STM32H745 is
presented on Figure 4. In details – local memories are part of
the global address space but they are accessible only for the
respective core. This structure enables implementation of
specific customizable applications but they are not prat of the
OS kernel and will not be discussed in this paper.

Experiments, testing the ability to run Cortex-M4 codes on
Cortex-M7 core were implemented and they confirmed this
assumption. Experiments follow the very important note [9].
For multicore implementation HARTEX is redesigned to
have two stubs – one for each core. Every task is compiled
for the core it has to use. Every task is marked for which core
it is compiled.

• This allows tasks to be distinguished and
redirected to a core on which they can be
executed.

• The system scheduler and all other OS elements
are compiled for the smaller core - M4.

The main difference from the single-core version of
HARTEX is that now there are two active task words (ATV)

- one for each core. In this situation Figure 2 is converted the
latter way (Figure 5). For each core there is a word for the
active task. Due to the heterogeneous structure of the system,
it is necessary to know which task on which core can be
executed. Basically, this is described in the TCB already
when configuring the system information for each task. To
maintain system performance, an additional status word
"M7_only" is introduced. it is formed once at system startup
and indicates which tasks can only be executed on the M7
core.

The OS kernel code is a single instance. It is used by both
cores in mutually exclusive mode. The hardware facilities of
the STM32H745 allow the implementation of such code.
Actually, the kernel calls happen from the stubs from each
core and the mutual exclusion is performed in this part of the
code. The kernel works with a single copy of the tasks state
Boolean vectors.

The most significant in terms of execution is the moment
of the start (or continuation) of a particular task. Tasks
compiled for the M7 core are only executable on it and in that
sense they are simpler for start/continuation management.

More problematic is the redirection of a task compiled for
an M4 core onto M7. Technically, redirection of the code is
not very difficult. The OS knows starting address of the task.
It prepares the effective processor’s context and starts the task
calling on its entry (TaskMAIN) function. The crucial point
is that due to the difference in the internal structure, the
context of the two cores is different and for that, such a task
can after running on an M7 core only be completed there. This
requires temporarily assigning the "M7_only" property to
such a task. When an M4 task is started on an M7 core, this
task is also marked in the Boolean vector "M7_only". Upon
its completion, the OS kernel checks the TCB of that task (of
every task generally) and if it is not marked for execution on
M7 only, the tag in "M7_only" is removed. As a conclusion
for this part, we can say - if a task for M4 is preempted, its
execution continues on the core it was working on before the
preemption. This allows consistent restore of the processor’s
context.

LOW LEVEL ADAPTATION FOR MULTICORE EXECUTION
To avoid race conditions in OS execution, as it was pointed

to before, the OS code is a single instance. It is not re-entrant
in general. This is normal situation because OS resources are
unique and does not provide concurrent (and this context
really parallel) access. The serialisation of the OS calls is
based on the embedded in ARMs event/signal mechanism

Fig. 3. Simplified logical structure of STM32H745

CPU M4 CPU M7

MEMORY

System bus

Fig. 4. Detailed logical structure of STM32H745

CPU M4 CPU M7

Global
MEMORY

System bus

Local
MEMORY

Local
MEMORY

Fig. 5. Task status Boolean vectors for multicore

t # N-1 N-2 N-3 N-4 N-5 N-6 N-7 ….. 1 0

1

1 1

1 1 1

1 1

1

ATV_М4

PTV

RTV

BTV

ATV_М71

1 М7_only1 1

1

I. IVANOV, et al.: DISTRIBUTED RTOS MICROKERNEL FOR MULTICORE ARM-BASED CONTROL SYSTEMS

(read-test-modify-write) instructions. This allows system
calls to be serialized no matter which core and which task
they come from. Understanding the core type, making system
call is based on the SWI (software interrupt) instruction
mechanism. Each core has its own interrupt table and thus
corresponding to the core ISR (interrupt service routine)
functions are attached to it. The ARM documentation makes
a difference between interrupts and events, but in this context,
we will not get in details here.

The system API has independent subsystem that can be
accesses simultaneously. This has been taken into account
when creating the serialization procedures for system calls.
They are separated according to their mutual dependencies.

As it was described before, all system code and user tasks
are executed in supervisor more. This is dangerous in general,
but usual implementations of real-time operated cyber-
physical system differ much from general purpose programs
and this risk is acceptable. This decision makes possible to
avoid some additional loses of context saving coming from
mode switching. The process of interrupt handling in ARMs
is described in ARM®v7-M Architecture Reference Manual
[10] and in a number of other internet and printed materials.

CONCLUSION AND FUTURE WORK
The presented here HARTEX real-time microkernel is

oriented to application having relatively low number of tasks
(20-30 or less) requiring fast and predictable task switching.
It operated on fixed priority scheduling discipline. Multicore
implementation enables task management with using all
available processor resources. This increases the computer
performance by increase of cores utilization.

The other use of this multi-core hard real-time kernel is for
educational purposes. It is small size, observable and easy for
modifications and use. Now it is oriented for students in
higher Batchelor or Master degree courses oriented to cyber-
physical systems and underlying real-time control systems.

The achieved results in this research and implementation
include – designing of extended version of the OS kernel,
enabling activation tasks on both CPU cores. A singleton
kernel code controls both cores. It is executed in mutual
exclusion mode on the core, making system call. Thus,
system calls are executed in parallel with the user tasks

occupying different cores.
Future work on this research is full implementation of

HARTEX system onto the dual core computer. The very
important part is preparation of adaptation of schedulability
analysis theory for multicore systems with migrating between
cores task and corresponding to it available HARTEX
schedulability analyzes tools [11].

ACKNOWLEDGEMENT
This research is partially supported by the TU Sofia project 242ПД0023-

08/2024.

REFERENCES
[1] Angelov C. K. and I. E. Ivanov (1999). High-Performance Task

Management for Hard Real-Time Systems. Proc. of the Technical
University of Sofia, Vol. 50-2, pp. 190-197.

[2] C. K. Angelov, I. E. Ivanov, A. Burns, HARTEX—a safe real-time
kernel for distributed computer control systems, Software Practice and
Experience 32(3)., pp. 209-232, DOI:10.1002/spe.435

[3] ST Microelectronics, RM0399 Reference manual,
https://www.st.com/resource/en/reference_manual/rm0399-
stm32h745755-and-stm32h747757-advanced-armbased-32bit-mcus-
stmicroelectronics.pdf

[4] Mastering the FreeRTOS™ Real Time Kernel,
https://www.freertos.org/Documentation/Mastering-the-FreeRTOS-
Real-Time-Kernel.v1.0.pdf

[5] µC/OS-III , https://docs.silabs.com/micrium/latest/micrium-general-
concepts/

[6] RTX Real-Time Operating System, Https://developer.arm.com/Tools
and Software/Kei MDK/RTX5 RTOS

[7] Symmetric Multiprocessing (SMP) with FreeRTOS,
https://www.freertos.org/symmetric-multiprocessing-
introduction.html

[8] A new approach to software is needed to unleash the full power of
multicore processing, https://community.arm.com/arm-community-
blogs/b/high-performance-computing-blog/posts/new-approach-to-
software-full-power-cluster-processing

[9] J. Yiu and R. Boys, Migrating Application Code from ARM Cortex-
M4 to Cortex-M7 Processors,
www.keil.com/appnotes/docs/apnt_270.asp

[10] ARM®v7-M Architecture Reference Manual,
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m7

[11] Angelov C. K., I. E. Ivanov and I. J. Haratcherev. Schedulability
Analysis of Real-Time Systems under Dual-Priority Scheduling, Proc.
of the International Conference “Automation & Informatics’2000”,
Oct. 2000, Sofia, Bulgaria, pp. 20-23, ISBN 954-9641-19-8

	INTRODUCTION
	HARTEX – basic characteristics
	HARTEX modifications for multi-core implementation
	Low level adaptation for multicore execution
	Conclusion and Future work
	Acknowledgement
	References

