
PROCEEDINGS OF THE TECHNICAL UNIVERSITY OF SOFIA, ISSN: 2738-8549, 2738-8530 VOL. 74, NO. 2, YEAR 2024 
 
 

  
Abstract— We are seeing an ever-increasing amount of real-

time systems. Many of these are embedded in a variety of field 
devices requiring significant amounts of computation. Others 
are connected to a large number of sensors and actuators. The 
characteristic of all of them is that even the available increased 
performance of modern processors designed for embedded 
applications does not always meet the requirements. In this case, 
the switch is to processors with many cores. Real-time control of 
computational processes in multicore systems is a task of non-
trivial complexity. The paper presented here discusses some 
aspects of the implementation of the RTOS microkernel for 
ARM-based multicore control systems. 
 

Index Terms— RTOS, distributed kernel, multicore ARM.  
 

INTRODUCTION 
1Today we see a ubiquitous usage of cyber-physical 

systems – from washing machine controller to robots, cars, 
etc. Most of these systems work real time. These means that, 
according to one very useful explanation of Edward Lee, they 
have not only to deliver exact result, but in exact time. The 
real time world includes very small systems operating on 
interrupt-driven manner to huge systems driven by Real-Time 
Operating Systems (RTOS). The complexity of cyber-
physical systems increases permanently. They are covering 
from multi-axes motion control to real-time image 
recognition. These tasks need complex internal software 
structure and cooperation of multiple programs working in 
pseudoparallel manner. 

Many providers of computers-on-chip started to produce 
multicore systems to answer the need of high-performance 
calculations together with more ordinary process input-output 
and control.  

Today there are many versions of RTOS, several of them 
shown as “industrial standard”. Some examples (but not a full 
list) are FreeRTOS [4], µC/OS-III [5], RTX[6]. They are very 
flexible, they support both internal and external 
communications, multitasking, synchronization, 
deterministic priority scheduling. Several of them now have 
versions supporting processors with several cores [7], 
including some massively-parallel solutions based on ARMs 
[8]. The overview of these systems encounters that they 
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control cores as they are individual computers. The similar 
control is known from the era of multiprocessor computers. 
A single instance of the operating system is attached to a 
single processor and manages it. Based on inter-processor 
communication synchronization between actions attached to 
corresponding processor takes place. As opposite – in case of 
many (more than 4) processors, one of them is occupied only 
by the operating system and all the others are attached to 
some task according to OS decisions. Both these solutions are 
well known, stable and implemented many times. The main 
backward of these solutions is the fact that they are planned 
to operate with variable number of tasks. This means that 
some task can quit the system forever, some other can be 
included in the execution list and so on. This makes the 
system, supposed to be real-time similar to general purpose 
system. The problem is in the fact that nobody can predict the 
schedulability of such a system in a specific moment of its 
work.  

Working in the area of hard real-time applications several 
year ago a group from the Advanced Systems Laboratory of 
the Technical University of Sofia designed and developed a 
small predictive real-time kernel named HARTEX (HArd 
Real-Time Executive) [1] [2]. Constant execution time of 
kernel operations is one of the most important characteristics 
of this kernel. This kernel has very limited communication 
support. It was designed before wide use of USB and of TCP 
for real-time communication. But its main positive 
characteristic was very small (few microseconds on the 
processors of its era) switching time and as it was said – 
constant time.  

Most of the cyber-physical systems are embedded in some 
machine/apparatus and they have known number of tasks, 
moreover – this number of tasks is constant. They do not need 
the powerful but cumbersome task management system 
following the requirements of variable tasks number and the 
procedure for task load/discard.  

Following requirements of the industrial applications 
developed by our team and need for simple observable kernel 
for educational purposes a decision to port the HARTEX 
kernel on a ARM core took place. In the previous years we 
did some steps on this direction and ported it to a RENESAS 
32 bit ARM core. Experiments were very successive but 
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changes in scientific environment stopped next development. 
The most important for that solution was the decision to run 
all programs (system and users) on the same level (supervisor 
mode).  

The development of computer technology, the increase in 
processor performance, the widespread use of real-time 
systems and the features of the well-known RT OS 
necessitated a return to the capabilities embedded in 
HARTEX. One of the main challenges that were addressed to 
some extent and which will be discussed further below is the 
possibility of running an RT OS process on any available 
processor if there are no specific hardware constraints. 

 HARTEX – BASIC CHARACTERISTICS 
Before starting with the evolution of HARTEX, here will 

be presented general characteristics of this RT kernel.  

The HARTEX kernel has the following task state diagram 
(see Figure 1). The HARTEX kernel operates its task on 
interruptible manner. That is why it has the five main statuses. 
The first four of them are:  

• active – the task is occupying CPU 
• passive – the task is inactive and does not request 

any CPU time 
• ready - the task is ready for activation and waits 

for CPU time 
• preempted – the task has been on an active state 

but CPU was attached to a more privileged task 
and execution is suspended for a while 

Additionally, there is one more task status – blocked task.  
Blocked is a task which misses some resource and cannot 

continue its work, e.g. task, waiting on a semaphore.  
Basic characteristic of HARTEX is its task registering and 

scheduling mechanism. Usually, task’s status is written in the 
corresponding Task Control Block (TCB). In this case task 
selection need to go through the TCBs to select the task for 
some system action (e.g. CPU occupation or similar). To 
avoid TCB search in HARTEX is implemented other 
mechanism – the Boolean vector processing. The idea to use 
Boolean vectors for task status registration is based on the 
fact that usual cyber-physical system embedded in some 
device has – 1) limited; 2) unchangeable number of tasks. 
Additionally, this number is not very big. Here “big” means 
not more that 20-30 task.  

HARTEX uses fixed tasks priority mechanism: every 
single task has a unique priority. To register 32 tasks, we need 
32-bit Boolean vector. Today’s ARM processors mainly offer 
internal 32-bit architecture, so tasks status words will fit 
processor registers. In case of really big number of tasks (up 

to 64) two registers will be needed. 
The fast process managing is based on a distributed task 

status hold in the following Boolean vectors: 
• active task vector (ATV) 
• pre-empted tasks vector (PTV) 
• ready task vector (RTV) 
• blocked tasks vector (BTV). 

The number of the bit in the Boolean vector represents the 
task priority, e.g. bit 1 means priority level 1. The bigger bit 
number means higher priority.  

All tasks ready for execution are marked in RTV. All pre-
empted task are marked in PTV. If a task is blocked this is 
marked in BTV. In the ATV in marked the task currently 
occupying CPU. This vector status words make possible to 
select the active task after fixed number of Boolean 
operations over the status vectors.  

 Some previous versions of HARTEX were built on dual 
priority mechanism where some “soft real-time” tasks have 
fixed priorities but some other “hard real-time” tasks have 
normal and high (promoted) priorities. 

On Figure 2 are presented tasks status Boolean vectors. 

One of the main characteristics of HARTEX is the fact that 
the kernel and tasks share one address space. Depending on 
processor some versions of HARTEX use system and user 
priority for accessing memory regions and program resources 
but some other do not. Every task has its own stack space. 
Every task has its own list of systems resources used by it. 
Here resource is everything sharable between more than one 
task and/or having its own context. We will not discuss here 
resource access discipline because this is out of scope of this 
paper. 

HARTEX MODIFICATIONS FOR MULTI-CORE 
IMPLEMENTATION 

As it was discussed before there are several ways to 
implement OS for multicore processor. The discussed here 
implementation of HARTEX is oriented to the STM32H745 
single chip dual core controller. The motivation to use this 
system has several elements but the main one is – it is Cortex-
based fully real-time oriented.  

According to the original documentation [3] this system 
has two processor cores – one Cortex-M4 and one Cortex-
M7. They share one and the same address space. There is one 
exclusion – part of this space is accessible only for the M4 
core and some other part – for M7 core. Here is used the word 
“core” but it is a “processor” itself. In first assumption we 
have the so-called symmetrical system architecture (see 
Figure 3).  here we have the so-called heterogeneous 
architecture. This is because processors are not from one type. 

 
Fig 1. Task status diagram of HARTEX kernel 

 

active

ready

passive

preemtedblocked

 
Fig. 2. Task status Boolean vectors 
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If they were identical, we will have “homogeneous” 
architecture.  

Because all cores have access to the memory, this enables 
implementation of OS kernel possible to dispatch tasks 
between cores. To have this dispatching possible the first 
requirement is to have possibility to execute binaries 

compiled for every core on the other core. This requirement 
is covered only on 50%. Binaries for M4 (according to ARM 
documentation) can be executed on M7 core. The other is not 
possible in general.  

More detailed logical structure of the STM32H745 is 
presented on Figure 4. In details – local memories are part of 
the global address space but they are accessible only for the 
respective core. This structure enables implementation of 
specific customizable applications but they are not prat of the 
OS kernel and will not be discussed in this paper. 

Experiments, testing the ability to run Cortex-M4 codes on 
Cortex-M7 core were implemented and they confirmed this 
assumption. Experiments follow the very important note [9]. 
For multicore implementation HARTEX is redesigned to 
have two stubs – one for each core. Every task is compiled 
for the core it has to use. Every task is marked for which core 
it is compiled. 

• This allows tasks to be distinguished and 
redirected to a core on which they can be 
executed.  

• The system scheduler and all other OS elements 
are compiled for the smaller core - M4. 

The main difference from the single-core version of 
HARTEX is that now there are two active task words (ATV) 

- one for each core. In this situation Figure 2 is converted the 
latter way (Figure 5). For each core there is a word for the 
active task. Due to the heterogeneous structure of the system, 
it is necessary to know which task on which core can be 
executed. Basically, this is described in the TCB already 
when configuring the system information for each task. To 
maintain system performance, an additional status word 
"M7_only" is introduced. it is formed once at system startup 
and indicates which tasks can only be executed on the M7 
core.  

The OS kernel code is a single instance. It is used by both 
cores in mutually exclusive mode. The hardware facilities of 
the STM32H745 allow the implementation of such code. 
Actually, the kernel calls happen from the stubs from each 
core and the mutual exclusion is performed in this part of the 
code. The kernel works with a single copy of the tasks state 
Boolean vectors. 

The most significant in terms of execution is the moment 
of the start (or continuation) of a particular task. Tasks 
compiled for the M7 core are only executable on it and in that 
sense they are simpler for start/continuation management. 

More problematic is the redirection of a task compiled for 
an M4 core onto M7. Technically, redirection of the code is 
not very difficult. The OS knows starting address of the task. 
It prepares the effective processor’s context and starts the task 
calling on its entry (TaskMAIN) function. The crucial point 
is that due to the difference in the internal structure, the 
context of the two cores is different and for that, such a task 
can after running on an M7 core only be completed there. This 
requires temporarily assigning the "M7_only" property to 
such a task. When an M4 task is started on an M7 core, this 
task is also marked in the Boolean vector "M7_only". Upon 
its completion, the OS kernel checks the TCB of that task (of 
every task generally) and if it is not marked for execution on 
M7 only, the tag in "M7_only" is removed. As a conclusion 
for this part, we can say - if a task for M4 is preempted, its 
execution continues on the core it was working on before the 
preemption. This allows consistent restore of the processor’s 
context. 

LOW LEVEL ADAPTATION FOR MULTICORE EXECUTION 
To avoid race conditions in OS execution, as it was pointed 

to before, the OS code is a single instance. It is not re-entrant 
in general. This is normal situation because OS resources are 
unique and does not provide concurrent (and this context 
really parallel) access.  The serialisation of the OS calls is 
based on the embedded in ARMs event/signal mechanism 

 
Fig. 3. Simplified logical structure of STM32H745 
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Fig. 5. Task status Boolean vectors for multicore 
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(read-test-modify-write) instructions. This allows system 
calls to be serialized no matter which core and which task 
they come from. Understanding the core type, making system 
call is based on the SWI (software interrupt) instruction 
mechanism. Each core has its own interrupt table and thus 
corresponding to the core ISR (interrupt service routine) 
functions are attached to it. The ARM documentation makes 
a difference between interrupts and events, but in this context, 
we will not get in details here.  

The system API has independent subsystem that can be 
accesses simultaneously. This has been taken into account 
when creating the serialization procedures for system calls. 
They are separated according to their mutual dependencies. 

As it was described before, all system code and user tasks 
are executed in supervisor more. This is dangerous in general, 
but usual implementations of real-time operated cyber-
physical system differ much from general purpose programs 
and this risk is acceptable. This decision makes possible to 
avoid some additional loses of context saving coming from 
mode switching. The process of interrupt handling in ARMs 
is described in ARM®v7-M Architecture Reference Manual 
[10] and in a number of other internet and printed materials.  

CONCLUSION AND FUTURE WORK 
The presented here HARTEX real-time microkernel is 

oriented to application having relatively low number of tasks 
(20-30 or less) requiring fast and predictable task switching. 
It operated on fixed priority scheduling discipline. Multicore 
implementation enables task management with using all 
available processor resources. This increases the computer 
performance by increase of cores utilization.  

The other use of this multi-core hard real-time kernel is for 
educational purposes. It is small size, observable and easy for 
modifications and use. Now it is oriented for students in 
higher Batchelor or Master degree courses oriented to cyber-
physical systems and underlying real-time control systems. 

The achieved results in this research and implementation 
include – designing of extended version of the OS kernel, 
enabling activation tasks on both CPU cores. A singleton 
kernel code controls both cores. It is executed in mutual 
exclusion mode on the core, making system call. Thus, 
system calls are executed in parallel with the user tasks 

occupying different cores.  
Future work on this research is full implementation of 

HARTEX system onto the dual core computer. The very 
important part is preparation of adaptation of schedulability 
analysis theory for multicore systems with migrating between 
cores task and corresponding to it available HARTEX 
schedulability analyzes tools [11].  
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