
Vesselin Nenkov, J. Ivanov, As. Velchev, St. Stefanov









Inscribed quadrilateral in simple constructions. 
 

Task 1. ABC  is an isosceles triangle of base AB . The 

intersection points of the chords CD  and CE  of its’ circum-

circle with it’s side AB  are M  and N  respectively. Prove 

that the quadrilateral EDMN  is inscribed. 

 

Solution. (Fig.1) As the arcs AC = BC, then  

the arcs DAC = AD + CB, hence <CMN = <CED;  

analogically <CNM = <CDE. Then the opposite angles of 

EDMN  make sums of 180˚. 
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Task 2. The bisectors of the interior angles of the quadrilateral 

ABCD intersect at the points K,L,M and N, as it is shown in 

Fig.2. Prove, that the quadrilateral KLMN is inscribed. 

 

 

 

 

 

Solution2.  
1

180
2

AKB       ,  
1

180
2

DMC       .  

Hence 

1 1
360 ( ) 360 360 180

2 2
LKN LMN                     

and KLMN is inscribed. 

Fig. 2 
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Fig. 3 

S

O4

O3

O2

O1

D

B

C

А

Task 3. Each of the four given circles is tangent to two other, as it is shown in Fig. 3. 

Prove that the quadrilateral with vertices the common points 

, ,A B C  and D  of the couples of circles is inscribed. 

 

Solution 3. S  - point on the mutual inner tangent of the circles 

of centers 1O  and 2O  (Fig. 3).  

DAS  and BAS  as peripheral angles: 

1 2

1 1 1
( )

2 2 2
DAB DAS BAS DA BA DO A BO A        

from the other two circles: 

 4 3

1

2
DCB DO C BO C    

Adding the two equalities, we obtain: 

   1 2 4 3

1 1 1
360 180

2 2 2
DAB DCB DO A BO A DO C BO C             

Hence ABCD is inscribed. 



Task 4. The sides AC and BC of the triangle ABC are tangent to it’s in-circle at the points D 

and F respectively. The bisectors of the internal angles A and B intersect the line DF at the 

points N and M respectively. Prove that the points A, B, M and N lie on the same circle. 

Solution 4. CFD  is external for BFM  and 

BMF CFD FBM  .  

As 
2

FBM



 

and CFD  is internal for the 

isosceles DFC , therefore 90
2

CFD


  . Hence 

90
2 2 2

BMN BMF BAN
   

      
 

  

and BN is seen at the same angle from M and A, hence 

A, B, M and N are concyclic. 
Fig. 4 



Task 5. N is point on the side AB of the quadrilateral ABCD, for which AN AD  and 

BN BC . The bisectors of the angles ADC  and BCD  intersect at point M. Prove, that the 

points C, D, M and N lie on the same circle.  

Solution 5. DM and CM are bisectors, NDA и NCB  are isosceles, then:  

     
1 1 1

180 180 360
2 2 2

DMC ADC BCD DAB ABC DAB ABC               

1
90

2
AND DАB    , 

1
90

2
BNC ABC     

and 

   
1

180
2

DNC AND BNC DAB ABC       ,

and then DMC DNC , and C, D, M, N are concyclic. 
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Task 6.  The bisector of the acute angle A  of the paralellogram ABCD  crosses its side CD  at 

point L and the continuation of BC at point K. Let O be the circum-center of LCK . Prove, that 

the points D, B, C and O are cocircular (Spring mathematics tournament, Kazanlak, 1993). 

Solution 6. AK is bisector (Fig. 6), AB CD , AD BC , then 

 CLK BAL LAD KAD AKC CKL     .  

Hence CL CK  and analogically AD DL . Then 

DC DL LC AD CK BC CK BK       , i.e. DC BK .  

O  is the circum-center of LCK , then OL OC OK  . From 

this and LC CK  we obtain LCO CKO .  

Therefore LCO OCK CKO  , i.e. DCO BKO , then 

DCO BKO ; then CBO CDO .  

CO  is seen at the same angle from B  and D , which lie in the 

same semiplane. Therefore D, B, C, O  are cocircular. Fig. 6 
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2. Application of the properties of the inscribed quadrilateral in solving problems. 

 

Interesting is when one needs to notice a cyclic tetragon and use its properties. Typical 

examples: proofs of two popular properties of triangle’s orthocenter: 

 

Task 7. Let ABC be a triangle with orthocenter H. Prove that the points, symmetric to H with 

respect to:  

    a) triangles’s sides;  

    b) the mid-points of the sides:  

lie on the triangle’s circum-circle. 



Solution 7. Let ABC be an acute triangle and: 

a) L be symmetric of H with respect to AC (Fig .7). Then CLM CHM  and 

CHM CAB  (acute angles, perpendicular arms). Then CLM CAB ,  i.e. BC  

is seen at equal angles from A and L, which lie at the same side of BC, and the points A, 

B, C, L lie on the circumcircle of ABC ; 

b) 'A  - diametrically opposed of A on the circum-circle of ABC  (Fig. 8). We’ll prove 

'А  is symmetric of H with respect to midpoint 1A  of BC. 

Angles 'ABA , 'ACA  subtend by diameter 'АА => they 

are right, 'A B AB  and as CH AB  (H is orthocenter 

of ABC ), then 'A B CH .  

Analogically 'A C BH , then 'BA CH  is a parallelogram, 

its diagonals BC  and 'HA  has common midpoint 1A ,  

then 1 1'A A HA , which proves the statement. 

Fig. 7 
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Task 8. The triangles ,ABR BCP , CAQ  are 

constructed on the sides ,AB BC  and CA  of the 

triangle ABC , out of it. If the angles ,ARB BPC , 

CQA  make sum 180 , prove that the circumcircles of 

,ABR BCP , CAQ  have common point. 

Solution 8. Let F  be the second mutual point of the 

circumcircles of the triangles BCP  and CAQ  (Fig. 9). 

Then 180BFC BPC   and 180CFA AQC  , 

and therefore 

ARBAQCBPC

CFABFCAFB





180

)(360
  

Hence point F  lies on the circumcircle of ABR . 

Fig. 9 
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Task 9. (Mikel’s theorem) A, B and C are arbitrary 

points on the sides QR, PR, PQ of the triangle PQR. 

Prove that the circumcircles of the triangles ABR, BCP, 

CAQ have common point. 

 

Solution 9. The sum of the angles ARB, BPC and CQA 

is 180  as the triangles ABR, BCP, CAQ are on the 

sides AB, BC, CA of ABC, out of it. According to Task 

8 the circumcirclses of the triangles ABR, BCP, CAQ 

have a common point. 

Fig. 10 
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Task 10. The quadrilateral ABCD is inscribed and its diagonal 

AC is its diameter. Prove that the projections of every two 

opposite sides on the diagonal BD are equal. 

 

Solution 10. 1A  and 1C  - projections of A and C on BD 

(Fig.11). It is sufficient to prove that 1 1BA DC .  

O1 - projection of circumcentre O. 

O is midpoint of AC; O1 - midpoint of 1 1АC , then 1 1 1 1O A OC . 

OO1 lies on diameter and it is perpendicular of BD therefore 

OO1 halves BD. From 1 1 1 1O A OC  and 1 1ОB OD  follows 

1 1BA DC . 

 

Fig. 11 
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Here we prove that four points are concyclic, proving first and using that two quadrilaterals are 

inscribed. 

Task 11. ABC is a right-angled triangle with acute angles BAC   and ABC  , and 

incenter J. The point D in <ACB is such, that 

90
2

ADC


   and 90
2

BDC


  . The 

bisectors 1l  and 2l  of the catheti BC and AC cross 

the lines AD and BD respectively at the points P 

and Q. Prove that P, D, Q and J are conciclic 

points. 

 

Solution 11. 1l  and 2l  cut AB at midpoint Е  and 

EQ BC , EP AC  (Fig. 12). Wi first prove J, E, 

Q and B are concyclic. 

 Fig. 12 
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Let EJB  , EQD  .  

As 135AJB   , then sin 2 2 sin(135 )EJB EJAJE JB S S JE JA            , then  

2

2

sinsin(135 )

sin sin

JB

JA










  , i.e. 

(1) 2

2

sin sin(135 )

sin sin










   

As EQ BC  (from above), we obtain: 

(2) DBC DQE     

We easy calculate 135ADB ADC BDC    .  

From ADBC: 360 90 135 135DAC DBC       , i.e. 

(3) 135 DAC    

 

Sine rule  for ΔDBC provides sin sin sin(90 ) cos
2 2

CD CD CD
DBC BDC

BC BC BC

 
         

Fig. 12 
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Analogically sin cos
2

CD
DAC

AC


  ; dividing these two 

equalities jointly, we obtain:  

(1) 2

2

sin cos

sin cos

DAC BC

DBC AC




    

After consequtive applying of (3), (2), (4), (1) we find 

2

2

2 2

2 2

cossin(135 ) sin

sin sin cos

cos sinsin sin(135 )

sin cos sin sin

DAC BC

DBC AC





 







 

 


   


   

 

After simple transfornations we get cot cotg g  , i.e. 

  , i.e. EQD EJB    . Therefore JEQB  is 

cyclic. JEPA is cyclic too (analog.) and 180PJQ PJE QJE PAE QBE PDQ       

i.e. 180PJQ PDQ   , i.e. the points , ,P D Q , J  are concyclic. 

 

Fig. 12 
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1.3.   Some popular and interesting properties of the cyclic tetragon. 

Property 1. The bisectors of the angles, formed by the opposite sides of a cyclic teragon, are parallel to the 

bisectors of the angles, between its’diagonals. 

Proof 1: ABCD - cyclic teragon; opposite sides BC ∩ AD = E (Fig.13). Let bisector of CED  cuts the 

circum-circle of ABCD = L ; M  (Fig .13), PQ is the line trough S║LM. Enough to show SQ is bisector of 

CSD . As the arcs PL = QM and MED CEM , we obtain 

consecutively: 

     

     

   

1 1 1

2 2 2

1 1
2 2

2 2

1 1

2 2

CSQ AP CQ AL LP CM QM AL CM

MD MED BL CEM MD BL

MD QM BL PL QD BP QSD

           

           
 

        

  

Hence the so constructed line is the bisector of CSD .  

Analogically: the line through S║bisector of < (AB, CD) halves BSC . 
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Property 2. The bisectors of the angles between the opposite sides of a cyclic tetragon are 

perpendicular and cut it at points, which are vertices of a rhombus. 

Proof 2. Let U=AD∩BC, V=AB∩CD  

M,N,P,Q - cuts of bisectors of <AUB, <AVD  

with AB, BC, CD, DA resp. (Fig.14). 

If MP NQ T  , from AVTU we obtain: 

UTV UAV AUT AVT   , and (analog) 

from TVCU: UCV UTV CUT CVT    

As UT, VT are bisectors of <AUB and <AVD, 

then: AUT AVT CUT CVT   .  
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The right sides of the upper equalities are equal, 

then are aqual their left sides, i.e. 

UTV UAV UCV UTV   , then 

 2/)( UCVUAVUTV  

902/1802/)(  DCBUAV ˚. So, the 

bisectors UM┴VQ of <AUB and <AVD. Then 

UT: altitude and bisector in ΔCUN, and then 

median to QN, hence T is midpoint of QN. 

Analogically Т  is midpoint of PM in MNPQ 

and it’s a parallelogram (with perpendicular 

diagonals),  so it’s a rhombus. 
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Property 3. The diagonals AC∩BD = O of the cyclic tegragon 

ABCD, and the continuatitons of sides AD∩BC = U. If OU∩DC = 

P,  then the circle (k) through A, B and P passes through the 

midpoint of CD. 

Proof 3: Let (k)∩DC = E, (k)∩AU = M, (k)∩BU = N. We’ll prove E 

is midpoint of DC. From secant lines property we have 

DE DP DM DA    and CE CP CN CB   , and then, by jointly 

division we get 
DE DP DM DA

CE CP CN CB

 


 
. Then, to prove DE CE , 

we’ll show that  

(1) 
DP DM DA

CP CN CB





  

As ADB ACB , then ODU OCU , and therefore 

1
sin

2
1

sin
2

DOU

COU

DU DO ODU
DP S DU DO

CP S CU COCU CO OCU

  


  
  

 
Fig. 15 
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Fig. 15 
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Thus (1) is equivalent to 

(1) 
DU DO DM DA

CU CO CN CB

 


 
  

As 180NMU AMN ABU    and 

180ABU ADC CDU   , we have 

NMU ABU CDU  . Then MN DC , therefore 

DU DM

CU CN
  and (2) is thus equivalent to 

DO DA

CO CB
 . But 

AOD BOC , hence the last equality is true.  

 



1.4. Properties of some subkinds of cyclic tetragons and 

their application in solving problems. 

Cyclic tetragons, satisfying more requirements, have more 

additional properties. We consider here cyclic tetragons with 

perpendicular diagonals and harmonic ones (the product of 

any two two their opposite sides equals the product of the 

other two). 

Property 4. If ABCD is a cyclic tetragon with circum-center 

O and perpendicular diagonals then 180AOB COD   . 

Proof 4: Let S= AC ∩ BD . We have 2AOB AB ADB    

and analogically 2COD CD CAD   .  

Therefore    2 2 180 2.90 180AOB COD ADB CAD ASD            . 
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Fig. 16 



Property 5. If ABCD is cyclic tetragon with circum-center O and perpendicular 

diagonals, the distance from O to any of its sides is half 

the length of the opposite side. 

Proof 5: If OM AB , ON CD , then M, N are 

midpoints of chords AB and CD. From Property 4 

180AOB COD    and therefore 

90AOM DON   . But 90AOM OAM    

(AOM is right triangle) and DON OAM . From 

DO OA , DON OAM  and 90DNO OMA    

follows DON OAM  and then 
1

2
OM DN CD   . 

We prove analogically 
1

2
ON AB  . 
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Property 6 (discovered in 7
th

 century from Indian 

mathematician Brahmagupta). If the diagonals of cyclic 

tetragon are perpendicular, then the line through their 

common point, perpendicular to any of its sides, halves the 

opposite one. 

 

Proof 6: Let AC BD , AC BD S   and l is line throgh S , 

perpendicular to AD. Let it meets BC , AD  at M, N. From the 

right ADS  we have NSA ADS , but NSA CSM  

and ADS ADB ACB SCM   . Then 

CSM NSA ADS SCM   , i.e. CSM SCM , 

hence CM SM . Analogically BM SM , hence M  is 

midpoint of BC . 
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Property 7. In circle of center O is inscribed tetragon 

ABCD with perpendicular diagonals. From their 

intersection point S  are constructed perpendiculars to 

, ,AB BC CD  and DA , whose other ends are , ,L M P  

and Q respectively. Then the tetragon LMPQ  is 

simultaneously cyclic and circumscribed. It’s 

circumcircle passes through the midpoints of the sides 

of ABCD and its center is the midpoint of SO . 

Proof 7: Tetragons QALS, LBMS are cyclic (each has 

two opposite right angles) and hence QAS QLS , 

SLM SBM . Fig. 18 
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As ABCD is also cyclic, then DAC DBC , 

i.e. QAS SBM . Thus QLS SLM  and therefore 

SL  is bisector of QLM . Analogically ,SM SP , SQ  are 

bisectors of the rest angles of LMPQ. The four bisectors 

meet at S => LMPQ has an incircle of center S .  

E, F, G, H - midpoints of AB, BC, CD, DA; EFGH  is 

parallelogram of sides║diagonals of ABCD. As AC BD , 

EFGH  is rectangle. Then it has circumcircle k  of 

diameters EG , FH . We’ll prove L, M, P, Q  Є k. 

Fig. 18 
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From Property 6 => the perpendicular SL  

from S to AB  cuts CD  at its midpoint G  

and therefore 90GLE SLE   , i.e. 

EG  is seen at right angle from L => L is 

on k and analogically M, P, Q are on k. 

We’ll show the center N of k  is midpoint 

of SO. As OG ES  and OE GS  (again 

Property 6) => OGSE  is parallelogram => 

its diagonals EG , SO halve each other at 

the center of k  = midpoint of diameter 

EG  = midpoint of SO. Fig. 18 
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Another cyclic tetragon is the harmonic one. The 

products of lengths of its couples opposite sides are 

equal. It has additional properties, one of which we 

will apply for a hexagon. 

 

Property 8. ABCD is harmonic tetragon with 

midpoint U of its diagonal AC . Prove that these 

equalities hold:  

1) AUB AUD  ; 

2)
21

4
BU DU AC   . 

U

D
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Fig. 19 



Proof 8: AB CD BC DA AC BD      from Ptolemy theorem 

for cyclic tetragon and from harmonic tetragon definition 

AB CD BC AD    => 2 AB CD AC BD      
AB BD

AU CD
  

(Fig. 19). Further BAU BDC  as inscribed angles => 

ABU DBC  => AUB DCB  and 
AU CD

BU BC
 . 

Similarly UAD CBD => AUD DCB  and 
AU BC

DU CD
 . 

From the equalities of angles => AUB AUD  and from 

the equalities of proportions 
2 21

4
BU DU AU AC    .  

U

D
C

BA

Fig. 19 



Task 12. ABCDEF  is a convex hexagon, where the tetragons ABDF , ACDE  are harmonic. Prove that the 

midpoints ,M N , P  of the diagonals ,AD BE ,CF  respectively and the common point Q  of BE  and CF  are 

concyclic. 

Solution 12: Equality 1) of Property 8 for ABDF , ACDE  provides 

AMB AMF  and CMD EMD  (Fig. 20). Adding jointly these 

we obtain AMB CMD AMF EMD    => BMC FME  

=> BME BMF FME BMF BMC FMC     , i.e. 

BME FMC . Equality 2) of Property 8 for ABDF , ACDE  

provides 
21

4
BM FM AD    and 

21

4
EM CM AD   . Hence 

BM EM

CM FM
 . From this and the last equation between angles => 

BME CMF . As MN , MP  are respective medians in similar 

triangles => MNE MPF , i.e. MNE MPQ  => 

180MNQ MPQ    => , ,M N P ,Q  are concyclic. 
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1.5. Orthocenter of an inscribed quadrilateral. 

The cyclic tetragon has all remarkable points of a convex 

tetragons, considered in the publications below. It has, in 

particular, such point, known from long time, which is a 

generalization of triangles’ orthocenter and therefore is 

also called orthocenter. Let ABCD  is inscribed in circle 

Г  of center О  and , ,Ha Hb Hc , Hd  be respectively the 

orthocenters of , ,BCD CDA DАB , АBC . We’ll prove: 

Theorem 1. The lines , ,АHa BHb CHc , DHd  meet at 

one point and the tetragons HaHbHcHd  and ABCD  are 

symmetric with respect to this point (Fig. 21). 
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Proof Th 1: As Ha  is orthocenter of BCD , then 

OHa OB OC OD    [11]. If H  is midpoint of AHa , 

then  1

2
OH OA OHa    => 

(*)       1 1

2 2
OH OA OHa OA OB OC OD         

Analogous (*) holds also for midpoints of 

,BHb CHc , DHd  => these midpoints coincide => 

, ,AHa BHb CHc , DHd  meet at H , defined by (*), 

which halves them => , ,AHa BHb CHc , DHd  pass 

through one point and ABCD  and HaHbHcHd  are 

symmetric with respect to it. 
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Definition. The point H  in the cyclic tetragon, defined 

by (*) is called tetragon’s orthocenter. H  characterizes 

by these properties: 

Theorem 2. a) The straight lines through the midpoints 

of the sides of the tetragon ABCD , perpendicular to 

their opposite sides, intersect at the orthocenter H  of 

ABCD  (Fig. 22); 

b) The straight lines through the midpoints of the 

diagonals AC  and BD , perpendicular to BD  and AC  

respectively, intersect at the orthocenter H  of ABCD . 

 Fig. 22 
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Proof: 1 2 3, ,М М М , 4М  - midpoints of , ,AB BC CD , DA  and  

5М , 6М  - midpoints of diagonals AC , BD . Then 

 1

1

2
OM OA OB    => 

   

 

1 1

1 1

2 2

1

2

M H OH OM OA OB OC OD OA OB

OC OD

          

  

. 

 

Therefore C , D Є Г  and 

        
2 2

2 2

1

1 1 1
, , 0

2 2 2
M H DC OC OD OC OD OC OD OC OD

 
           

 
 => 

1M H DC . We analogously prove similar things for iМ , 2,3,4,5,6i  . 

Fig. 22 
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Theorem 3. The orthocenter H, median point G and the circum-center О  of a cyclic 

tetragon are collinear and HG GO  (HGO is called Euler’s line of the tetragon). 

 

Theorem 4. The orthocenter H of a cyclic tetragon ABCD with perpendicular diagonals 

AC, BD  coinsides with the common point of these diagonals. ([2]) 

 

Theorem 5. The orthocenter of a cyclic tetragon is the common point of Euler’s circles 

of the four triangles, formed by its sides and diagonals. ([17]) 

 

Theorem 6. The orthocenter of a cyclic tetragon is consyclic with the intersection 

points of its diagonals and those of the continuations of its opposite sides (This 

property si soon discovered). ([2]) 



1.6. Classic Theorems about cyclic tetragons 

Cyclic tetragons were stydied by solid matematitians, who discovered their classic properties and 

formulated them in classical theorems: 

Theorem 7. (Ptolemy) If ABCD  is a cyclic tetragon, then holds the equality 

AC BD AB DC AD BC     . 

Theorem 8. (Brocard) If ABCD  is inscribed in circle of center O, AD BC P  , AB DC Q   

and AC BD T  , then O is the orthocenter of the triangle PQT.  

Theorem 9. (sypplement to Theorem 8) Let ABCD  is inscribed in circle of center О  and 

AD BC P  , AB DC Q  . The triangle POQ  has orthocenter the common point Т  of the 

diagonals AC , BD  and 1 2K K M  for orthocentric triangle, where M  is Mikel’s point, and 1K , 2K  

- the Brocardians of the tetragon. ([16]) 

Theorem 10. Let ABCD  is inscribed in circle of center О  and AD BC P  , AB CD Q  . 

The median point G  of ABCD  lies on the Euler’s circle of PQO . ([19]) 


