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Different kinds quadrilaterals: parallelogram, trapezium, kite, pseudo square,
threelateral, inscribed (cyclic), circumscribed. The latter two kinds are studied
by Ptolemy, Brocard, Newton, etc. Soon were discovered multitude interesting
points in arbitrary quadrilateral and through their properties — two important
additions to Brocard’s theorem for the inscribed quadrilaterals.

Regional and global mathematical competitions include (geometric) problems of
high difficulty and projects, including such about quadrilaterals studied.



Students should be more active: not only solve math problems but formulate and
explore them, which is rare even in the educational programs for the exercises for
mathemaltics competitors. In Bulgaria are rare didactical works and experiments
in this direction.
Real exploration may rise too complex questions, require co-work of teachers and
students, simplifying and modeling the problem, collecting and analyzing data,
linking the conveyed conclusions with available facts and knowledge, interpret
and share them with others.

The teachers in the classroom frequently tell the students what they have to
observe, give them ready questions, show them the necessary methods and
examine the results. And the students have only follow the teacher’s instructions.



This approach is challenges and motivates the students to search for the links
between the facts and the laws, developing key skills as crifical thinking, self
reflection, planning experiment, analyze and presenting the results.

Huge part of the problems and the properties of the inscribed and circumscribed
quadrilaterals given here are obtained by students in explorations during co-
working with them.



Inscribed quadrilateral in simple constructions.

Task 1. ABC is an isosceles triangle of base AB. The
Intersection points of the chords CD and CE of its’ circum-
circle with it’s side AB are M and N respectively. Prove
that the quadrilateral EDMN is inscribed.

Solution. (Fig.1) As the arcs AC = BC, then

the arcs DAC = AD + CB, hence <CMN = <CED;
analogically <CNM = <CDE. Then the opposite angles of
EDMN make sums of 180°.

Fig. 1



Task 2. The bisectors of the interior angles of the quadrilateral

ABCD intersect at the points K,L,M and N, as it is shown In
Fig.2. Prove, that the quadrilateral KLMN is inscribed.

Solution2. <AKB :1800—%-(a+,6’), £DMC :1800—%-(7/+5)- .

Fig. 2
Hence

KLKN + £LMN =360°—%-(a+,[)’+7/+5)=360°—%-360°:18O°

and KLMN Is inscribed.



Task 3. Each of the four given circles Is tangent to two other, as it is shown in Fig. 3.
Prove that the quadrilateral with vertices the common points

A, B,C and D of the couples of circles Is inscribed.

Solution 3. S - point on the mutual inner tangent of the circles
of centers O, and O, (Fig. 3).

£DAS and xBAS as peripheral angles:

£DAB = £DAS + £BAS = % .DA+ % .BA= % .(£DO,A+ £BO,A)

from the other two circles:
1

£XDCB :E-(ACDO4C+A<803C) Fig. 3

Adding the two equalities, we obtain:

XDAB + XDCB = % : (4D01A+ ACBOZA) + % : (ACDO4C + ABOQ,C) = % -360° =180°

Hence ABCD is inscribed.



Task 4. The sides AC and BC of the triangle ABC are tangent to it’s In-circle at the points D

and F respectively. The bisectors of the internal angles A and B Intersect the line DF at the
points N and M respectively. Prove that the points A, B, M and N lie on the same circle.
Solution 4. XCFD is external for ABFM and
XBMF = XCFD — xXFBM .

AsS A(FBI\/Izg and <XCFD iIs internal for the
1Isosceles ADFC , therefore XCFD =90°—g. Hence

ABMN = 4BMF = (900—%)—§ = % = ABAN

and BN is seen at the same angle from M and A, hence
A, B, M and N are concyclic.

Fig. 4



Task 5. N is point on the side AB of the quadrilateral ABCD, for which AN = AD and

BN = BC. The bisectors of the angles ADC and BCD intersect at point M. Prove, that the
points C, D, M and N lie on the same circle.
Solution 5. DM and CM are bisectors, ANDA u aNCB are isosceles, then:

«£DMC =180°—%-(4ADC + £BCD) =180°—%-(360°— «DAB - <ABC ) = %-(;{DAB + £ABC)

ZAND = 90° —%A{DAB, ABNC = 90°—%-4ABC
and

£DNC =180°— (AND + £BNC) = % .(£DAB + £ABC),

and then XDMC = XDNC, and C, D, M, N are concyclic.




Task 6. The bisector of the acute angle A of the paralellogram ABCD crosses its side CD at

point L and the continuation of BC at point K. Let O be the circum-center of ALCK . Prove, that
the points D, B, C and O are cocircular (Spring mathematics tournament, Kazanlak, 1993).

Solution 6. AK is bisector (Fig. 6), AB||CD, AD||BC, then

XCLK = XBAL = XL AD = XKAD = XAKC = XCKL.
Hence G =L and  analogically AD=DL.  Then
DC=DL+LC=AD+CK =BC+CK =BK, i.e. DC =BK.

O is the circum-center of ALCK, then OL=0C =OK . From
this and LC =CK we obtain ALCO =aCKO.
Therefore XLCO = XOCK = XCKO, i.e. XDCO = £BKO, then
AaDCO z=aBKO; then XCBO = xCDO.

CO s seen at the same angle from B and D, which lie in the
same semiplane. Therefore D, B, C, O are cocircular.

Fig. 6



2. Application of the properties of the inscribed quadrilateral in solving problems.

Interesting is when one needs to notice a cyclic tetragon and use its properties. Typical
examples: proofs of two popular properties of triangle’s orthocenter:

Task 7. Let ABC be a triangle with orthocenter H. Prove that the points, symmetric to H with

respect to:

a) triangles’s sides;

b) the mid-points of the sides:
lie on the triangle’s circum-circle.



Solution 7. Let ABC be an acute triangle and:
a) L _be symmetric of H with respect to A ig hen X CLM = XCHM anc

XCHM = XCAB (acute angles, perpendicular arms) ey (O] OB |- BU
Is seen at equal angles from A and L, which lie at the same side of BC, and the points A,
B, C, L lie on the circumcircle of AABC;

b) A' - diametrically opposed of A on the circum-circle of AABC (Fig. 8). We’ll prove
A" 1s symmetric of H with respect to midpoint A of BC.

Angles ABA', ACA' subtend by diameter AA4'=> they

are right, A'B L AB and as CH L AB (H is orthocenter
of AABC), then A'B||CH .

Analogically A'C||BH, then BA'CH is a parallelogram,
its diagonals BC and HA' has common midpoint A,
then A'A =HA , which proves the statement.

Fig. 8
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Task 8. The triangles ABR, BCP, CAQ are

constructed on the sides AB, BC and CA of the
triangle ABC, out of it. If the angles ARB, BPC,
CQA make sum 180°, prove that the circumcircles of
ABR, BCP, CAQ have common point.

Solution 8. Let F be the second mutual point of the
circumcircles of the triangles BCP and CAQ (Fig. 9).

Then xXBFC =180°-4BPC and XCFA=180°-<AQC,

and therefore
< AFB =360— (< BFC+ < CFA) =

=< BPC+ < AQC =180- < ARB
Hence point F lies on the circumcircle of AABR.

Fig. 9



Task 9. (Mikel’s theorem) A, B and C are arbitrary
points on the sides QR, PR, PQ of the triangle POR.
Prove that the circumcircles of the triangles ABR, BCP,
CAQ have common point.

Solution 9. The sum of the angles ARB, BPC and CQA
Is 180° as the triangles ABR, BCP, CAQ are on the
sides AB, BC, CA of ABC, out of it. According to Task
8 the circumcirclses of the triangles ABR, BCP, CAQ
have a common point.

Fig. 10



Task 10. The quadrilateral ABCD is inscribed and its diagonal
AC is its diameter. Prove that the projections of every two
opposite sides on the diagonal BD are equal.

Solution 10. A and C, - projections of A and C on BD

(Fig.11). It is sufficient to prove that BA = DC, .

O, - projection of circumcentre O.

O is midpoint of AC; O; - midpoint of 4,C,, then OA =0OC,.
OO lies on diameter and it is perpendicular of BD therefore
OO; halves BD. From OA =0OC, and OB=0D follows

BA =DC, .

Fig. 11




Here we prove that four points are concyclic, proving first and using that two quadrilaterals are
inscribed.

Task 11. ABC is a right-angled triangle with acute angles XBAC =« and XABC=/, and
incenter J. The point D in <ACB is such, that

£ADC = 90°—§ and xBDC = 900—%. The

bisectors |, and |, of the catheti BC and AC cross

the lines AD and BD respectively at the points P
and Q. Prove that P, D, Q and J are conciclic
points.

Solution 11. |, and |, cut AB at midpoint £ and
EQ||BC, EP|| AC (Fig. 12). Wi first prove J, E,
Q and B are concyclic.




Let XEJB=¢, XEQD =y .

As £AIB =135°, then JE-JB-sing=2-S.; =2-S,, = JE-JA-sIn(135° - ¢), then
sin(135°-¢) JB sing

sin g e
(1) s!ng . sm(l{%S — )
sin & sing
As EQ|| BC (from above), we obtain:
(2) £DBC = XDQE =y

We easy calculate XADB = <ADC + xBDC =135°.
From ADBC: XDAC =360°—-90°-135°—- XDBC =135°—w/, i.e.

(3) 135° - = XDAC Fig. 12
Sine rule for ADBC provides sin xDBC = C—D-sin £BDC = C—D-sin(90"—g) — C—D-cosg
BC BC = Bt 2



Analogically sin XDAC :i—z-cosg; dividing these two

equalitiesjointly, we-obtain:

1) sin<DAC _ BC cos?
sin£DBC AC cos¢
After consequtive applying of (3), (2), (4), (1) we find
sin(135°—y) _sinDAC _BC cosy _

siny sin<DBC AC cos%
_sing cosy sing  sin(135°-g)
sinB cos¢ sin’ sin @

After simple transfornations we get cot gy =cot go, I.e.
w=¢,ie XEQD =y =¢p=xEJB. Therefore JEQB is
cyclic. JEPA is cyclic too (analog.) and £PJQ = XPJE + XQJE = XPAE + XQBE =180°—- xXPDQ
lL.e. XPJQ+ xPDQ =180°, i.e. the points P,D,Q, J are concyclic.



1.3. Some popular and interesting properties of the cyclic tetragon.

Property 1. The bisectors of the angles, formed by the opposite sides of a cyclic teragon, are parallel to the
bisectors of the angles, between its’diagonals.

Proof 1. ABCD - cyclic teragon; opposite sides BC N AD=E (Fig.13). Let bisector of XCED cuts the
circum-circle of ABCD = L;M (Fig .13), PQ is the line trough S||LM. Enough to show SQ is bisector of
A£CSD. As the arcs PL = QM and <XMED=xCEM, we obtain -
consecutively:

4CSQ=%-(AP+CQ)=%-(AL+ LP +CM —QM)z%-(AL+CM)=

M
:%-[(MD—2-ACI\/IED)+(BL+2-ACCEM)}:%(MDJrBL): Q
:%-(MD+QM+BL—PL)=%-(QD+BP)=A{QSD / k.
E P &

Hence the so constructed line is the bisector of XCSD .
Analogically: the line through S || bisector of < (AB, CD) halves £BSC . Fig. 13



Property 2. The bisectors of the angles between the opposite sides of a cyclic tetragon are

perpendicular and cut it at points, which are vertices of a rnombus.
Proof 2. Let U=ADNBC, V=ABNCD

M,N,P,Q - cuts of bisectors of <AUB, <AVD

with AB, BC, CD, DA resp. (Fig.14).

If MPANQ=T, from AVTU we obtain:

ZUTV — XUAV = XAUT + £AVT , and (analog)
from TVCU: XUCV —xUTV = XCUT + XCVT
As UT, VT are bisectors of <AUB and <AVD,
then: XAUT + XAVT = XCUT + XCVT




The right sides of the upper equalities are equal,
then are aqual their left sides, I.e.
XUTV — XUAV = XUCV - XUTV, then

<UTV =(<UAV+<UCV)/2=
=(<UAV+<DCB)/2=180/2=90°. So, the
bisectors UM-LVQ of <AUB and <AVD. Then
UT: altitude and bisector in ACUN, and then
median to QN, hence T iIs midpoint of QN.
Analogically 7 is midpoint of PM in MNPQ

and it’s a parallelogram (with perpendicular
diagonals), so it’s a rhombus.



Property 3. The diagonals ACNBD = O of the cyclic tegragon
ABCD, and the continuatitons of sides ADNBC = U. If OUNDC =

Fig. 15

(k)

P, then the circle (k) through A, B and P passes through the
midpoint of CD.

Proof 3: Let (k)NDC = E, (k\NAU = M, (k)NBU = N. We’ll prove E
IS midpoint of DC. From secant lines property we have
DE-DP =DM DA and CE-CP =CN -CB, and then, by jointly
DE-DP DM -DA

— . Then, to prove DE =CE,
G G CN 6B

division we get

we’ll show that

(1) DP DM - DA
CP CN-CB
As XADB = XACB, then xXODU = xOCU , and therefore
1 .
DP 5.,  DU-DO:sin£ODU py; o

o ko ;-CU-CO-sinA{OCU =



Thus (1) is equivalent to

(K

DU-DO DM -DA

1 -

(1) CU-CO CN-CB
AS ANMU =180°- XAMN = XABU and
£ABU =180°—- XADC = XCDU , we have

ANMU = XABU = xXCDU . Then MN ||DC, therefore
S — 2l and (2) Is thus equivalent to R — DA. But
(1] (N (L (B

A~AOD ~aBOC, hence the last equality is true.




1.4. Properties of some subkinds of cyclic tetragons and
their application in solving problems.

Cyclic tetragons, satisfying more requirements, have more
additional properties. We consider here cyclic tetragons with
perpendicular diagonals and harmonic ones (the product of
any two two their opposite sides equals the product of the
other two).

Property 4. If ABCD is a cyclic tetragon with circum-center
O and perpendicular diagonals then xAOB + xCOD =180°.

Proof 4: Let S=ACc NBD. We have XAOB = AB =2- XADB

and analogically XCOD =CD =2-xCAD.
Therefore XAOB + £COD =2-(£ADB + XCAD) = 2-(180° — £ASD) = 2.90° = 180°.

Fig. 16



Property 5. If ABCD is cyclic tetragon with circum-center O and perpendicular

diagonals, the distance from O to any of its sides Is half
the length of the opposite side.

Proof 5: If OM 1L AB, ON LCD, then M, N are
midpoints of chords AB and CD. From Property 4
XAOB + xCOD =180° and therefore
£AOM + XDON =90°. But <AOM +£OAM =90°
(AOM is right triangle) and <XDON = XOAM . From
DO =0A, XDON = XOAM and XDNO = XOMA =90°

follows ADON =zaOAM and then OM = DN :%-CD.

We prove analogically ON :%. AB .



Property 6 (discovered in 7" century from Indian
mathematician Brahmagupta). If the diagonals of cyclic
tetragon are perpendicular, then the line through their
common point, perpendicular to any of its sides, halves the
opposite one.

Proof 6: Let AC L BD, ACnBD =S and | is line throgh S,
perpendicular to AD. Let it meets BC, AD at M, N. From the
right AADS we have XNSA= xADS, but XNSA=xCSM
and XADS = XADB = XACB = XSCM . Then
£CSM = XNSA= XADS = XSCM, le. xCSM =xSCM ,
hence CM =SM . Analogically BM =SM, hence M s
midpoint of BC.



Property 7. In circle of center O Is inscribed tetragon
ABCD with perpendicular diagonals. From their
Intersection point S are constructed perpendiculars to
AB,BC,CD and DA, whose other ends are L,M,P

and Q respectively. Then the tetragon LMPQ is

simultaneously cyclic and circumscribed. It’s
circumcircle passes through the midpoints of the sides
of ABCD and its center is the midpoint of SO.

Proof 7: Tetragons QALS, LBMS are cyclic (each has

two opposite right angles) and hence £QAS = XQLS,
ASLM = XSBM .




As ABCD is also cyclic, then <DAC=xDBC,
l.e. XQAS = XSBM . Thus XQLS = XSLM and therefore

SL is bisector of XQLM . Analogically SM,SP,SQ are

bisectors of the rest angles of LMPQ. The four bisectors
meet at S => LMPQ has an incircle of center S.

E, F, G, H - midpoints of AB, BC, CD, DA; EFGH is
parallelogram of sides || diagonals of ABCD. As AC L BD,
EFGH is rectangle. Then it has circumcircle k of
diameters EG, FH . We’ll prove L, M, P, Q € k.




From Property 6 => the perpendicular SL
from S to AB cuts CD at its midpoint G
did theielole Gl = <5l = OO |8
EG Is seen at right angle from L => L Is
on k and analogically M, P, Q are on k.
We’ll show the center N of k Is midpoint
of SO. As OG||ES and OE||GS (again
Property 6) => OGSE Is parallelogram =>
its diagonals EG, SO halve each other at
the center of k = midpoint of diameter
EG = midpoint of SO.



Another cyclic tetragon Is the harmonic one. The
products of lengths of its couples opposite sides are
equal. It has additional properties, one of which we
will apply for a hexagon.

Property 8. ABCD is harmonic tetragon with
midpoint U of its diagonal AC. Prove that these
equalities hold:

1) £AUB = <AUD ;

2)BU-DU=%-AC2.

Fig. 19



Proof 8: AB-CD +BC-DA= AC-BD from Ptolemy theorem
for cyclic tetragon and from harmonic tetragon definition

AECD BC D D AECD MR =
AUl (1)
(Fig. 19). Further xBAU = xBDC as inscribed angles =>
AABU ~aDBC => <AUB=xDCB and 0 =CD.
Bll BC
il B

Similarly aUAD ~aCBD => XAUD = xDCB and e
From the equalities of angles => <£AUB = xXAUD and from

the equalities of proportions BU -DU = AU* =%- o

Fig. 19



Task 12. ABCDEF is a convex hexagon, where the tetragons ABDF , ACDE are harmonic. Prove that the
midpoints M, N, P of the diagonals AD, BE,CF respectively and the common point Q of BE and CF are
concyclic.

Solution 12: Equality 1) of Property 8 for ABDF , ACDE provides
£AMB = XAMF and XCMD = XEMD (Fig. 20). Adding jointly these
we obtain KAMB+ £CMD = XAMF + XEMD => XBMC = XFME
=> ABME = XBMF + XFME = XBMF + XBMC = XFMC , .e.
£BME = XFMC. Equality 2) of Property 8 for ABDF , ACDE

provides BM-FM:%-AD2 and EM-CM:%-ADZ. Hence

BM EM
CM FM
ABME ~ACMF. As MN, MP are respective medians in similar
triangles => A<AMNE=<£MPF, ie. XMNE=<£MPQ =>
AMNQ+ £MPQ =180° => M, N, P ,Q are concyclic.

. From this and the last equation between angles =>




1.5. Orthocenter of an inscribed quadrilateral.

The cyclic tetragon has all remarkable points of a convex
tetragons, considered in the publications below. It has, In
particular, such point, known from long time, which is a
generalization of triangles’ orthocenter and therefore is
also called orthocenter. Let ABCD is inscribed in circle

I’ of center O and Ha, Hb,Hc,Hd be respectively the
orthocenters of BCD,CDA, DAB , ABC . We’ll prove:

Theorem 1. The lines AHa, BHb,CHc,DHd meet at

one point and the tetragons HaHbHcHd and ABCD are
symmetric with respect to this point (Fig. 21).




Proof Th 1: As Ha is orthocenter of ABCD, then
OHa=0B+0C+0D [11]. If H is midpoint of AHa,

then CTH=£(OA+ OHa) =
2

(*) OH :%-(OA+OHa) :%-(OA+OB+OC+OD)

Analogous (*) holds also for midpoints of
BHb,CHc,DHd => these midpoints coincide =>

AHa, BHb,CHc,DHd meet at H, defined by (*),
which halves them => AHa,BHb,CHc,DHd pass

through one point and ABCD and HaHbHcHd are
symmetric with respect to it.




Fig. 22

A

Definition. The point H in the cyclic tetragon, defined
by (*) is called tetragon’s orthocenter. H characterizes
by these properties:

Theorem 2. a) The straight lines through the midpoints
of the sides of the tetragon ABCD, perpendicular to
their opposite sides, intersect at the orthocenter H of
ABCD (Fig. 22);

b) The straight lines through the midpoints of the
diagonals AC and BD, perpendicular to BD and AC
respectively, Intersect at the orthocenter H of ABCD.



Proof: M,,M,,M,,M, - midpoints of AB,BC,CD, DA and
M, M, - midpoints of diagonals AC,BD. Then

M,H = OH —OMl:%-(OA+OB+OC+OD)—%-(O_A+@):
:%(OC+OD)

Fig. 22 A
Therefore C,DE€ " and
1

(I\/IlH,DC):E-((OC +OD),(OC—OD)):%-(OC2 —ODZ)%-U@

M,H L DC . We analogously prove similar things for M., 1=2,3,4,5,6.

2 SRR
. ‘OD

2



Theorem 3. The orthocenter H, median point G and the circum-center O of a cyclic
tetragon are collinear and HG =GO (HGO is called Euler’s line of the tetragon).

Theorem 4. The orthocenter H of a cyclic tetragon ABCD with perpendicular diagonals
AC, BD coinsides with the common point of these diagonals. ([2])

Theorem 5. The orthocenter of a cyclic tetragon is the common point of Euler’s circles
of the four triangles, formed by its sides and diagonals. ([17])

Theorem 6. The orthocenter of a cyclic tetragon is consyclic with the intersection
points of its diagonals and those of the continuations of its opposite sides (This
property si soon discovered). ([2])



1.6. Classic Theorems about cyclic tetragons

Cyclic tetragons were stydied by solid matematitians, who discovered their classic properties and
formulated them in classical theorems:

Theorem 7. (Ptolemy) If ABCD Is a cyclic tetragon, then holds the equality
AC-BD=AB-DC+ AD-BC.

Theorem 8. (Brocard) If ABCD is inscribed in circle of center O, ADNBC =P, ABNhDC=Q
and ACNBD =T , then O is the orthocenter of the triangle PQT.

Theorem 9. (sypplement to Theorem 8) Let ABCD is inscribed in circle of center O and
ADNBC =P, ABNnDC=Q. The triangle POQ has orthocenter the common point 7" of the
diagonals AC,BD and K,K,M for orthocentric triangle, where M is Mikel’s point, and K,, K,
- the Brocardians of the tetragon. ([16])

Theorem 10. Let ABCD is inscribed in circle of center O and ADNBC =P, ABNCD=Q.
The median point G of ABCD lies on the Euler’s circle of APQO. ([19])



