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Abstract. In this paper we consider three risk models. As counting processes for these risk models we use the Poisson process,
the Pólya-Aeppli process and the Noncentral Pólya-Aeppli process. For the related risk models we define an exponential mar-
tingales and the corresponding martingale approximation of the ruin probabilities. In the case of exponentially distributed claims
we compare these three models and for specific values of the parameters we make some conclusions for their applications in risk
theory.

INTRODUCTION

The standard model of an insurance company, called risk process {X(t), t ≥ 0}, defined on the complete probability
space (Ω,F ,P) is given by

X(t) = ct −
N(t)∑
k=1

Zk,

 0∑
1

= 0

 . (1)

The constant c is a positive real constant which represents the gross premium rate. The sequence {Zk}
∞
k=1 of mutually

independent and identically distributed random variables with common distribution function F, F(0) = 0 and mean
value EZ = µ < ∞ is independent of the counting process {N(t), t ≥ 0}. The process N(t) is interpreted as the number
of claims to an insurance company during the time interval [0, t]. In the classical risk model, the counting process
is a Poisson process with parameter λ, see Grandell [1]. In this case we use the notation N1(t) ∼ PoP(λ). Then the

aggregated claim amount up to time t is given by the compound Poisson process S N1(t) =

N1(t)∑
k=1

Zk. The probability mass

function of the process N1(t) is given by

P(N1(t) = m) =
(λt)m

m!
e−λt, m = 0, 1, . . . (2)

One of the most important properties of the Poisson process is its equidispersion i.e the Poisson mean and variance
are equal. Then the corresponding Fisher index which is a ratio of the variance to mean of the process is equal to one.
In many practical applications the equidispersion property of the Poisson process is not observed in the count data at
hand. This fact motivated many authors to search more flexible models for counting such type of data. The most used
generalization of the Poisson process is the compound Poisson process. In many risk models it is a basic counting
process. Such model is called compound Poisson model and it is useful for cluster data. In Minkova [2] the compound
Poisson process with geometric compounding distribution was introduced. The resulting counting process is called
Pólya-Aeppli process. As application, the corresponding risk model is defined and discussion on ruin probability
is given. In 2013 the Pólya-Aeppli process was characterized by Chukova and Minkova [3]. In 2015 Lazarova and
Minkova [4] have defined the Noncentral Pólya-Aeppli process which is a generalization of the Pólya-Aeppli process.
It is a sum of homogeneous Poisson process and Pólya-Aeppli process.
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The paper is organized as follows. In the next section we consider the counting processes in risk models. Then
we analyze the corresponding risk models. The martingale approximation of the ruin probability is given. Then we
consider the case of exponentially distributed claims and compare the models in terms of the approximated ruin
probability.

COUNTING PROCESSES IN RISK MODELS

In real life every stochastic counting process counts the number of the events that occur up to time t. Usually
the counting process {N(t), t ≥ 0} is a non-negative process with integer values. Every counting process is a
non-decreasing process which can denote the number of the accidents on the road, the number of births and deaths
and also the number of the claims to an insurance company in time interval [0, t].

Definition 1 (Ross [5]) A stochastic process {N(t), t ≥ 0} is said to be a counting process if
(1) it starts at zero, N(0) = 0
(2) for all t ≥ 0 the process N(t) has integer values
(3) for 0 ≤ s < t, the number of the events which occur in the interval (s, t] is equal to N(t) − N(s).

The Poisson process
The most popular counting stochastic process is the Poisson process, named after the French scientist Siméon Poisson
(1781-1840). It is a Markov process in continuous time for which the only possible jumps are to the next higher state.
The only changes in the process are unit jumps upwards.
Definition 2 (Ross [5]) A counting process {N1(t), t ≥ 0} is said to be a Poisson process with intensity λ > 0 if
(1) it starts at zero, N1(0) = 0
(2) N1(t) is a process with stationary and independent increments
(3) for each t > 0, the number of arrivals N1(t) in any interval of length t has a Poisson distribution.

For a Poisson process with parameter λt we use the notation N1(t) ∼ PoP(λt). The probability generating function
of the Poisson process is given by

ψN1(t)(s) = e−λt(1−s). (3)

The mean and the variance of the Poisson process are given by

E(N1(t)) = Var(N1(t)) = λt,

while for the Fisher index of dispersion we obtain

FI(N1(t)) =
Var(N1(t))
E(N1(t))

= 1.

The Pólya-Aeppli process
Definition 4 (Chukova and Minkova [3]) The counting process {N2(t), t ≥ 0} is said to be a Pólya-Aeppli process if
(1) it starts at zero, N2(0) = 0
(2) N2(t) is a process with stationary and independent increments
(3) for each t > 0, N2(t) is Pólya-Aeppli distributed.

For the Pólya-Aeppli process with parameters λ and ρ ∈ [0, 1) we use the notation N2(t) ∼ PAP(λ, ρ). The
probability mass function and probability generating function of the Pólya-Aeppli process are given by

P(N2(t) = m | λ) =


e−λt, m = 0,

e−λt
m∑

i=1

(
m − 1
i − 1

)
[λ(1 − ρ)t]i

i!
ρm−i, m = 1, 2, . . . (4)

and
ψN2(t)(s) = e−λt(1−ψ1(s)), (5)
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where
ψ1(s) =

(1 − ρ)s
1 − ρs

(6)

is the probability generating function of the shifted geometric distribution with success probability 1 − ρ, Ge1(1 − ρ).
The mean and the variance of the Pólya-Aeppli process are given by

E(N2(t)) =
λt

1 − ρ
and Var(N2(t)) =

λt(1 + ρ)
(1 − ρ)2 .

The Fisher index of dispersion is equal to

FI(N2(t)) =
1 + ρ

1 − ρ
= 1 +

2ρ
1 − ρ

> 1,

i.e for ρ , 0, the Pólya-Aeppli process is over-dispersed related to the Poisson process. This fact provides a greater
flexibility in modeling count data than the standard Poisson process.

Let T1,T2, . . . is a sequence of non-negative, mutually independent random variables and S n =

n∑
i=1

Ti, n =

1, 2, . . ., S 0 = 0 is the corresponding renewal process. The process S n can be interpreted as a sequence of renewal
epochs. T1 is the time until the first renewal epoch and {Ti}i≥2 are the inter-arrival times. Let N2(t) = sup{n ≥ 0, S n ≤

t}, t ≥ 0 be the number of the renewals occurring up to time t. The distribution of N2(t) is related to that of S n and for
any t ≥ 0 and n ≥ 0 the following relation holds

P(N2(t) = m) = P(S m ≤ t) − P(S m+1 ≤ t), m = 0, 1, 2, . . . (7)

The Pólya-Aeppli process is characterized by the fact that T1 is exponentially distributed with parameter λ and
{T2,T3, . . .} are independent, identically distributed. The inter-arrival times {T2,T3, . . .} are zero with probability ρ
and with probability 1 − ρ are exponentially distributed with parameter λ. The probability density function of T2 is
given by

fT2 (t) = ρδ0(t) + (1 − ρ)λe−λt t ≥ 0,

where

δ0(t) =

{
1, t = 0
0, t > 0.

For the cumulative distribution function we have

FT2 (t) = 1 − (1 − ρ)e−λt, t ≥ 0.

The Pólya-Aeppli process is a time-homogeneous process. In the case of ρ = 0 it becomes a homogeneous Pois-
son process. So, we have a homogeneous process with an additional parameter. The additional parameter ρ has an
interpretation as correlation coefficient, see [6].

The Non-central Pólya-Aeppli process
The Non-central Pólya-Aeppli process is a sum of two stochastic counting processes, one of which is the homogeneous
Poisson process and the other one is the Pólya-Aeppli process.
Definition 5 A counting process {N3(t), t ≥ 0} is said to be a Non-central Pólya-Aeppli process if
(1) it starts at zero, N3(0) = 0
(2) for each t > 0, N3(t) is Non-central Pólya-Aeppli distributed

For a Non-central Pólya-Aeppli process with parameters λ1, λ2 and ρ ∈ [0, 1) we use the notation N3(t) ∼
NPAP(λ1, λ2, ρ). The probability mass function and the probability generating function of the Non-central Pólya-
Aeppli process are given by

P(N3(t) = i) =


e−(λ1+λ2)t, i = 0,

e−(λ1+λ2)t

 (λ1t)i

i! +

i∑
j=1

(λ1t)i− j

(i − j)!

j∑
k=1

(
j − 1
k − 1

)
[λ2(1 − ρ)t]k

k!
ρ j−k

 , i = 1, 2, . . . , (8)
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and

ψN3(t)(s) = e−λ1t(1−s)e−λ2t(1−ψ1(s)), (9)

where ψ1(s) is the probability generating function of shifted geometric distribution, given in (6). The mean and the
variance of the Non-central Pólya-Aeppli process are given by

E(N3(t)) =

(
λ1 +

λ2

1 − ρ

)
t and Var(N3(t)) =

[
λ1 + λ2

1 + ρ

(1 − ρ)2

]
t.

The related Fisher index of dispersion is equal to

FI(N3(t)) =
1 + ρ

1 − ρ
−

2λ1ρ

λ1(1 − ρ) + λ2
<

1 + ρ

1 − ρ
,

i.e for ρ , 0 the Non-central Pólya-Aeppli process is under-dispersed related to the Pólya-Aeppli process.

PÓLYA-AEPPLI RISK MODELS

We consider the risk process X(t), defined by (1), where the counting process is independent of the claim sizes {Zk}
∞
k=1.

The relative safety loading θ is defined by

θ =
EX(t)

E(S N(t))
,

and we consider the case of positive safety loading θ > 0. Define

τ(u) = inf{t > 0, u + X(t) ≤ 0}

the time to ruin of an insurance company having initial capital u. If for all t > 0, u + X(t) > 0, we let τ = ∞, then the
probability of ruin is Ψ(u) = P(τ(u) < ∞).

The Poisson risk model

Suppose that the counting process to the risk model in (1) is a PoP(λ). In this case, the relative safety loading θ is
given by

θ =
c − λµ
λµ

=
c
λµ
− 1.

In the case of positive safety loading θ > 0, the premium income c should satisfy the inequality c > λµ.

The Pólya-Aeppli risk model

We consider the risk process X(t), given in (1) with a Pólya-Aeppli counting process. It is called a Pólya-Aeppli risk
model, see Minkova [2]. The interpretation of the counting process in this risk model is that the insurance company
have its policies divided into homogeneous, independent and identically distributed groups. The number of the groups
has a Poisson distribution. The number of the policies in each group has a shifted geometric distribution. The relative
safety loading in this case θ is given by

θ =
c(1 − ρ) − λµ

λµ
=

c(1 − ρ)
λµ

− 1,

and in the case of positive safety loading θ > 0, the premium income c should satisfy the inequality c > λµ
1−ρ .
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The Non-central Pólya-Aeppli risk model
Let us consider now the risk process X(t), where the counting process is the Non-central Pólya-Aeppli process. We
will call this process a Non-central Pólya-Aeppli risk model. In this case we suppose that two types of claims arrive
to the insurance company. The first type of the claims are counted by the Poisson process and the second type by the
Pólya-Aeppli process. The relative safety loading θ is given by

θ =
c(1 − ρ) − µ[λ1(1 − ρ) + λ2]

µ[λ1(1 − ρ) + λ2]
=

c(1 − ρ)
µ[λ1(1 − ρ) + λ2]

− 1,

and in the case of positive safety loading θ > 0, the premium income c should satisfy the inequality c > µ(λ1(1−ρ)+λ2)
1−ρ .

MARTINGALE APPROXIMATION

Martingales for risk processes
The modern theory of risk [7] is related with the collective risk model introduced by Filip Lundberg. The surplus
process of an insurance risk can be described as

U(t) = u + ct − S (t), t ≥ 0, (10)

where u is the initial capital of the company, c is the company’s income per unit time and S (t) =
∑N(t)

k=1 Zk is the total
amount of the claims, paid by the insurance company up to time t.

Let us denote by (F X
t ) the natural filtration generated by the stochastic process X(t), given in (1). (F X

t ) is the
smallest complete filtration to which the process X(t) is adapted. As the ruin times are first entrance time to some
interval we need a complete filtration in order to assure that the ruin times are stopping times. Denote by LTZ(r) =
∞∫
0

e−rx fZ(x)dx the Laplace transform of the random variable Z. Then we have that the Laplace transform of X(t) is

given by
Ee−rX(t) = e−rctΨN(t)(LTZ(−r)) = eg(r)t,

where ΨN(t) is the probability generating function of the counting process.
From the martingale theory [7] we take the equation

Ee−rX(t) = e−rcte−λt[1−ψ(LTZ (−r))]

and get the following
g(r) = −rc − λ[1 − ψ(LTZ(−r))].

Equating the function g(r) to zero we obtain

rc + λ
[
1 − ψ(LTZ(−r))

]
= 0. (11)

The positive solution R of the equation (11) is called a Lundberg’s exponent and the inequality Ψ(u) ≤ e−Ru - a
Lundberg’s inequality.

Again from [7] it follows that the process

Mt =
e−rX(t)

e−rctΨN(t)(LTZ(−r))

is a (F X
t )− martingale.

We consider the cases of Poisson, Pólya-Aeppli and Non-central Pólya-Aeppli counting processes.

Case 1: Martingale approach to the Poisson risk model
When the counting process is a Poisson process, then the function g(r) is given by

g(r) = rc + λ[1 − LTZ(−r)]. (12)
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Using the probability generating function given in formula (3) we obtain the following martingale

Mt =
erS (t)

e−λt[1−LT (−r)] .

Case 2: Martingale approach to the Pólya-Aeppli risk model
When the counting process is a Pólya-Aeppli process, then the function g(r) is given by

g(r) = rc + λ

[
1 − LTZ(−r)

1 − ρLTZ(−r)

]
. (13)

Using the probability generating function in formula (5) and (6) we obtain the following martingale

Mt =
erS (t)

e−λt
[
1− 1−LT (−r)

1−ρLT (−r)

] .
Case 3: Martingale approach to the Non-central Pólya-Aeppli risk model
When the counting process is a Non-central Pólya-Aeppli process, then the function g(r) is given by

g(r) = rc + λ1[1 − LTZ(−r)] + λ2

[
1 − LTZ(−r)

1 − ρLTZ(−r)

]
. (14)

Using the probability generating function given in formula (9), where ψ1(s) is the probability generating function
of shifted geometric distribution, given in (6) we obtain the following martingale

Mt =
erS (t)

e−λ1t[1−LT (−r)]e−λ2t
[

1−LT (−r)
1−ρLT (−r)

] .
Let the process Mt = e−rX(t)

e−rctΨN(t)(LTZ (−r)) , t ≥ 0 be a martingale relative the σ - algebras F X , generated by the process
X(t) and τ = in f {t ≥ 0 : X(t) < 0} be the time to ruin for an insurance company. Applying the martingale stopping
time theorem on the martingale Mt we obtain that

1 = M0 = E[M(τ)|F0] = E[M(t0 ∧ τ)]

= E[M(t0 ∧ τ), τ ≤ t0].P(τ ≤ t0) + E[M(t0 ∧ τ), τ > t0]P(τ > t0)

= E[e−r.X(τ) ercτ

ΨN(τ)(LTZ (−r)) |τ ≤ t0].P(τ ≤ t0) + E[e−r.X(t0) erct0

ΨN(t0)(LTZ (−r)) |τ > t0]P(τ > t0)

≥ E[M(t0 ∧ τ), τ ≤ t0] = E[e−rX(τ) ercτ

ΨN(τ)(LTZ (−r)) |τ ≤ t0]P(τ ≤ t0)

≥ eruE[ ercτ

ΨN(τ)(LTZ (−r)) |τ ≤ t0]P(τ ≤ t0).

The process X(τ) ≤ 0 for τ < ∞. Then the inequality e−ru ≥ 1 holds. Since t0 in the above calculations was arbitrary
selected, then for every t we have

P(τ ≤ t) ≤
e−ru

E[ ercτ

ΨN(τ)(LTZ (−r)) |τ ≤ t]
≤ e−ru.

EXPONENTIALLY DISTRIBUTED CLAIMS

Let us suppose that the claim sizes {Zk}
∞
k=1 are exponentially distributed i.e Z ∼ exp(µ) with distribution function

FZ(x) = 1 − e−
x
µ , x ≥ 0, µ > 0 and mean value EZ = µ < ∞. Then for the Laplace transform of the exponentially

distributed claims we have the following expression

LTZ(−r) = E(erZ) =

∞∫
0

erxdFZ(x) =

∞∫
0

erxd(1 − e−
x
µ ) =

1
µ

∞∫
0

erxe−
x
µ dx =

1
1 − µr

,
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where r < 1
µ
.

It is known that MZ(r) = 1
1−µr is the moment generating function of the exponential distribution.

Model 1: The Poisson Risk model
The counting process N(t) in this risk model is a Poisson process with an intensity λ. In the case of exponentially

distributed claims for this risk model, the function g(r) is given by

cr + λ

[
1 −

1
1 − µr

]
= 0. (15)

The equation (15) have two roots. The first root is R1 = 0 and the second one is R2 =
c−λµ

cµ . As the safety loading
θ for this risk model is a positive one, we have that the premium income per unit time c satisfies the inequality c > λµ.
This condition determines that the root R2 is a positive root of the equation (15).

Model 2: The Pólya-Aeppli Risk model
The counting process N(t) in this risk model is a Pólya-Aeppli process with an intensity λ. In the case of expo-

nentially distributed claims for this risk model, the function g(r) is given by

cr − λ
[

µr
1 − µr − ρ

]
= 0. (16)

In this case the equation (16) have two roots. The first root is R1 = 0 and the second one is R2 =
c(1−ρ)−λµ

cµ . As the safety
loading θ for this risk model is a positive one, we have that for the Pólya-Aeppli risk model the premium income per
unit time c satisfies the inequality c > λµ

1−ρ . This condition determines that the root R2 is a positive root of the equation
(16).

Model 3: The Non-central Pólya-Aeppli Risk model
The counting process N(t) is a sum of two independent processes. The first one is a homogeneous Poisson

process with intensity λ1 i.e N(t) ∼ PoP(λ1) and the second one is a Pólya-Aeppli process with parameters λ2 and ρ
i.e N(t) ∼ PAP(λ2, ρ).

In the case of exponentially distributed claims for this risk model, the function g(r) is given by

rc − λ1
µr

1 − µr
− λ2

µr
1 − ρ − µr

= 0 (17)

or

r
[
c − λ1

µ

1 − µr
− λ2

µ

1 − ρ − µr

]
= 0.

We see that the last equation has a zero root R1 = 0. The other roots are found by solving the equation

c − λ1
µ

1 − µr
− λ2

µ

1 − ρ − µr
= 0.

This leads to the following quadratic equation

cµ2r2 +
[
(λ1 + λ2)µ2 − cµ(2 − ρ)

]
r + c(1 − ρ) + λ1µρ − (λ1 + λ2)µ = 0. (18)

The quadratic equation’s discriminant has the form

D = [(λ1 + λ2)]2 µ4 + 2cµ3ρ(λ2 − λ1) + c2µ2ρ2. (19)

The roots of the equation (18) are as follows

R2 =
cµ(2 − ρ) − (λ1 + λ2)µ2 +

√
(λ1 + λ2)2µ4 + 2cµ3ρ(λ2 − λ1) + c2µ2ρ2

2cµ2
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and

R3 =
cµ(2 − ρ) − (λ1 + λ2)µ2 −

√
(λ1 + λ2)2µ4 + 2cµ3ρ(λ2 − λ1) + c2µ2ρ2

2cµ2 .

Our main task is to compare the given three risk models. For the purpose we take arbitrary values of the parameters
µ, λ1 = λ2 = λ and ρ. The value of the premium income per unit time c is chosen so that the safety loading θ is a
positive one. Since the value of the Lundberg’s exponent R gives the risk measure of the company’s business we are
interested of the maximum positive root of the equations (15), (16) and (17).

From the Lundberg’s inequality Ψ(u) ≤ e−Ru we can conclude that the risk model with greater R is better than the
rest.

The tables below give the values of the Lundberg’s exponent R for λ1 = λ2 = 2 and µ = 1 calculated for each of
the given risk models. For the Pólya-Aeppli risk model and for the Non-central Pólya-Aeppli risk model we have an
additional parameter ρ ∈ [0, 1). We give five values for the parameter ρ i.e ρ = 0.1, 0.3, 0.5, 0.7 and 0.9. We take c
under the conditions c > λµ, c > λµ

1−ρ and c > µ(λ1(1−ρ)+λ2)
1−ρ .

Poisson Risk model

c = 5 RPo = 0.6

c = 7 RPo = 0.71

c = 9 RPo = 0.78

c = 23 RPo = 0.91

Pólya-Aeppli Risk model

c = 5 ρ = 0.1 RPA = 0.5

c = 5 ρ = 0.3 RPA = 0.3

c = 7 ρ = 0.5 RPA = 0.21

c = 9 ρ = 0.7 RPA = 0.08

c = 23 ρ = 0.9 RPA = 0.01

Non-central Pólya-Aeppli Risk model

c = 5 ρ = 0.1 RNPA = 0.95

c = 5 ρ = 0.3 RNPA = 0.88

c = 7 ρ = 0.5 RNPA = 0.84

c = 9 ρ = 0.7 RNPA = 0.84

c = 23 ρ = 0.9 RNPA = 0.92

The Lundberg’s exponent R for the Poisson risk model and the Pólya-Aeppli risk model is calculated for one
and the same value of the intensity λ. Taking the values of c = 5, ρ = 0.1, λ1 = λ2 = 2 and µ = 1 we obtained the
following values of the Lundberg’s exponent R:

RPo = 0.6, RPA = 0.5, RNPA = 0.95.

As the Lundberg’s exponent R gives the risk measure of the insurance company’s business we can conclude that
for these specific values of the parameters, the Non-central Pólya-Aeppli risk model is the best than the other ones. It
is a suitable risk model because its Lundberg’s exponent R is greater than the Lundbergs’ exponents calculated for the
Poisson and the Pólya-Aeppli risk models. Similarly if we see the other values in the tables above and the obtained
results for the positive root R we may conclude the same.
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CONCLUDING REMARKS

In this paper we introduced three risk models: a Poisson risk model, a Pólya-Aeppli risk model and a Non-central
Pólya-Aeppli risk model. For these models we obtained a martingale approach and a corresponding estimation of the
ruin probability. We compared them in the case of exponentially distributed claims and give some recommendations
for choosing a risk model in the insurance.
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