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Abstract: The article is focused on modeling and analyses of 

electricity production from renewable energy sources in a 

single-family house using artificial intelligence. The neural 

networks are one of the main instruments for modeling and 

forecasting of dynamic and stochastic processes. In the current 

research, they are implemented to modeling of the electricity 

production of a photovoltaic station of a single-family house 

with the aim to be able to analyze and predict the PV production 

in short and long term periods. This is very important in the 

current electricity systems in respect to ensure optimal energy 

utilization in the house and optimal facilities exploitation. In the 

article real data from an existing SCADA are used which makes 

the results close to real exploitation.  

Keywords: neural networks, forecasting, solar energy, 
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I. INTRODUCTION 

Neural Networks (NN) suggest a different way of 
analyzing and investigating situations compared to the 
classical ones like regression analyses, statistical analyses, etc. 

This way is characterized by the building of a complex 
nonlinear function with an iterative way of parameters 
adaptation (teaching). This way is very similar to the Kalman 
filtering, [1]. 

The advantages of the traditional neural networks 
comparing the “classical” methods can be summarized in the 
following points: 

 They are self-adapting systems based on expert 
suggestions about the data model; 

 They can generalize. As they are based on previous 
data they are the perfect tool for time series analyses 
with or without additional variables.  

 Neural networks are universal approximation tools; 

 Neural networks are nonlinear. 

These NN advantages make them the perfect instrument 
for analyzing the time series related to power production and 
especially to the production of electricity from solar sources 
[2]. 

The power production with photovoltaic installation 
characterizes by the following properties: 

1) It has stochastic behavior related to changes in 

weather. 

2) It is strongly related to electricity consumption 

(especially in the case of prohibition to return energy to the 

grid). In this case the PV station measures the energy 

consumed and the energy produced and adapt the production 

in relation with the consumption. The schematic is given at 

Fig.1 where two smart meters are connected to the PV in 

respect to ensure all necessary data for the PV control 

system.  In the family house the problem with the stochastic 

character is even stronger because of the habitant's life 

dynamics. For improvement of the electricity production 

models for the family houses, models of household energy 

profiles [3, 4] could be used.  

 
Fig. 1. Photovoltaic installation. 

3) It has seasonal characteristics related to day/night 

change and related to the change of solar radiation during 

the year.  
These properties make the goal to model and forecast the 

PV production very complex. Different authors deal with the 
problem using different network structures, deep learning and 
other technics like: RNN (Recurrent Neural Network), LSTM 
(GRU (Gated Recurrent Units) [5,6];LSTM(Long-Short Term 
Memory) [5,7], FFNN (Feed Forward Neural Network) [8,9]; 
MLP (Multilayer Perceptron), Elman Network [10]; NAR 
(Nonlinear Autoregressive); NARX (Nonlinear 
Autoregressive with exogenous inputs ), [10]. The researchers 
report good results with the proposed algorithms and suggest 
that the neural network structures should be selected 
depending on the input and the output data which are available 
and the specific condition for any use case. 

The main weather component with an influence on the PV 
production is the solar radiation. The level of the solar 
radiation depends on geographic location, time of day, 
seasons, local landscape and local weather, [11]. That’s why 
the local weather parameters like temperature [12, 13, 14] and 
humidity [15] could be used to estimate the solar radiation in 
a specific region. As the cloud coverage has strong impact on 
the level of solar radiation, some authors use more complex 
input satellite data and sky images, [16, 17]. 

The goal of this paper is to present an algorithm for PV 
production modeling using Neural Network in case of lack of 
information about the consumption profile and solar radiation 

mailto:aleksa.georgieva@tu-sofia.bg
mailto:aleksa.georgieva@tu-sofia.bg


 

 

and to present an algorithm for selecting the best ANN 
(artificial neural network) structure. 

II. DESCRIPTION OF THE PROBLEM 

The neural networks has several parameters which have to 
be fixed before starting the network training: number of 
inputs, number of outputs, number of the hidden layers, the 
activation functions of the neurons of the hidden and output 
layer which form the neural network structure. In more 
complex case feedbacks between hidden layers could be 
stated. The research works show many different ways to 
construct the neural networks to deal with stochastic 
uncertainty but usually, it is done separately depending on the 
exact use case and the data which are obtainable for analysis 
and there is no common algorithm to calculate the mentioned 
above neural network parameters, [18].  

This article presents a practical approach for the 
implementation of neural networks for modeling the PV 
production in a single-family house. The use case presents a 
test facility with a photovoltaic installation that is connected 
to the grid but produce energy only for self-consumption 
(based on consumption measurements the photovoltaic 
system produce only if loads are presented in the consumer 
network (Fig.1). The level of production is strongly related to 
the level of consumption). Photovoltaic installation can 
produce if the necessary energy is available and if loads are 
connected to the system. If the load is less than the available 
energy the PV installation reduces the production to the level 
of the presented loads. For this purpose measurements of the 
energy production and the consumed energy are available in 

the system. The presented measurement system Fig.1 is 
connected with a SCADA system to record energy data for 
monitoring and analyses. The data for consumed and 
produced active energy in kWh, produced and consumed 
active power in kW are recorded with step of 1 minute Fig.2. 
From the records timestamps an information about the hour of 
the day (range 1-24), day of the week (range 1-7), month of 
the year (range 1-12), day of the year (range 1-366) and week 
of the year (range 1-52) are extracted. Additionally from the 
specialized websites a weather information is integrated for air 
temperature, humidity, pressure, and wind speed. The weather 
data is collected hourly. To be able to synchronize the records 
from the PV system and the records from the weather stations 
hourly data for the electricity production are extracted for the 
database using the equation (1) 

 𝐸𝑛 = 𝐸𝑛
𝑒𝑛𝑑 − 𝐸𝑛

𝑠𝑡𝑎𝑟𝑡 

Where: 

- 𝐸𝑛 is the energy in kWh for the n-th hour, 

- 𝐸𝑛
𝑒𝑛𝑑 is the active energy totalizer of the smart meter 

at the end of the n-th hour, 

- 𝐸𝑛
𝑠𝑡𝑎𝑟𝑡  is the active energy totalizer of the smart 

meter at the end of the n-th hour. 

To be able to use time in the model a representation of the 
timestamp as a real value is used where the whole part of the 
number is the number of the day starting from 01.01.1900 and 
the fractal part is the time of the day. 

 
Fig. 2. Output PV power curve. 

 

 
Fig. 3. Algorithm for modeling of PV production.  
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III. METHODOLOGY OF RESEARCH 

Figure 3 depicts the investigation's methodology and 
developed algorithm. The proposed algorithm consists of a 
comparison between networks behavior based on minimal 
Mean Squared Error (MSE). To be able to avoid getting stuck 
in a local extremum it is suggested to make several pieces of 
training with different initial neurons weights. The method 
used to estimate the initial weights and biases of the neuron is 
the Nguyen-Widrow initialization algorithm [8]. Also to be 
able to choose the number of neurons in hidden layer a scan is 
done changing the number of neurons between preliminary 
defined minimal value and preliminary defined maximal. The 
network with the best performances is stored and used for data 
prediction. To be able to estimate the NN prediction ability the 
predicted data are compared with the real ones. From the 
recorded data hourly energy consumption is extracted and the 
data are shown at Fig.4. The main parameters for training the 
neural networks are: 

 Maximum number of training iterations: 100000; 

 Performance: Mean-Squared Error; 

 Training Algorithm: Levenberg-Marquardt [19]; 

 Minimum gradient. 1.10-7.As the energy data are 
collected every minute and the meteorological data are 
collected hourly the algorithm starts with energy data 
aggregation to extract the hourly averages Fig. 4. 

The proposed neural network structure with the 
corresponded input pattern is shown at Fig.5. 

 
Fig. 4. Hourly power generation. 

 

 
Fig. 5. Neural Network Structure. 

The input vector is given as equation (2): 

 𝑢 = [𝑢1, 𝑢2, … , 𝑢6, ] 

where: 

𝑢1- is the vector of an hour of the day (hourly) 

𝑢2- is the vector of a day of the week (hourly) 

𝑢3- is the vector of average temperature (hourly) 

𝑢4- is the vector of average humidity (hourly) 

𝑢5- is the vector of average wind speed (hourly) 

𝑢6- is the vector of  Day/Night index (0 – the dark part of the 

day-night; 1 – light part of the day-night) 
The input data consists of 168 samples. The training 

periods are given with numbers from 1 to 7 at Fig.4 and as test 
data the values for the 9-th period given at Fig.4 are used The 
FFNN is configured with one hidden layer with tangent-
sigmoidal activation function. The output neuron has a linear 
activation function. The algorithm makes several runs with a 
different number of neurons in the hidden layer (between 6 
and 15). 

IV. EXPERIMENTAL RESULTS 

During the inquiry, it was discovered that the outcome of 
network training is influenced by the initial values of the 
neurons, thus numerous runs were carried out to compare the 
results of these calculations while commencing training with 
various training start points. The first input pattern consists 
only hour of the day and the average temperature. Sample 
graphical results are given in Fig.6 for NN with 11 neurons. 
The first graphic is the sample series, the second one is the 
Network behavior after training and the third one is the error. 
The MSE values for networks with different neurons are given 
in Table I. MSE1 is obtained when we zeroes as initialization 
values of weights and the biases are applied and MSE2 values 
are obtained when pseudo-random numbers are used for initial 
weights and biases. It is visible that there is no big difference 
between the results but the best result are obtained with 11 
neurons in the hidden layer but it is visible from the data in 
Table 1 that there is no significant change in MSE for the 
networks with number of neurons in hidden layer greater than 
9.  

TABLE I.  MEAN SQUARED ERRORS FOR THE FIRST 

EXPERIMENT 

Number of neurons MSE1 MSE2 

6 118.1840 118.3321 

7 118.1834 118.1823 

8 118.1965 118.1809 

9-15 118.1809 118.1809 

 

 
Fig. 6. Neural Network Prediction Results for 2 inputs NN. 



 

 

The comparison of the best-performing neural network 
model data with real data on a day of the week where there is 
no dip in production due to no consumption demands. It is 
visible that this network predicts almost perfectly the average 
behavior of the PV. In this case, it is visible that the model 
eliminates the disturbance (drop down in the production) in 
the second PV training period (Period 9 shown on Fig.4) of 
the PV which is a result of load Fig.7. 

 

Fig. 7. Neural Network Training Results for 2 inputs NN 

It is obvious that this network will not give good results in 
a long-term period but it will be a good tool for short-term 
prediction. The changes in radiation due to the sun's seasonal 
activity might be followed in this scenario by retraining the 
network using the schematic shown in Fig. 8. 

 
Fig. 8. Network retraining schedule. 

Also it is visible from the figures that this network model 
estimate average electricity production for a specific hour of 
the day but does not estimate the change of the load related to 
the specific day (Period 2, Fig.4). This could be avoided using 
more complex input pattern of the network. In the next input 
pattern the number of the day of the week is added and 
day/night index which shows the transition between the day 
and the night so  𝑢 = [𝑢1, 𝑢2, 𝑢3, 𝑢6]. 

The results for the mean squared training errors are given 
in Table II. 

The graphical results for training are shown in Fig. 9 and 
the comparison with the test data is shown in Fig.10. 

 

 

TABLE II.   MEAN SQUARED ERRORS FOR THE SECOND 

EXPERIMENT 

Number of neurons MSE1 MSE2 

6 29.3708 30.6185 

7 29.3708 30.6185 

8 14.3708 15.4756 

9 14.3708 14.0331 

10 8.6707 13.7080 

11 7.5695 13.5565 

12 5.8096 8.3064 

13 5.8096 6.0527 

14 5.8096 4.1163 

15 5.8096 4.1163 
 

 
Fig. 9. Neural Network Prediction Results for 4 inputs NN. 

It is visible that in the first case the prediction is not 
sensitive concerning the load profile related to the specific day 
of the week, but it fits perfectly for the prediction of the PV 
curve when enough loads are presented in the system to cover 
the total production capacity of the PV. It is clear that in the 
first scenario, the prediction is unaffected by the load profile 
associated with a single day of the week, but it is ideal for 
predicting the PV curve when the system has enough loads to 
cover the PV's whole output capacity. 

 
Fig. 10. Test results (Predicted and Real Data for period No 9). 

It is obvious that the test data and the predicted data are 

different and the reason for this is that the trained network in 

this case estimates also the load behavior and the 

meteorological data related to that day of the week Fig.9. It is 



 

 

visible that the period 2 Fig.4 differs from the period 9 Fig.4 

because of the change of the load behavior. As the network 

model estimates the load behavior, the predicted data differs 

from the real ones Fig.1. 

The third experiment is made using six variables in the 

vector of the inputs where the input vector is defined as (2). 

The neural network training results are shown in Table III and 

Fig.11. The comparison between the predicted and the test 

data are shown at Fig.12. 

TABLE III.  MEAN SQUARED ERRORS FOR THE THIRD 

EXPERIMENT 

Number of neurons MSE1 MSE2 

6 19.1975 17.6339 

7 11.0448 16.4395 

8 7.2404 7.3080 

9 5.8176 5.9675 

10 3.5155 4.8076 

11 3.5155 3.8558 

12 3.0038 2.8008 

13 2.6921 2.8008 

14 2.6921 1.9086 

15 1.3807 1.1123 

The results of the second and third experiments are similar 
and the difference is in small decrease of the MSE against 
increasing the model complexity which lead to increasing time 
for retraining. In this case the model is more flexible 
concerning the weather conditions (in the second and the forth 
periods the model fits better to the real data) but from the 
practical point of view both will have one and the same 
success.  

The summarized results concerning the networks training 
performance are given in Fig.13 where Exp.1 represents the 
results of the network training with two inputs, Exp.2 is the 
result from the network performance with 4 inputs and Exp.3 
is the results of using 6 inputs networks. 

The network with 6 inputs and 15 neurons in the hidden 
layer has the best performance and its results take into account 
the weather condition and the usual consumer’s behavior. 

 

Fig. 11. Test data results for 6 inputs neural network. 

 
Fig. 12. Test data results for 6 inputs neural network. 

V. IV.CONCLUSION 

This research presents some experimental data related to 
modeling of PV production using neural networks. In the 
research a feed-forward neural network structure with one 
hidden layer is used with different number the neurons and 
inputs. An algorithm is proposed for searching the best 
number of the hidden layer length based on the mean squared 
error estimation.  

During the investigation following conclusions are made: 

 • A neural network with two inputs can perfectly fits 
the hourly average PV production. The predicted data 
could be used in estimation of the PV efficiency in 
comparison to the real production. 

 • A neural network with two inputs can be used for 
forecasting the weekly profile of the PV production.  

 • In both cases (Exp.2 and Exp.3), an additional vector 
is utilized to represent the light and dark parts of the 
day, which improves network performance and 
reduces network training time. 

 • Extending the networks with more inputs like 
temperature, humidity and wind speed improve the 
results from the network training. 

 • The proposed algorithm of the best trained structure 
show that the utilization pseudo-random initialization 
of the neural network weights do not have large impact 
on the results. 

 

Fig. 13. Performance vs Number of Neurons. 



 

 

The research reveals that feed-forward neural networks 

can be successfully employed for forecasting PV production, 

with the issue in this case being forecasting customer 

behavior, which has a significant impact on production. As 

can be seen from the results, increasing the number of 

neurons improves forecasting results while also increasing 

the time required for network training. Future work will focus 

on developing a practical approach for implementing the 

proposed neural networks in real-world systems and 

developing a faster practical method for identifying the best 

neural network structure. 
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