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Preface

Denoting (x,t) := (21,72, 23,t) € R for m € R, 0 < m < 2 we consider

the equation
Lm[u] = Uz, + Uzyzy + Ugszs — (tmut)t = f(ﬂi', t) <01)
in the domain

0 (z,8): 0<t<t 2 7" <z <1 2
m =< (x, 1) : , ——t 2 x -t}
“ o0 m 2—m

_2
where ¢y = (32)>™ . Here, as usual, |z| = \/2? + 23 + 23.

The region 2, is bounded by the ball
Yo :={(z,t): t=0, |z|] <1},
centered at the origin O(0,0,0,0) and by the surfaces

2 2—m
Y= t):0<t<t =1—-——tz
i) o bl = 1= 52 L

NAEES {(:I:,t) 0 <t <ty |r]= —t2m}.



Preface

In the present monograph we are interested basically in the case
0 < m < 2, when equation is hyperbolic with power-type degenera-
tion at Xy, or more precisely, it is a weakly hyperbolic equation of Keldysh
type. We study the so called Protter-Morawetz boundary value problem
(or, shortly, Protter problem) for this equation, i.e. we have the following

boundary conditions:
ulzm = 0, t"u; — 0 ast — +0.

In this work we denote this problem by F,,.

However, we begin our investigations with the limiting case m =0
(Problem P,), when equation ((0.1)) becomes simply the four-dimensional

wave equation and the boundary condition on Xy turns to
Ut‘zo = 0.

In this case the problem is much more simpler and, correspondingly, it is
very well studied, but here we derive some more precise results on the exact
behavior of the solutions. These results are helpful, since they suggest the
structure of the solutions of the boundary value problem in the more general

case 0 <m < 2.

It is well known that different boundary value problems for mixed-
type equations have important applications in transonic gas dynamics, such

as modeling of certain flows around airfoils (see Bers [0], Morawetz [2§],
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Kuz'min [23]). After a space symmetry assumption, the transonic po-
tential flows in fluid dynamics are described in the hodograph plane by
two-dimensional boundary value problems (such as the famous Guderley-

Morawetz problem) for the Chaplygin equation
K(t)um — Ut — 0

with tK(t) > 0 for t # 0. Clearly, this equation is elliptic in the subsonic
half-plane ¢ < 0 and hyperbolic in the supersonic half-plane ¢ > 0.

M. Protter [43], 44] proposed some multidimensional variants of the
Guderley-Morawetz problem in a domain consisting of a subsonic (t < 0)
and a supersonic part (¢ > 0). Restricting his investigation only in the
supersonic part of the domain, he also formulated some new boundary value

problems for the equation

N
t" Z Uy,z, — Uy = f(2,1) (0.2)
j=1

with N > 2, m > 0 and x := (x1,...,2y). This equation obviously
is a multidimensional analogue of the Chaplygin equation with K(t) =
sgn(t) |t|™. More precisely, Protter formulated his new problems in a do-
main bounded by two characteristics surfaces of equation as well as
by the surface {¢ = 0} and he prescribed the boundary data on one of
these characteristic surfaces and on the hyperplane {t = 0}. In this way,
the Protter problems are multidimensional analogues of the Darboux plane

problems for the Gellerstedt equation (m > 0) or for the wave equation
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(m = 0). (Actually, for m = 0, when we have Neumann boundary data
on Y, the corresponding four-dimensional Protter problem coincides with
Problem P, which we study in the first chapter.)

However, while the two-dimensional Darboux problems are well posed,
this is not true for the Protter problems. Actually, these problems have
infinite-dimensional cokernels, which firstly were found out for the wave
equation ([50]) and, after, for the Gellerstedt equation ([41, 22]). This
means that for the existence of classical solutions it is necessary infinitely
many orthogonality conditions on the right-hand side of the equation to be
fulfilled. For this reason, Popivanov and Schneider [41] suggested the Prot-
ter problems to be studied in the frame of generalized solutions with possible
big singularities. Today it is well-known that such singularities really exist
(see for example [16], B3, 38, [41]). It is interesting that they are isolated at
one boundary point and do not propagate along the bicharacteristics, which
is not traditionally assumed for the hyperbolic equations.

Different aspects of the Protter problems and several their generaliza-
tions are studied by many authors, see for example [I], 2 4, [§, 12) B2] and
references therein. For different statements of other related problems for
mixed-type equations, including nonlinear equations, see [9 10, 2], 25 27,

17).

The Chaplygin equation and its multidimensional variants are known

as Tricomi-type equations, while the mixed-type equation

Ugpyr — K(t)utt = O
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and its different generalizations (including equation (0.1 for m € (0,2))
are known to be Keldysh-type equations.
It is known that the Keldysh-type equations also play an important

role in fluid mechanics, for example the equation
Ugy + Uy + aty + buy +cu =0 (0.3)

near the line ¢ = 0. Keldysh [19], while studied the regularity of the so-
lutions of 2-D elliptic equations near the boundary, showed that for the
degenerating elliptic equation the formulation of the Dirichlet prob-
lem may depend on the lower order terms (the dependence is different for
different values of m).

Fichera [I1] generalized Keldysh’s results for multidimensional linear
equations with nonnegative characteristic form and now the boundary value
problems for them are well understood in the sense that boundary conditions
should not be imposed on the whole boundary. A summary of Fichera’s
theory can be found in Radkevich [45, [46]. Keyfitz [20] examined whether
the Fichera’s classification could be extended to quasilinear equations and
mentioned that the contrasting behavior of the characteristics of the Tricomi
and the Keldysh-type equations may have implications, unexplored yet, for
the solutions of some free boundary problems arising in the fluid dynamics.
Otway [34, [35] and Lupo, Monticelli and Payne [24] gave a statement of some
2-D boundary value problems for elliptic-hyperbolic Keldysh-type equations

with specific applications in plasma physics, including a model for analyzing
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the possible heating in axisymmetric cold plasmas.

In view of all these results it is interesting for us to study the multidi-
mensional Protter problems for Keldysh-type equations.

In [I7] Hristov, Popivanov and Schneider considered a three-dimensional
analogue of Problem P,, (0 < m < 2) involving lower order terms and
proved the uniqueness of quasiregular solution.

We mention here that a specific feature of the Keldysh-type equations
is that their solutions are not differentiable at the degenerate boundary
{t = 0} (see [7]). Then, in contrary to the Protter problems for Tricomi-
type equations, we cannot prescribe Neumann boundary data on {t = 0}.
Indeed, in our Problem P,, (0 < m < 2) we have no data on the ball X.
Instead of this, we have only a limitation on the growth of the possible
singularity of the derivative u;, imposed by the second condition in ([2.2)).

Nevertheless, in this works, based on series of our publications (|14,
15, 29, 311, 36, 7)), we find some essential similarities between Problem P,
and the Protter problems for Tricomi-type equations: they have infinite-
dimensional co-kernel and they have generalized solutions with strong sin-

gularities isolated at one boundary point.

The present monograph consists of Preface, two chapters and Ap-
pendix. In the first chapter we treat a Protter problem for the wave equation
and we improve a well known asymptotic formula describing the exact be-
havior of the singular solutions. In the second chapter we treat a Protter

problem for equation ((0.1)) with m € (0,2). For the case 0 < m < 4/3 we
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prove the existence and uniqueness of a generalized solution of this prob-
lem at certain conditions for the right-hand side of the equation, as well as
we find an asymptotic expansion of the singular solutions. The Appendix
contains various formulas for the hypergeometric function and some of its
generalizations as far as they are one of the basic tools which we apply in

our calculations.



1. The Protter problem for the

wave equation

In this chapter we study the case m = 0, when equation ((0.1]) is hyperbolic,
with no degeneration on ¢ = 0. An important result concerning this research

we have announced in [29], this is Theorem which we consider in

Sections [LBHI.6]

1.1. Statement of the problem

More precisely, here we consider the four-dimensional wave equation
LO[U] = Ugyzy + Upyzy T Ugyzy — Ut = f(xv t) <11)
n
Qo :={(z,t): 0<t<1/2, t<|z|<1—t}.

The region 2 (see Fig. is bounded by a non-characteristic surface,
this is the ball
Yo ={(z,t): t =0, |z| < 1},
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and by two characteristic surfaces of equation (|1.1])
SV i={(z,t): 0<t<1/2, |z|=1—1t},

¥ = {(x,t): 0<t<1/2 |z| =t}.

Figure 1.1.: The region €.

We consider the following boundary value problem:
Problem Pgy. Find a solution to equation (1.1) in Qy which satisfies the
boundary conditions

ulyy =0, utly, = 0.

The adjoint problem to F is as follows:

Problem P§. Find a solution to the self-adjoint equation ([1.1)) in Qo which
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satisfies the boundary conditions

ulyg =0, utly, = 0.

1.2. Some known results concerning Problem P,

Firstly, we give some well known results, developed in 38|, [40].

As we mentioned in the Preface, the Protter problems are not well
posed. In particular, Problem Fj is ill-posed as well: the adjoint homoge-
neous Problem Fj has infinitely many linearly independent classical solu-
tions.

In order to give their exact representation, for k,n € NU{0} introduce

the following functions:
£ (). 1) ZA%! (- 2)"

where
Ak (_Di(k; — z'+ 1)i(n—k i +1);
il(n+1/2 —1);

Here (a); := I'(a + i) /T'(a), which gives (a); = a(a+1)...(a+ 17— 1) for
i € N, and (a)y = 1.
Further, let us denote by Y,’(z), n € NU{0}, s =1,2,...,2n+ 1 the

three-dimensional spherical functions. They are usually defined on the unit
sphere S? := {x € R?: |z| = 1}, but for convenience of our discussions we

extend them out of S? radially, keeping the same notation for the extended

10



1. The Protter problem for the wave equation

functions:

V() =Y, (x/z]), = eR*\{0}.

n

Then the following lemma holds:

Lemma 1.2.1 ([38]). Fork=0,...,[n/2] =2 and s =1,2,...,2n+1 the

functions

EN(lz], )Y, (x), x,t) # O,
o () — Pz, )Y (@), (1) 12

0, (x,t) =0

are classical solutions from C?(Q) of the homogeneous Problem Pj.

It is easy to see that a necessary condition for the existence of a classical
solution of Problem Fj is the orthogonality of the right-hand side function
f(z,t) to all these functions vy (x,t). Indeed

/Ugs(x,t)f(x,t)dxdt:/ v o(w, ) Lolul(z,t) dudt
Q,

QTTL

_ / Lofuf (e, tyu(z, 1) drdt = 0.
Qm

This means that an infinite number of orthogonality conditions wuy = 0
with
i [ o) f o) ddt (13)
Qo

must be fulfilled.
In this case it is suitable to seek for solutions to this problem in a gen-
eralized sense. Similarly to Popivanov and Schneider [42], the generalized

solutions of Problem Fj are defined in the following way:

11



1. The Protter problem for the wave equation

Definition 1.2.1 ([38]). A function u = u(x,t) is called a generalized
solution of Problem Py in ) if:

(1) u € CU(QN\O), ulsy =0, g0 = 0

(2) the identity

/ (Wpvp — Uy Vg, — UgyUpy — Uz, Vay — fU) daxdt =0
Qo
holds for all v from
Vo :={v e CHQ) : vy, =0, v=0in aneighborhood of ¥9}.

This definition allows the generalized solutions to have strong singu-
larities at the point O. In the general case such singularities really exist.
Next, the following result on the existence and uniqueness of the gen-

eralized solution of Problem Fj is valid:

Theorem 1.2.1 ([38|). Problem Py has at most one generalized solution
in Qy. Additionally, suppose that the right-hand side of (1.1)) belongs to
CY(Qo) and has the form

[ 2n+1

flat) =Y > fillel, )Y (), (1.4)

n=0 s=1

where | € NU{0}. Then the unique generalized solution of the Problem Py

in Qo exists and it has the form

[ 2n+1

u(a,t) =Y Y up(lz],t)Y; (x). (1.5)

12



1. The Protter problem for the wave equation

Further, we will focus on the important particular case when the right-
hand side function f(z,t) is of the form ([1.4]). Actually, it is well known
that the spherical functions form a complete orthonormal system in Ly(S?)
(for detailed information on the spherical functions see for example [18§]).

The next result describes the asymptotic behavior of the singularities

of the generalized solution:

Theorem 1.2.2 ([40]). Suppose that the right-hand side function f €
CY(Qq) has the form (1.4). Then the unique generalized solution u(x,t)
of Problem Py belongs to C?(Q\O) and has the following asymptotic ex-

pansion at the singular point O:

I+1
u(a,t) =Y (o> + ) PPF(x,t) + F(x,1), (1.6)

p=1
where

(i) the function F € C*(Qo\O) and satisfies the a priori estimate
|F(z,t)] < Ol fllere), (2.t) € Q

with a constant C' independent of f;
(ii) the functions F,, p=1,...,1+ 1 satisfy the equalities

[(1—p+1)/2] 2p+4k—1

Ey(z,t) = Z Z PR (1 1) (1.7)

with functions I’ € C%(Q\O) bounded and independent of f;
(iii) if at least one of the constants uiﬁ% Lin 1.7) is different from

13



1. The Protter problem for the wave equation

zero, then for the corresponding function F,(x,t) there exists a direction

(o, 1) := (aq, a9, a3, 1) with (o, 1)t € XY for 0 < t < 1/2, such that

tl_lglo F,(at,t) = const # 0.

This means that in this case the order of singularity of u(x,t) will be no

smaller than p.

According to this theorem, the order of singularity of w(x,t) can be
strictly fixed by the coefficients , i.e. by choosing the right-hand side
f(z,t) to be orthogonal to the appropriate functions v} (z,?). Note also
that the derived asymptotic expansion clearly illustrates the fact that, as we
mentioned above, a necessary (but not sufficient) condition for the classical
solvability of Problem P is the orthogonality of f(z,t) to all the classical

solutions of the adjoint homogenous Problem Fj.

1.3. Two-dimensional problem corresponding to

Problem Py

Problem P, in the case when the right-side function f(x,t) is of the form
reduces to a two-dimensional problem ([3§]).

More precisely, let us look for a solution to Problem Fj of the form
(1.5). Using the spherical coordinates (r,0,¢,t) € R*, r >0, 0 < 0 <

m, 0 < ¢ < 21 with

x1 =rsinfcosp, xy=rsinfsingy, x3=rcosb, (1.8)

14



1. The Protter problem for the wave equation

and later in the characteristic coordinates
E=1—r—t, n=1—1r+t,
for the functions

U(&,n) == r(&n)u;,(r(& ), t(&n))

the following Darboux-Goursat problem is obtained:

Problem Pgs. Find a solution of the equation

n(n+1)
2-¢-n)

EU] =Ug, — sU=F(,n) in D, (1.9)

satisfying the following boundary conditions

U(0,n) =0, (Us = Uy)(&,€) = 0, (1.10)

where
D:={(¢n: 0<&<n<1}

and
F@m%z%@—é—nﬁﬂﬂ&miﬁm»

Note that equation (1.9)) involves a coefficient with singularity at the
point (¢,1) = (1,1).

From the results in [38], [40] it is known that if £ € C1(D), then there
exists an unique function U(&,n), belonging to C?(D\{(1,1)}), which is a

15



1. The Protter problem for the wave equation

classical solution of the considered problem in each domain DN{¢ < 6, 0 <
d < 1}, but it may become unbounded as (£,17) — (1,1). In the present
paper this function will be called a generalized solution of Problem Fpyo.
The asymptotic behavior of U(§,n) at the point (1,1) is closely con-
nected with the non-uniqueness results on the corresponding adjoint homo-

geneous problem

EU]=0 inD, (1.11)

U(E.1) =0, (U, - U(E.6) =0, (1.12)

Indeed, for £ =0,1,...,[(n — 3)/2] the functions

E}(&,n) =

(1 — &) (1 —p)n 2 1 1 (n—¢€)?
P 2“(”‘k+§"“5’(2—5—m9’

< (&) # (1,1),

\0, (5777): (171)7

(1.13)

where o Fi(a,b, c; () is the Gauss hypergeometric series, are classical solu-

tions to problem (1.11)-(1.12). They can be obtained from Lemma [I.2.1]
Actually, taking into account the formulas (A.4) and (A.16]), one can see

that the functions E}'(£,7n) are connected with the functions £ (|x|,t) by

16



1. The Protter problem for the wave equation

the relation

(=D*(1/2 —n)
on—2k+1 (1/2)k ’
(1.14)

Ep(&n) =2 =& —nELr(Em), tEn), V=

Further, it was derived a decomposition of the generalized solution of
Problem Py in terms of the functions E}'(£,n), or more precisely, with use

of the scalar products

W= /D B (&, m)F(E, ) dedn. (1.15)

Namely, the function U (&, n) according to [38], [40] may be expanded in the

following way:

/2
UG n) =Y mGr&m2—&—n*"+G(&n), (&n) €D, (116)

k=0

where G7(&, 1) and G (&, n) are bounded in D functions, such that G(&, 1) =
const # 0 and

G(& )| < K[[Fllevpy(2=8—=n) (1+[In(2=&=n)]), (§n) € D (1.17)

with a positive constant K. The functions G} (£, n) and the constant K are
independent of F'(£,n).

According to this decomposition, the order of singularity of the gener-
alized solution U(£,n) at the point (1,1) can be strictly fixed by the coef-
ficients uf, i.e. by choosing the right-hand side F'(§,n) to be orthogonal to

the appropriate functions E}'(£,n). Obviously, the asymptotic expansion of

17



1. The Protter problem for the wave equation

the generalized solution u(x,t) of Problem Py in Theorem is closely

related to the expansion (|1.16|).

1.4. Further study of the function U(¢,n) and its

restriction U(£,1)

Firstly, although an explicit form of the generalized solution U(&, n) is given
n 38|, [40], here we give a more simple one, with use of a Riemann-
Hadamard function. Furthermore, we impose a weaker condition on the
right-hand side F'(§,7): for all our next calculations it is sufficient F'(£,n)

to be continuous in D.

Theorem 1.4.1. Let F' € C(D). Then there exists an unique generalized
solution of Problem Py and it has the following integral representation at

a point (&y,m0) € D:
fo Mo
Ul6o,m0) = / /5 B(€. ;0. 10) F(€. ) dde (1.18)

where the Riemann-Hadamard function ®(&,n; &, no) is defined as

(& m 60, m0), 1> o,

@7(5777350;770)7 n < fO

D(E, m; 60, m0) =

18



1. The Protter problem for the wave equation
with
(I)Jr(g? Uk €07 770) = 2F1(n + 17 -n, 17 Y):
O (&,m;60,m0) == 2F1(n+ 1, —n, 1Y) + oFi(n+ 1, —n, 1;Y7)

and

—(& = &)(mo — 1)
2-&=n)2—% —mn)
—(no — &)(§o — 1)
2-&=n2—%—n)

Proof. It is well known that ®* (&, n; &, 7o) is the Riemann function for
equation (|1.9)). Then, given a point (§y,79) € D, the function ®* (&, n; &y, no)

Y = Y(£7n7£07n0) =

Y=Y (& n;mo, &) =

has the following properties, which we need for our considerations:
(i) Eo[®T](€,m;80,m0) = 0 in D;
(ii) @7 (&0, m:&0smo) =1, & <n <L
(i) (&, mo; &0, m0) =1, 0 <& < &.

Further, a direct calculation shows that

(iv) (P — @,)(&: &80, m) =0, 0<E <&

and

(v) 7(&, 0380, m0) — PT(E, &5 &0,mo) =1, 0 <€ <&,

First, suppose that U(&,n) is a generalized solution of Problem FPys.

19



1. The Protter problem for the wave equation

Then applying an integration by parts into the identity

& Mo
/O /6 Eo[U](&,m) @™ (€, 0, no) dnd
o
n /0 /O Eo[U(€,m)® (€, 1; €0, m0) ddy
o Mo
_ / / F(&,m)@H (€, s €0.10) dide
0 &o
o
F D (&, m; déd
+/O/O (&, m) P (&, m; &0, m0) dEdn,

with use of the properties (i)-(v) of the function ®(&,1n;&,m) and the
boundary conditions ({1.10)), we obtain that the function U (&, n) should have
the representation ([1.18)) at the point (&y, 79), which confirms the unique-

ness.

A direct calculation shows that in D\ (1,1) the function U(¢,n), de-
fined by ([1.18), really satisfies the differential equation and the boundary
conditions. To check this, take into account that the function ®(&, n; &y, no)
solves the corresponding homogeneous equation not only in respect to the
variables & and 7, but also in respect to & and nj:

~_n(n+1)
Deone (2 & — 770)

5 =0,

This confirms the existence. L]

Next, from here we derive a more accurate formula for the restriction
U(&,1):

Theorem 1.4.2. Suppose that F € C(D). Then the restriction U(,1) of

20



1. The Protter problem for the wave equation

the generalized solution of Problem Pys has the following expansion on the

segment {0 < & < 1}:

[n/2] [n/2]
Z2akuk1— )TN " 2ap TR () (L= €)M+ TT(E), (1.19)
k=0

where py are the coefficients (1.15)) and

n (A Dnop(=n)n2k(1/2)k

U = 2k) (n = )Y (— 1) (1.20)

1 m
= / / EL(&,m)F (&, m) déidm, (1.21)
¢ Jo

1 ré
:/ / OF (&, m; & 1) F (&, m) dérdm.
¢ Jo

Proof. Actually, we will prove that the function ®~ (£, n; &y, 1) has the

following expansion in negative powers of (1 — &):

[n/2]
O (&m0, 1) = D 2ap B (€, m) (1 — &)™ (1.22)

k=0

Then ([1.19)) would follow directly from Theorem [1.4.1} where ®~ (&, n; &y, 1)

is represented by ([1.22]).
With use of (A.10)) the function oFy(n + 1, —n, 1;a( + b) can be ex-

panded in Taylor series in powers of (:

oF1(n+1,—n,1;a( + )

1)s
—Z (n + ' ' “oFi(n+1+s,—n+s1+s;b)a’C’.
sl s!

21



1. The Protter problem for the wave equation

Then, denoting for shortness

—(& — &1 —n)
2=¢—n(1—-&)

—(1 =& —n)
2=¢=—n)(1-%&)

Yi=Y(¢n&, 1) =

Y=Y (& m 1 &) =

we obtain:
2Fi(n+1,-n,1;Y1) = Y Qi€ n)(1 — &)~ (1.23)
s=0
JFin+1—n LY =S Qim0 —&) " (1.24)
s=0
where
1 s\ s
& = ("JFS!)SE sy, (1.25)
Q (&) == o (n F 148, —n+s 14855 igi 77) (1(55)2%;)2)5.
(1.26)

Applying the quadratic transformation (A.17)-(A.19) to the function

2Fi(n+1+s,—n+s,14 s;() gives:

2oF1(n+1+s,—n+s1+s;()

( 1 s—n1
a22F1<n+S+ — (1—2()2>, n — s even,

2 ' 2 9

n+2+s s—n-+1 3'
2 ’ 2 79’

Be(1—2¢) o F1 ( (1-— 2()2> ., n—sodd

\

22



1. The Protter problem for the wave equation
with

. r()s I(~3)sl

Qs = F(n+§+s)r(—n—;s+1)’ 68 = F(n—k;—kl)r(—n;—s)'

(1.27)

w

From here we have:

Cr_ox@n o1 (&, M) = 01 Qn_o1(n,§) = ap B} (&, m),

k=0,...,[n/2], (128)

CZ—2k-1QZ—2k—1(fa77) = _CZ—zk—1QZ—2k—1(777€) = bZHl?(fﬂ?)a

k=0,....[(n—1)/2], (1.29)

where

n o ,__ n n n o .__ n n
Ap = Cy 00y ok, k= Cp—2k—1Pn—2k—1 (1-30)

and

¢ \n—2k-1 o \n—2k—1
Hy(€m) = (n —¢) 1=¢) 1=

ERI
1 3 —£)?
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1. The Protter problem for the wave equation

Then the expansions ([1.23))-(|1.24])) can be replaced by:

[n/2]
F(n + 17 -n, 1; }/1) - Z CLZEZ<€7 77)(1 - 60)2k_n
k=0
[(n—1)/2]
+ D bRHP(E (1 — &) (1.32)
k=0
[n/2]
F(n+1,—n,1;Y7) = Y af Bp (& n)(1— &)™ "
k=0
[(n—1)/2]

— > BRHP(Em) (1= &) (1.33)
k=0

It is easy to check that the coefficients a} defined by (|1.30)) coincide
with the corresponding coefficients defined by ([1.20)).

Finally, the expansion ([1.22)) follows directly from ([1.32))-(1.33]), which

completes the proof. [

Remark 1.4.1. It is known ([38], [22]) that for k = 0,1,...,[n/2] — 1
the functions HJ'(&,n) (see (1.31])), continued as H'(1,1) := 0, are classi-

cal solutions to a problem analogous to (L.11)-(1.12), but with a Dirichlet
boundary condition U(E, &) = 0 instead of (U, — U¢) (€, &) = 0.

Remark 1.4.2. The constants b} in (1.30)) can be evaluated as

by = (n+ Dn2p-1(=n)n-26-1(3/2)x
k

(n—2k—1)!(n—k—1)!(=1)nthtl (1.34)

In our further investigation we will need to know the derivative of the
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1. The Protter problem for the wave equation

function U(&, 1), given in Theorem [1.4.2]

Lemma 1.4.1. If F € C(D), then the derivative U¢(€,1) has the following

representation on the segment {0 < € < 1}:

[(n—1)/2]

Z 24} (n — 2k)(1 — &) (upp — J7(E))

£ 1 £
+/o F(ﬁl,ﬁ)dfl‘i‘/g F(é,m)dnﬁ/f /0 <I>§(é’1,?71;€,1)F(€1,m)d€1dm.

(1.35)

Proof. A direct calculation gives:

[(n—1)/2]

Z 24} (n — 2k)(1 — &)™ (upp — J7(E))

n/2

£
#3201 - | e @0
1
- / B, &6 1) F(E,€) des + / F(,m) dn
0 §
/ / S & DF(Em) dédny. (1.36)

According to ([1.22)) we have

(/2
> 2ap(1— P ER(€,6) =@ (4,66,1) =
k=0

OH(E1, &6, 1) + DH(ELE L,E) = DT(EL,E€,1) + 1

which we substitute in ([1.36]) to obtain ([1.35]). O
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1. The Protter problem for the wave equation

1.5. An improved asymptotic representation of the

function U(¢,n)

In order to represent our next results in a more compact form, we introduce

the functions

n

[n e & ok 1 1 (77 - 5)2
Ek(Sﬂ?) T (2_5_77)7172]f 2F1 (n_k+§7_k7§7 (2_6_77)2) )

~ n o 1 3 Y
e = B (ks o 0

where o and S7 are the coefficients ([1.27). These functions are obviously
connected with the functions ([1.13) and (1.31)) by the relations

ap oy B (Em) = (1= " (1 —n)" Ep(E,n), (1.37)

"kt Hi(6m) = (L= &) 21— )" 2 HP(E, ). (1.38)

In the next theorem we show another exact formula for the general-
ized solution U (&, n), which actually gives an explicit form of the functions

G (&,n) and G(§,n) in the asymptotic representation ([1.16]).

Theorem 1.5.1. Let ' € C(D). Then the generalized solution of Problem
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1. The Protter problem for the wave equation

Pyo has the following representation in D:

[n/2]

U(&,n) Z%ZEk &, / / Eg(&1,m)F(§1,m) d&idm

n1/2

+_Z:W@§n//l%&m (€.m) €y

[n/2]

n
Z El?(fan)/g/OEl?(flﬂ?l)F(gl;nl)dfldnl

(1.39)
[(” 1/2] n ¢ ~
+ Z ZEZ(fam/g /o B (&, m) F(§,m) d§idm

+ Z bZH;?(@U)/g / Hy (&0, m) F(&1,m) d§idm
k=0 0

[n/2]—1 nore
+wam%/wmwwm%m
k=0 0

where the coefficients aj and by are given by (L.20]) and (1.34)) respectively.

The proof of this theorem is too long and we leave it for the next

section.

Corollary 1.5.1. Let I € C(D). Then the asymptotic expansion of
U(&,m) given by (1.16|) is still valid, i.e.

n/2)
n) =Y mGrEMN2—E—n) "+ G(En), (En)eD

k=0
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1. The Protter problem for the wave equation

(even if F ¢ CY(D)). Furthermore, we may specify

1 2
G (&,m) = 2a5a5,_oy o F) (n “hrghy (Q(ﬁ5 g)m )

For the function G(&,n) there exists a positive constant K independent of

F', such that a following estimate holds

G(& )| < K[[Fllew)(2-8&—=mn), (§n) €D, (1.40)

which improves the corresponding estimate (|1.17)).

Proof. The first term in the representation (1.39) may become un-
bounded as (£,7) — (1,1) and the other terms are bounded. Actually,

defining
GR(&m) = 2a}(2 = & = )" *F B} (E,m),

the first term may be written as

[n/2] § rm
Z 207 ER(E,7m) / / By (&, m)F (&, m) d§idm
n/2 [n/2] 1 m
_-§£:2a2u ElME ) ZE:QGZE%(ﬁan)jQ /g Eg(&1,m)F(§1,m) d&idm

[n/2] [n/2]
=" RGRE )2 — € — )P =3 2ap ER(E,m) L (E).
k=0 k=0

Next, defining

[n/2]

G(&n) : Zu HEmME2—g—n)*,
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1. The Protter problem for the wave equation

we obtain (|1.40) with use of the estimates

B¢ <CA—n)"2,  [HEn)| <O@—n)
(1.41)

B <CA-¢*™,  [H(En)| <O -,

where C' = const > 0. The estimates ([1.41]) easily follow, taking into ac-

count that the hypergeometric series of the form oF(a, —k,¢; (), |C] < 1,
k € NU {0} are bounded, because they are polynomials of (. 0

Remark 1.5.1. The expansion (1.19)) is in accordance with the derived
expansion of U(&,m). Comparing (1.19) with (1.16]) we have
[n/2]
G 1) = =D 200 (€)1 = "+ TH()

k=0

and

G(€,1) = 2aj.

1.6. Proof of Theorem 1.5.1]

At first we will prove some auxiliary lemmas.

Lemma 1.6.1. Forp=1,...,n the following relation holds:

—~ P AQiEn)
~s+p (1-¢)°

= (1 =n)""Qy(&n), (1.42)

where ¢ are the constants (1.25) and Q7 (&,n) are the functions ((1.26]).
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1. The Protter problem for the wave equation

Proof. For p=1,...,n we have:

- P C Q f 77 En:nz:s s n + 1)j+s(_n)j+s (1 - n)jJrS
(p+

Zsp -9 &b - )5(1)j+sﬂs! <2—s—n>f+s
m=0 mlm! 2_6 77 m —0 S|,
where we used (A.1)-(A.2). Further, using (A.9)) we see that
Fp+)I(m+1)  m

oFi(p,—m,p+1;1) =

T(C(p+m+1)  (p+ 1),

Then we obtain:

p Qi n) ( 1—n )
=i {n+1,—np+1l,——— .
—~s+p (1-¢)° w 2—&—1

Finally, by the auto transformation formula (A.13]) we have:

_F( +1 PP )
ol’1 | N , —n,p Yy .
2—-&—n

_ (=g L 1-m
_(2_£_n)p2Fl <p+n+17p_nap+172_€_n>7

which completes the proof. l
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1. The Protter problem for the wave equation

Lemma 1.6.2. Define

S(l)(fomo) =

n n 50 n
=D i@y (& m) (/0 /0 (L —=n)""""Q¢(n, ) F(&,m) dédn

s=1 p=0

& 1
" /0 /€ (1-¢) st(f,n)F@,n)dnds). (1.43)

Then
S (&, m0) = T (&0, m0) — To (&0, m0), (1.44)

where

&
T (6orm0) = /0 /0 O+ (0, 1; &0, 10) QL (0, ) F(€, ) dédn

€o 1
+/ /qﬁ(’i13507770)628(5,?7)F(§,n)dndé‘, (1.45)
0 Je

&
Tolomo) = /0 /0 (1,13 €0, 10) F (€, ) dédny

&o 1
(e 1.
T /0 /£ O (€, 1: €0, m0) F(€,1) dndé. (1.46)

Proof. According to (|1.23))

n

AL —n) = (&0, 1) =1,

s=0

o aQuE 1 -6 =N (& nE 1) = 1.
s=0
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1. The Protter problem for the wave equation

Therefore .
> Qi 1 —n) " =1-Q5(n, &),
o (1.47)
o aQUE (-8 =1- Q&)
s=1

as far as ¢ = 1.

On the other hand, again by (|1.23]), we have

ZCZQZ(é()?nO)(l - n)_p - q)+(£07 No, 1, 1) - Q)—'_(T}, 1;507770)7
p=0

" (1.48)
ZCZQZ(&),??O)O —&)P =0 (&, m0;€,1) = D€, 1580, m0),
p=0
where we take into account that
(I)+(£07 To; 57 77) - (I)+(€7 Uk 507 770)
Then ([1.44) follows directly from (1.47) and ([1.48)). O
Lemma 1.6.3. Define
5(2)(507 M) =
n.on D ISl L
> g ——@Q5 (&, m) / / (1= n)*PQL(n, &) F (& n) dédn
ot s+p 0o Jo

o 1
n /O L (1-¢) st(f,n)F(é‘,n)dndf) (1.49)
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1. The Protter problem for the wave equation

Then
(n-1)/2 e

S®(&,m0) = Z CLZE/?(&),UO)// Ep(&,n)F (& n) dédn
k 0

§o _
+ Z v mo// 1} (€, m) F (&) déd

[(n—1>/2] b
20" EM (&, ErE, n)F(€,n) déd
+ kz% ap By (&o 770)/0 /0 R (&) F (&, n) dédn

— T (&0, m0) + Zo(&o5 M0),

where J (&, m0) is the function ([L.45) from Lemmal[l.6.9 and

To(€0,m0) = Q3 (60, ) ( / ) / QU R (¢, ) ded
T /0 ) /g Qe mFEn) dnd€> - (150)

Proof. First, recalling (|1.48)), we note that

T (§0,m0) — Zo(&0,10) =

n

> Q. m) (/05 /On(l — 1) "Qy(n, §) F(§,m) dédn

: +/0§O /;(1 —&)7"Qy (& F(&m) Wg) |
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1. The Protter problem for the wave equation

Then

S@ (&, m0) + T (€0, m0) — To(€o,m0) =

ZZ $+ ;@ (&0, ) (/50/ L =)= 7PQ (1, &) F (&, m) dédn

i /0 " /g (1= &)~ QN ) F(Em) dnd€> .

Now, with Lemma [1.6.1| we come to

S® (&, m0) + T (€0, m0) — Lo(&0,m0) =
" So 1
> ( [ / (1= €77 (1 ) Q0. (€. ) ded
p=1

€o
w[1[a-ara-nregenrendans). s
Comparing the relations — and — we see that
noon(€m) = Qo (0,€) = (1= &)™ 21— )" 2 EL (€, m),
k=0,...,[n/2], (1.52)
?L—Zk‘—l(é? 77) - _QZ—Qk—l(na é) - (1 - é)n_2k_1(1 - n)n_2k_1l~{]?(£7 77)7

k=0,....[(n—1)/2]. (1.53)

Applying ([1.28)-({L.29) and ([1.52)-([L.53) into ([L.51)) completes the proof

of the lemma. U]
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1. The Protter problem for the wave equation

Lemma 1.6.4. For k=0,...,[(n—1)/2] and (§,n) € D define

o
I (&0, m0) = (n — 27{3)/0 (1 — JHE)) (1 = &) 10 (&, 15 &, o) dE.
(154)

Then

B So 1
12(€0.m0) = B (€0, m0) / / L&, n)F(&,n) dédn + Pl (o, ), (155)

where

—~ n—2k
P]?(ﬁoyﬁo)izz nos

s=0

“dp(E)

m—_%ch?(ﬁo,no)/o d—g(l '3
(1.56)

Proof. Since ®*(&,n;&0,m0) = ©7 (0, m0; €, 1), by (1.23) we have:

n

OF(E, 15 60,m0) = D hQ (S, mo) (1 =€)~ (1.57)
5=0
Then
n _ - n—2k nAn “ n_ i _ \2k—n-—s
Gom) =30 gl [ (- IE) (-9 de

n

Integrating by parts and taking into account that J;'(0) = u}

(1.21]) and ([1.15])), we obtain:

(see

1 (€0, m0) = By (S0, m0) + Z . Z Y (ES?ZSS’Z,SL (k= J7(&))-
s=0
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1. The Protter problem for the wave equation

Then, taking into account ([1.52)), from the relation
§o 1
- = [ Ee e dedy

and from Lemma with p = n — 2k it follows ([1.55)) . O

Lemma 1.6.5. Define

&o
I(&o,m0) / (// S(&,m; (&, 771)d§1d771) OF(E,1; &9, mo) dE.

(1.58)
Then
[(”_1)/2] ~ 1 &
1(60,m0) = nED (6o, ENE, n)F(€,n) déd
@ = 3 k(oﬁo)/&)/o n(¢ n)F(E, ) dédy
[”/2]_1 ~ 1 &
+ Z b 7 (60, 10) /5 HE (€, n)F(€, ) dédy
[(n— 1/2 &
o3 anem [ [7 B orey o
o 6
S BpH G m) / (6, m)F(€.m) dedn
k=0 & JO
(n-1)/2 5
+ 2ay, By (80, E(&n)F(€,m)dédn
kzzg EHENSO 0/ / k
[(n—1)/2]
= J0(&,m0) + Zo(&o, o) Z 2a;, Py (&0, m0),
k=0

where Jo(&,mo) is the function ([1.46) from Lemma[1.6.3, To(&o,mo) is the
function ([L50) from Lemma [1.6.5 and P}(&,mo) are the functions (1.50)
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1. The Protter problem for the wave equation

from Lemma|1.6./].

Proof. Using the expansions (|1.23)) and ([1.57)) we may write:

1(&0,m0) ZZC

p=1 s=0

€o d
) | TR0 s

with
Th(E) //Qn &,m)F (&, m) ddm.

Integrating by parts, we obtain:

I(&0,m0) = TW (&0, m0) + 1P (&0, m0),

where
IV (&, mo) == CsCp —]in?(fo’ 10) Y (§o) (1 — &)™,
p=1 s=0
n n 50 n
(2) N non_ S n de (5) I St
) = = 323 el | Eia—grae

A. Calculation of IM(&y,mo). First, we apply Lemma |1.6.1| to obtain:

100, m0) = 7 () (1 — &) (1 — 1) Q1 (0, o)

p=1
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1. The Protter problem for the wave equation

Then with ([1.28))-(1.29)) and (1.52)-(1.53) we come to

(v e
0= aBomw) | [ B mFeE iy
k=0 ’
[n/2]-1 L réo

£ G [ [ HE P dedn
k=0 So /0

B. Calculation of 1 (&, no). First, we calculate:

dT”
/Q” CLOF(E.E d§1+/Q”£m F(&.m) din.

Then we have:

@ (&, m0) =

ZZ%H 7 (&0, ) (/5/ L= ) QUE M F (€, m) dedy

—/050/g (1=8)7"Q (&) (& n) dnd§>-

Now, using the relations ([1.28])-(1.29)), we see that

&
ZZCW s+p Z(&)’UO)/ /n(l—n)_s_pQZ(é,n)F(&n)dédn

&
:_ZZC?CZSJF 50,770/ / (1 =n)""7PQ¢(n, ) F(&,m) d&dn

[(n—1)/2]
S° 20 Py (G0, m0), (159)
k=0
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1. The Protter problem for the wave equation
where we take into account that

(n=1)/2] —1)/2) I
Z 2ay By (€0, o) Z Z o @ (C0, )
=0 =0

/f / ) PER(E, n)F(€,m) dédn,

since

d‘]n / EINE, ©)F (61, €) déy.

Consequently, 1) (&, 770) becomes

[(2)(507 770) -

n n

2
_ZZC?CZS+ Q3 (€. 0) (/ / (1= n)="7PQ¢(n, ) F(&,n) d&dn

s=1 p=0

o (n-1)/2
e[ oo nrienane) - 3 2piem)

k=0

Applying here the simple equality

S _4__P
S+p s+p’
we decompose 13 (&, ) as
[(n—1)/2]
I®)(&o,m0) = S™ (€0, m0) + S® (€0, m0) Z 2a. By (&o,m0),  (1.60)

k=0

where SW (&, ny) and S (&, 1) are the functions ) and (L.49) re-
spectively. Finally, applying Lemma and Lemma into (1.60]) we
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1. The Protter problem for the wave equation

derive
[(n—1)/2] L6
Peom) = 2 aiB (G, m) /£ /0 Ep(&n)F (& n) dédn
k=0 0
[n/2]~1 e
+ 3 G /5 [~ (e F(eon) dedy
n 1 /2 50 77 ~
X 2B / / Ep(e.n)F(.m) dedy
0 0
[(n—1)/2]
— Jo(0,m0) + Zo(&0, m0) Z 2ay By (€0, o)
The proof is complete. ]

Lemma 1.6.6. Let Zy(&y, m0) be the function defined by ((1.50)).

(i) If n is an even number, then

o
To(0,m0) = apy o B 15(60, 10) (/ / 2E5,(&n)F (& n) dédn

/g | / Y B (e ) dfdn)

(ii) If n is an odd number, then

5 L réo
Zo(&o,M0) :b?n_n/zH&_n/g(ﬁoﬂ?o)/g /0 H{, 1y 2(&m) (€, n) d€dn.

The proof of this lemma follows directly from the relations ([1.28])-({1.29)

and ([C5)-([C59).

Proof of Theorem [1.5.1] Obviously, the function U(&,n) is a solu-
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1. The Protter problem for the wave equation
tion of the following Goursat problem:

n(n+1)

Ufn T (2 o 5 _ 77)2U = F(£777)7
U(0,n) =0,
[n/2] [n/2]
Z2akuk (1—¢) Zza — & T,

(see ) and Theorem

Then, solving this problem by the Riemann method, we obtain

1 ré
U(&,mo) :W(foﬂ?o)—/ /o (&, m; &0, m0) F(E,m) dédn, (1.61)
Mo
where
&o
W (&0, 10) = /O Ue(€, 1) (€. 1; &9, 1m0) dE. (1.62)

On the one hand, according to ([1.61)) and the representation ([1.18)) in
Theorem [L4.1] we have

So 1l
wigm = [ [ o€ momrenaas o)
On the other hand, using Lemma [I.4.1] we can evaluate the integral in
(1.62)) directly:
[(n—1)/2]
W(&.mo) =Y 2a)I (&, m0) + Jo&o.mo) + I (6o, m0), (1.64)
k=0

where 17! (£, m0), Jo(&o, mo) and I(&y, no) are the functions defined by ([1.54)),
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(1.46) and ((1.58)) respectively. Applying Lemma [1.6.4] Lemma and

Lemma [1.6.6| to ((1.64)) gives that

o rl _
Wieom = [ [ denamrEn s (16)
0 13
where
. O (&,m; €0, m0), > &,
(&, m; &0, m0) = 3 e 1o (1.66)
(&, m:80,m0), 1 <&
with
[n/2] [(n—1)/2]
O (&, m; &0,m0) = D 27 B (&0, m) R m) + D 20 B (6o, o) ER (€, m),
5—0 k=0 167)
) o (1) )
q)+(fa77§507770) = ZGZEIZL(§O7770)EI?(€7U) + Z QZEZ@O;??O)EI?(S’??)
k=0 k=0
[(“ 1)/2] [n/2]-1
+ > BH (S m)HE(Em) + Y bEHE (So,mo) HE(E,m). (1.68)
k=0 k=0

Since F'(&¢,7n) is an arbitrary continuous function, comparing the iden-

tities ((1.63]) and ([1.65]), we conclude that
(i)(éa Uk an 770) = (I)(fa n; 507 770)

Finally, applying the expansion (|1.66))-(1.68]) into (1.18]) completes the

proof of the theorem. O
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1.7. Asymptotic expansion of the generalized

solution of Problem P,

Lemma 1.7.1. For k =0,...,[n/2] the following relations hold:

n__ .n,n
Hie = Tk PE.s

where the coefficients p ., v, py are defined by (1.3), (1.14), (L.13) re-

spectively.
Proof. Denote
Go:={(r,t): 0<t<1/2,t<r<1-—t}.

Denote also by Y the spherical functions expressed in the spherical coordi-
nates, i.e. Y’(z) = Yi(0(x), p(x)). Then, using the orthonormality of the
spherical functions on the unit sphere S? and the relation (1.14)), a direct

calculation gives:

= oo w0 dod

T s I 2p+1
- [ [ [awovies (Z > sy, w)) sinf1? drdtdgdd
— [Our6.00ds [ (En) 0% dre =1
S2 Gy ’Yk;
The proof is complete. [
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Now, the inverse transformation from Problem Fy, to Problem P gives

the following improvement of Theorem [1.2.2}

Theorem 1.7.1. Suppose that the right-hand side function f € C(Qq) has
the form (1.4). Then the unique generalized solution u(x,t) of Problem P,

has the following asymptotic expansion at the singular point O:
l
= |a| P Fy(x,t) + F(a,t), (1.69)
p=0
where

(i) the function F(x,t) satisfies the a priori estimate
|F(z,t)] < Cllflle@y),  (z,t) € o

with a constant C' independent of f;
(ii) the functions F,, p=0,...,l satisfy the equalities
p)/2) 2p+4k+1

Z Z z—;%Fp-i-% 1),

where

1 1 t?
Fﬁs(x,t) = 2%_"“7};@2&2_% o F (n —k+ = 5 —k, 5 W) Y7 (x),

and the constants v, ai, o) are given by (1.14), (1.20), (1.27) respectively;
(iii) if at least one of the constants uz;% in (1.7) is different from

zero, then for the corresponding function F,(x,t) there exists a direction
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(o, 1) := (aq, a9, a3, 1) with (a, 1)t € XY for 0 <t < 1/2, such that

tl_lg_lo F,(at,t) = const # 0.

This means that the order of singularity of u(x,t) will be no smaller than

p+ 1.
To obtain this result, we use Corollary and Lemma [1.7.1]

Remark 1.7.1. Using (1.14]) we see that the hypergeometric functions
oFi (n—k+1/2,—k,1/2;8*/|z|?) are connected with E}'(|x|,t) in Q in
the following way:

1 1t o Qa2
ZFI (TL — k + 57 _ka 57 W) = Yk (|ZL‘|2 _ t2)n—2k gk (‘ﬂi",t)

Consequently,

(|:13|2 _ t2)n_2k

‘x‘n—Qk—i—l ?

vis(@, 1) = K Fy (2, 1) (z,1) €

with K = const # 0.
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2. The Protter problem for

Keldysh-type equations

In this chapter we study the case 0 < m < 2, when equation is weakly
hyperbolic. For 0 < m < 4/3 we derive some results on the generalized
solvability of the considered boundary value problem, as well as we clarify
the asymptotic behavior of the singularities of the generalized solutions. An
essential part of this investigation we have published in [14], [15], [36], [37]
and [31].

2.1. Statement of the problem

For m € R, 0 < m < 2 consider the equation
Lm[u] = Ugyzy 1 Uzgwy T Uzgay — (tmut)t - f(l’, t) <2'1)

in the domain

2 2—m 2 2—m
Q= ) 0<t<ty, —t 2 < <l———t2 ,,
{(x> O 5, 2] 2—m }
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2. The Protter problem for Keldysh-type equations

2/(2—m)

with ¢y = ((2 —m)/4) . The region €, is bounded by the ball X

and by two characteristic surfaces of equation (2.1

2 2m
271”::{(3:,15):0<t<t0, |x|:1—mt 2 },

Xy = {(:U,t) 0 <t <ty |x|= —t_T},

(see Fig. [2.1]).

Figure 2.1.: The region €2,,.

Note that the hyperplane {t = 0} is tangential to the characteristics

Y7 and 35" and the ball 3y is also a characteristic surface of equation ([2.1)).

We study the following boundary value problem:

Problem P,,. Find a solution to equation (2.1)) in §,, which satisfies the
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2. The Protter problem for Keldysh-type equations

boundary conditions
ulzm = 0, t"uy — 0ast — +0. (2.2)

The adjoint problem to P, is as follows:
Problem P},. Find a solution to the self-adjoint equation (2.1) in €,

which satisfies the boundary conditions

ulsy = 0, t"u; — 0 ast — +0. (2.3)

Note that there is no data on the degenerate boundary >,. Instead,
the derivative u; is allowed to have singularity on it up to the prescribed

level.

2.2. Generalized solvability of Problem P,, and
asymptotic behavior of the singularities of the
generalized solutions

Similarly to Problem Py, Problem P, is not well posed, because its adjoint

homogeneous Problem P} has infinitely many nontrivial classical solutions.

Indeed, for k,n € NU {0} let us introduce the functions

k ) ‘ 4 n_k_z_2(2T7n)
(el t) = 32 A lal 2 (Jaf - )

i=0
(2.4)
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2. The Protter problem for Keldysh-type equations
with

Z-(k—z'—l—l)i(n—k—i—l—(4—3m)/(4—2m))@~.

km
AP = (1) il(n+1/2 — 1),

Then the following lemma holds:

Lemma 2.2.1. Forallm € R, 0 <m < 2, k,n € NU {0},
n>N(m,k):=2k+14+m/(2—m) and s =1,2,...,2n+1, the functions

e Y? O
027’?($,t) — k (‘[E|,t) n(x)v (xat) 7£ ) (25)

0, (x,t) =0

are classical solutions from C*(Q,,) N C(Q,) of the homogeneous Problem

P*

m*

Proof. First, we have obviously that v;’["(z,t) € C*(Qp).

Forn > N(m, k) we see that £ (|z|,t) — 0 as (x,t) — O. Therefore
v () € C(Qn) N C(n).

It is easy to check that for n > N(m, k) the boundary conditions
are also satisfied.

Now, let us look for solutions of the homogeneous Problem P’ of the
form ([2.5). Passing to the spherical coordinates in the homogeneous
equation and using that the spherical functions satisfy the differential

equation

1 0 (. 0, 1 0%, .
— — <Sm 0—Y, > + sin298—go2Y” +n(n+1)Y; =0, (2.6)
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2. The Protter problem for Keldysh-type equations
we see that the functions £ should be solutions of the equation

n(n+1)

Uy + ;UT — (t"vy) — —v =0 (2.7)

r

n

2 2—m 2 2—m
G, = ) 0 <t < ty, t?2 <r<l———=tz2 5.
{(T ) "2—m " 2—m }

A direct calculation of the derivatives of £ (r, t) shows that these functions
indeed satisfy equation ([2.7)).

The proof is complete. L]

Consequently, a necessary condition for the existence of a classical so-
lution of Problem P, is the orthogonality of the right-hand side function
f(x,t) to all these functions v,""(z,t). Respectively, an infinite number of

orthogonality conditions y," = 0 with

" ::/ v (2, 1) f (2, t) dedt (2.8)
: o

must be fulfilled.
According to this situation, we consider solutions to this problem in
a generalized sense. We focus on the case 0 < m < 4/3 and we use the

following definition of a generalized solution of Problem P,,:

Definition 2.2.1. We call a function u(x,t) a generalized solution of Prob-
lem Py, in Q,,, 0 <m < 4/3, for equation (2.1)) if:
(1) u, ug; € C(Qn \ 0), 5 =1,2,3, uy € C( \ Zo);
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2. The Protter problem for Keldysh-type equations

(2) ulgp = 0;
(3) for each € € (0,1) there exists a constant C(g) > 0, such that

m

lu(z, )] < CEN T in Qun{|z]>e}; (2.9)

(4) the identity
/Q {t"upvr — Uy Uy — UpyUpy — Ug, Uy, — fo}dadt =0 (2.10)

holds for all v from
Vi i= {v(az,t) v € C*(Q), vsp =0, v =0 in a neighborhood of O}.

We mention that the inequality ([2.9) restricts the generalized solution’s
function space to a class which is smaller than it is allowed by the second

boundary condition in (2.2)).

In this paper we will prove the following results on the existence and

uniqueness of a generalized solution of Problem P,,:

Theorem 2.2.1. [f m € (0,4/3), then there exists at most one generalized

solution of Problem P,, in ),,.

Theorem 2.2.2. Let m € (0,4/3). Suppose that the right-hand side func-
tion f(x,t) is of the form (L4) and f € CY(Q,,). Then there exists an

unique generalized solution u(x,t) of Problem P, in €, and it has the

form (C3).

The proof of Theorems [2.2.1 will be given Section [2.6]
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2. The Protter problem for Keldysh-type equations

We mention also that Definition allows the generalized solutions
to have some singularity at the point O. Indeed there exist such singular
solutions to this problem and we will prove the following theorem describing

their asymptotic behavior:

Theorem 2.2.3. Let m € (0,%) and the right-hand side function [ €

CY(Q) has the form (L.4). Then the unique generalized solution u(x,t) of

Problem P,, has the following expansion at the point O:

l
u(a,t) =Y FMx )| P+ F (@, )], (2.11)
p=0

where
(i) the function FU™(x,t) € C(Qy), F™(0) = 0 and in the case

0 <m < 1 it satisfies in §2, the a priori estimate
[F (2, 6)] < Ol fllowulel ™ (L+|nfal]), 8= 5oy (212)
with a constant C' > 0 independent of f;
(ii) the functions FJ'(x,t), p=0,...,1 have the following structure
[(1=p)/2] 2p+4k-+1
Fi(,ty =y Y s i g g, (2.13)
k=0 s=1

where chr%’m #£ 0 are constants independent of f(x,t) and

Y, (2);

1 1 A2—m
HY™(2,1) = oF, (n—k + =, —k -
ks (z,1) = » 1<n +2’ 72—m’(2—m)2|:13|2>

52



2. The Protter problem for Keldysh-type equations

(iii) if at least one of the constants ,uifk’m in ([2.13) is different from
zero, then for the corresponding function F];”(x, t) there ezists a vector o €
R3 |a| = 1, such that

tl_lglo F)'(o(t),t) = const # 0,

where
2

2—m

000 = (

ozt22m,t> EXT. 0<t<t.

This means that the order of singularity of u(x,t) will be no smaller than

p+ 1

Remark 2.2.1. In the case 1 < m < 4/3 we prove that the estimate (2.12))
holds at least in the subset

6 2—m
QN < t 2 5.
{m S }

Remark 2.2.2. The functions H,""(z,t) are connected with v,.""(x,t) for

(x,t) # O by the relation

n,m n,m % —n—1 2 4 9—m n_2k_2(2njm)
Ule (2,t) = K,y H,, (x,1) |x] |z|? — mt 7

where
(-D" (5)

W2—ny 70

K,, = const =

To confirm the assertions in Theorem from here on we will study

a two-dimensional problem related to Problem F,,.

53



2. The Protter problem for Keldysh-type equations

2.3. Two-dimensional problem corresponding to

Problem P,

In the case when the right-side function f(x,t) is of the form Problem
P,, can be reduced to a two-dimensional problem.

To do this, let us look for a solution of the form (L.5). Passing to the
spherical coordinates and using that the spherical functions satisfy the
differential equation , for the coefficients u; (r,t) corresponding to the

right-hand sides f?(r,t) we obtain the 2-D equation

—n(n j 1)u = f(r,t).

Upp + —Up — (tmut)t -
T T

Then using the characteristic coordinates

2 2—m 2 2—m

for the functions

U(&,n) == r(&n)uy (r(& ), t(En))

we obtain the following Darboux-Goursat problem:

Problem P.,3. Find a solution of the equation

EslU] = Uy, + ?7’%5

n(n+1)
2-¢&-mn)

(2.15)
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2. The Protter problem for Keldysh-type equations

satisfying the following boundary conditions

U(0.n) =0, lim (5 —€)* (Ug - Un) —0, (2.16)
where
D={(n): 0<&<n <1},
F(&m) = 52— €~ m (& m). 16, m), 2,17
and

Remark 2.3.1. As far as we consider Problem P, in the casem € (0,4/3),

for the parameter B we have

0<pB<l.

Directly from Lemma [2.2.1} with use of (A.4) and (A.16)), we find that
for k =0,1,...,[n/2] — 1 the functions

EP (& m) =
(1= P — )27 I T S (R 3
e (rohry Ry gl
< (&) # (1,1)
0. (&) = (1,1)
(2.18)
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2. The Protter problem for Keldysh-type equations

solve the corresponding adjoint homogeneous problem
EslU] =0 in D,
U1 =0, lim (n—&¥(Uc-0,)=0.
(& 1) im0 = )7 (Ue = Uy

The functions E"°(€,n) are connected with the functions £ (||, t) by

the relation

EPO(€,m) = (2 — € — )& (r(€,m), t(E,m)),

i (CDF(1/2—n),
Tk on—2k+1 (1/2 +5)k

In conformity with Definition [2.2.1] we define a generalized solution of

Problem P, in the following way:

Definition 2.3.1. We call a function U(&,n) a generalized solution of Prob-
lem P in D, (0 < < 1), if:

(1) U, U+ Uy € C(D\ (1,1)) , Ue = Uy € C(D\ {n = £}):

(2) U(0,n) = 0;

(3) for each € € (0,1) there ezists a constant C(g) > 0, such that

(U =U)(EmI <CEe)n—€77 in DN{E<l—e} (219)

(4) the identity

2n(n +1)
2—¢—n)

/Yn—@w{Ug@+Uﬂ@+( 2UV+2FV}d&M:O(2%)
D
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2. The Protter problem for Keldysh-type equations

holds for all

VeV ={V(&n): Vel D) V(1) =
V =0 in a neighborhood of (1,1)}.

2.4. Riemann-Hadamard function associated to

Problem P,,»

Using a Riemann-Hadamard function associated to Problem P, we give
an explicit integral representation of the generalized solution U(&,n). The

Riemann-Hadarmard function can be represented in the following way:

U (& m;€0,m0), 1> o,
(&, 1; €0 m0) = e S (2.21)

U= (&, n:80,m0), 1 < o,

where
U (&, m;60,m0) (77 s > B,n+1,1-p8,-n,1;X,Y),
U (&, 1580, m0) < — ) XﬁHQ(ﬁﬁ n,n—|—1,25;%,—Y>,
(2.22)
= Y'(& n: &0, m0) = B __égo_;)%(?i);o 71)770), (2.24)
- I'(B)
YT INCT:)

57



2. The Protter problem for Keldysh-type equations

Here F3(aq,as, by, bo, c;x,y) is the Appell series which, in the
general case, converges absolutely for |z| < 1, |y| < 1 and Hy(ay, as, by, bs, ¢;
x,y) is the Horn series which in the general case converges absolutely
for |x| < 1, |y|(1 + |z|) < 1. For basic information on the Appell and the
Horn series, see [9], pp. 220 - 228.

We mention however that in our particular case in the series —
(A.22)) we have finite sums with respect to i, because n € N U {0}. More
precisely, as it will be seen further (Lemma , these series involve a
finite number of hypergeometric series o Fi(a, b, ¢; x). Consequently, in our

case we have an absolute convergence for |y| < oo and |z| < 1.

Remark 2.4.1. The function V(&,n;&,no) is closely connected to the
Riemann-Hadamard function announced in |51 (p. 25, example 7), which
s associated to a Cauchy-Goursat problem for an equation connected with

(2.15)) with some appropriate substitutions.

According to Gellerstedt [13] and the results of Nakhushev mentioned
in the book of Smirnov [49], for (&y,n0) € D the Riemann-Hadamard func-
tion W (&, n; &o, no) should have the following main properties:

(i) The function ¥ as a function of (&, 1) satisfies

P2 3 (aqf (‘Nf) __nletl) o, (2.25)

+ _
9&0ny Mo —& \ 9% O (2 =& —m)?

and with respect to the first pair of variables (£, )

rv 9 5_@) 2(6_@)_ nn 1)
0&on  O& <77—§ +877 n—=& (2_£_n>2\1j—0 (2.26)
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2. The Protter problem for Keldysh-type equations

for 0 <& <&, &< n<mo, n# &;
(i) O (&0, m0; €0, m0) = 1;

_ B
(1if) W (&, m0: &0, 0) = (:}700_ 50)5;
iv + . _ n— 50 .
(iv) U™ (&o, 75 €05 m0) (770—50) :

(v) W~ vanishes on the line {n = £} of power 2;

(vi) the jump of the function W on the line {n = &} is

(Y]] = 51320{‘1’_(5, &0 — 6;&0,m0) — V(& & + 0;60,m0) }
= COos ﬂ-ﬁ 51_15_10{‘1]4—(57 €0 + 57 507 SO + 5)\Ij+(£07 50 + 5, €07 770)}
B
= coswﬁ(go_g) .
mo — &o

The series W (&, m; &, mo) at the points where it converges coincides

with the Riemann function for equation ([2.15)).

These properties will be justified below, but before this we will give a

special decomposition of the function W (&, n; &y, ng), which will be useful for

our further considerations.
Define the functions

H* (& n;80:m0), 1> &o,
H(&,m; 80,m0) = (&G0 h). 1= & (2.27)

H=(&m:60,m0), 1 <o,
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2. The Protter problem for Keldysh-type equations

where
n—¢\’
H*(&,m:60,m0) = (770 — 50) o F1(8,1 - 3,1, X), (2.28)
. B
H_(fan;f())n()) =7 (777(7) _ §0> X_ﬁ QFl (Ba ﬁ? 267 %) (229)
and
G+ 57 ;5 ) Y > 5 )
G(&,m;60,m0) = (&S0, 1= & (2.30)
G~ (&,m;80,m0), 1 < o,
where

_e\? 2 ,
G+(§u77§§07770) = < ! 5 ) ZCZY12F1(571_57Z+17X)7 (231)
Mo — &o 1

— n_f B _ﬁ - 7 . 1
G (&, €0,m0) :=7< ) XN dy' s R <ﬁ—z,ﬁ,2ﬂ;§>,
i=1

mo — o
(2.32)
_ (n+1)i(—n); _ (n+1)i(—n);

Actually, the function H (&, n;&p, 1) is the Riemann-Hadamard func-
tion associated to Problem P,,5 in the case n = 0 (see Gellerstedt [13] and

M. Smirnov [49]).

Lemma 2.4.1. For (§y,m0) € D and 0 < & < &y, € <n <mng, n # & the

function W(&,m; &, n0) has the following decomposition

W&, m; 60, m0) = H(E m5€0,m0) + G(E,1; €0, M0)- (2.34)
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2. The Protter problem for Keldysh-type equations

Proof. For (£y,n79) € D and 0 < & < &y, € <n < mno, n # & we have
Y| < o0, |X| < 1ifn>¢& and |1/X| < 1if n < &, therefore the functions
H (&, m;&0,m0) and G(E,m; &, mo) are well defined.

In view of ({A.21]) we have

— (8);(1 = B)j(n+1)i(=n)i s\ i
Z (L)irjit 5! A

F3(67n+171_/67_n71;X7Y) =
Since (1);4; = (i+j)! = (i+1); for i, j € NU{0}, we obtain from ({2.22))
(&, m; 0,m0) = H (&, 150, m0) + G (€15 €05 o).

Next, in view of ((A.22)) we have

X

n

o, (5,5 —n,n+1,28; 1,Y) =

1=0 j=0

For 0 < g <1landi,j € NU{0} we have

Ff+j—1) _I(B—1)
I'(B) IN()

(8)j-i =

Using this and also the relation I'(2)['(1 — z) = 7/ sin 7z we calculate

LB—-9)r1 -5+
LEra —p)

= (B —1i);

(B)j=i(L = B)i = (B —1);
sin 87

Y —— (=1)"(8 —1);.
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2. The Protter problem for Keldysh-type equations

Then from (2.22)) it follows

U™ (& m:60,m0) = H™ (&, m:60,m0) + G~ (£, 150, Mm0),

which completes the proof. [

The properties (i)-(vi) of the function W(&,n; &y, no) listed above can
be confirmed in the following way:

(i) Using the systems of differential equations that Fj and H satisfy
(see [5], p. 227 - 228) with straightforward calculation we check that the

function W(&, n; &y, ng) satisfies the equations ([2.25)) and ([2.26)).

(11)_(1V) Since X(g()a n, 507 770) - X(£7 Mo, 507 770) =0 a‘nd Y(SO? n, 507 770) —
Y (&, m0; €0, m0) = 0 we see that the function W (&, n; &y, 19) has the properties

(ii), (iii) and (iv).

(v) The property (v) easily follows from the fact that on the line
{n =&} we have 1/X = 0.

(vi) Using (A.9)), for i € N we calculate

(n+1);(—n);
(1—-B+0)T(B+1)

Applying this into (2.31)) and ([2.32)), we see that

G+(€7 507 507 770) = G_(£7 507 507 770)7

i.e. the function G(&,n;&o,n0) has no jump on the line {n = & }. Then,
in view of (2.34), we have [[V]] = [[H]]. It is well known that [[H]] =
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2. The Protter problem for Keldysh-type equations

B
cos T3 <%> (see Gellerstedt [13]), which confirms the property (vi).

Remark 2.4.2. The Riemann-Hadamard function ®(&,n; &y, o) associated
to Problem Py, which we introduced in Theorem|1.4.1], can be obtained as

(&, m; 0, m0) = Lim W(E, m; o, Mo)-
£5—0
Indeed, using that 2 F7(0, b, ¢; () = 1, we have that
(&, m; €0, m0) = Lm U (&, 1; €0, m0),
5—0

because

lim H* 1, 1 T Y
512% (&, m; &0, m0) = 61{>I(1)G (&, m; €0, m0) ZC

Further, we have

T (&, m; €0, m0) =
1 ; —i);L(B+J) v jp
I'(1-p) (770—50) Zz;dYZ I'26+j)J! s
1 7 F(ﬁ) I5) (ﬁ—l—]) —j—f
I'(1-p) (770—50) ;dy F(%)X +Z 26+J) &

Using the well known relation I'(22)T'(1/2) = 22*71T'(2)T'(2 +1/2), we have

X RN VOVE )N )

T8 T R PTG 1/2)
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and consequently, with use of (A.11]), we calculate

n

lim W (&, n; =)y Y’
61{)% (57777507770) ;C

_ zn:ciyi [1+(1-1/X)]
i=0

2+ i (_i)ij]

j=1 J!

=Fn+1,-n,1LY)+Fn+1,—n1LY(1-1/X))=> (&n;&,n0)-

2.5. Estimates for integrals involving the

Riemann-Hadamard function

In order to prove an existence result for Problem P,,» we need to obtain
a priori estimates for some integrals involving the function W (&, n; &y, no).
First, we estimate the functions H (&, n; &y, m0) and G(&,n; &, mo) and their

first derivatives.

Lemma 2.5.1. Let 0 < g < 1 and (§,m0) € D. Then there exists a

constant Cyg > 0 such that

|H(&,m;60,m0)] < Cr(n—&)7, (2.35)
_ —pB
|H, (€,1;&0,m0)] < CH% (2.36)
for0 < & <&, & <n<ny and
|H™(&,m;6,m0)] < Cr(&—n)"", (2.37)
—n) B
|H,, (&1 0,m0)| < CH% (2.38)
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for0 < & <n<é&.

Proof. First, using ((A.6) we find that for each o > 0 there exists a
constant c¢(a) > 0 such that

(10— )P (o — &)*”

(n—&)*(m — &~

(n—&)*(& — &> (ng — )"
(1m0 — &)*(§ — m)° "

From here choosing a = 8 we obtain the estimates (2.35]), (2.37)).
Next, using (|A.10]) for the derivatives with respect to ry we obtain

|H(&,m;&0,m0)] < ()
(2.39)

|H(&,1;&0,m0)] < c(o)

=Y H++ﬁ(1—ﬁ)<n_£)ﬁX JFi(1+6,2— 0,2, X)
Mo Ny — €0 Ny — 50 7o ’ ) <y
and
H%: BH”
n—"o

B — &> (i
(o —&)P(no —n)P \X

Now with use of (|A.7)) we obtain the estimates (2.36]), (2.35)). O

Lemma 2.5.2. Let 0 < 5 < 1 and (&,1m0) € D. Then there ezists a

1
+ ) 2F1(1+6,1+B,1+25,—>
2 " X

constant Cq > 0 such that

IGT(& m:&,m0)| < Calno— &), (2.40)
)G+ (&m0 770)‘ < 1= (2.41)
Eo\>0 15U = 9 _ 60 — 7707
+ (no — 50)_5
|G (&m.&0.mo)| < CG—2 y— (2.42)
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for0 < & <&, & <n<mn and

|G7(&,m580,m0)] < Ca(2 =8 —n)™", (2.43)
Golemtom)| < Co = (2.42)
& » 115605 70 = G(2 _ f() — 77())n+17 .

— B
|G7;0(€7777507770)‘ S CG (770 T}) (245)

(2 =& —mo)tt

for 0 < & <n<é&.

Proof. First, let 0 < & < &), & < n < np.
According to (A.§), for i = 1,...,n we have

|oF1(6,1 — 5,1+ 1; X)| < const.

Applying this in the expression ([2.31)) for G*(&,n; &y, n0), we see that the

estimate ([2.40]) holds.
Now with use of ([A.10)) we calculate the first derivatives of G (&, m; &, mo):

+ _ n—_§ ’ : .lﬂyi v i1 ] _a )
6= (=) {lec L iy (8- B+ 1)

+6<1B)ZZ31YZX§02F1<B+172672+27X)}a

i=1

B n i
G%:(”*) {Zq [— by +z‘Y“Ym] 2L (8,1 —Bi+1; X)

1o — o — M — &o
+5(1 —B)ZileanozFl(ﬁ+ 1,26,i+2;X)}.

1=1

According to (A.8]) and (A.6) for the hypergeometric functions in the
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expressions for Gg) and G;]FO we have

\2F1(B+1,2—6,3;X)|§c(a)(770_§°> a0,
n—<&o
|2F1(14+5,2—B,i+2; X)| <const, i=2,3,...,n

Using this and taking o = § we obtain the estimates (2.41]) and (2.42)).

Next, let 0 < & <n < &.
According to (A.§) for i =1,...,n we have

|9 F1 (6 —14,5,20;1/X)| < const.

Applying this into (2.32)) leads to the estimate ([2.43)).

Let us calculate the first derivatives of G (&, n; &, no):

_ v(n —&)%
o= G —e)Ptm = o

X{idil ] o (30

e W@)%QFl(g_iH,BH,W;;)},

(n—@w
(50 f)ﬂ(ﬁo —

e
+%Z(6—z’)di}/i <X>770 2 I (5—i+1,5+1725+15%> }

G =

. 1
+7:YZ_1}/7]0] 2F1 (ﬂ _276726’X>
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Now with (A.8]) and (A.6)) we estimate

F1<w+1,25+1;§)‘g(a)(”“‘")a, o0,

So—1

1
|2 FY (5—i+1,1+ﬁ,1+25;§>|§const, i=23,...,n.

Using this and taking o = 8 we come the estimates ) and ( - [

Now we are ready to estimate some integrals involving the Riemann-

Hadamard function and its first derivatives.

Lemma 2.5.3. Suppose that 0 < 8 < 1 and (&, m0) € D. Then

& o
T (€0,m0) = /0 /g o (€1 €0vm0) | di d€ < kol — &0)7, (2.46)

where k = const > 0.

Proof. Using the estimates ) and - we have

H<CH{/EO ° 50_ . dnd£+/£0/€:0 nno_&)go dn dg}.

(2.47)

Making a substitution n = £ + (§y — )0 and applying (A.5) we get

/50 (& —n)" iy — (G- [T(1—0)7" o
§

Mo —1 m—¢& Jo 1-Co
— &8 —
R AL L2 = F0) (249
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with ¢ = (& — &) /(no — &). Now, according to (|A.7)), we have

(no — €)°
Fi(1,1,2 - 5; < const——. 2.49
|2 1( ﬁ C)‘ (770_&))5 ( )
Substituting (2.48) and ( into (2.47) immediately leads to the
estimate ([2.46]). L

Theorem 2.5.1. Define the function

&  rno
U (€0, m0) = / / P& H(Em: &omo) dnde (2.50)
0 3

with 0 < 8 < 1 and F € CY(D). Then U", UY + Ul € C(D\ (1,1)),
Ull'e C(D\ {no = &}) and for (0,m) € D the following estimates hold:

U™ (&0,m0)| < KiMypéo, (2.51)
UL+ U |(¢0,m0) < KiMp, (2.52)
(U (&o,m0)| < EKiMp&(no — &), (2.53)

where K1 > 0 1s a constant, independent of F' and
Mp = max{max|F\,maX\F§—l—Fn|}. (2.54)
D D
Proof. Using the estimates ([2.35)) and (2.37)) immediately we obtain

o Mo
‘UH(&))T/O” S MF/ / H(gﬂ%g()an()) d77 d€ S KIMF§07
0 3

which confirms (2.51)).
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Next, differentiating (2.50) with respect to ny gives

So Mo
Uﬁ(ﬁo;ﬁo):/o /5 F(§>77)Hno(§777;§07770)d77df

% (mo — &)°
" /o Fi&m) (10 — &0)” .

With use of the estimate from Lemma we come to the estimate
(2.53)).

Next, a direct calculation shows that the derivatives Hg , HS_O have
singularities on the line {n = &}, which are not integrable. S. Gellerstedt
[13] and E. Moiseev [26] suggested to differentiate (2.50)) after appropriate
substitutions of variables. In this way one can find integral representations
for the first derivatives of the solution, which do not involve the first deriva-
tives of the function H (&, n; &y, 1) In order to do this, following Moiseev
[26], introduce the new variables

x §o—§ . No—m

<= o — & = m — &

(2.55)

Defining

HY(E 7)== HY (& m&,m), H (7)== H (&,n:&,m0),
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we have

U™ (&,m0) = (m0 — &)?

/no Eo

1+§ B o 5
/O F(6o — (1m0 — €0)E.m0 — (o — &0)i7) HL(E, 7) dii dé

and

(UL + Ul (€0, m0) = (1m0 — &)?

/no 50

146 i o i
/ (Fe + F)) (& — (o — &0)&.mo — (mo — &o)n) H(E, ) diy dé

10

+ (10— &) /O R0, — (0 — €0)) A (% fz) a7

Now the inverse transform of (2.55)) gives

& o
(U +U) (€0, m) = / / (Fe + E,)(€.n)H(E,1: G0, o) d
0 Je
To
0

Finally, taking into account the estimates and ([2.37), we see that

([2.52)) holds. O]

Theorem 2.5.2. Define the function

& o
U (&0, m0) = / / FEn)G(Em o m)dnde  (2.56)
0 I3

with 0 < 8 < 1 and F € CY(D). Then U®, Ug, Ug € C(D\ (1,1)), and
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for (&9,m0) € D the following estimates hold:

U (&0, m0)| < KaMp&o(2 — & —no) ™", (2.57)
}Ug('fov m)| < KaMp&o(2 — & —no) ", (2.58)
UC (9, m0)| < KaMp&o(2 — & —mo) ™, (2.59)

where Ko > 0 is a constant independent of F' and Mp is the constant

defined by ([2.54)).

Proof. First, applying the estimates (2.40) and ([2.43)) into (2.56]) we

obtain :

o réo
U¢ = F G (&, n: dnd
U9 (60, m0) / /g (Em)G(€.: €0, o) iy dE

o Mo
+ / / F(&,n)GT(&,m;&,m0) dndé| < KoMp&o(2 — & —no) ™",
0 o

which confirms the estimate (2.57)).

Next, we calculate

o Mo
Ug(fomo)=/0 /g F(&,1)Ge,(&,n, &0, m0) dn d€.

Here we do not have integrals on the boundaries because Y = 0 on the line

{&€ = &} and the function G(&,n, &y, no) has no jump on the line {n = &}.
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Applying to this integral the estimates ) and (| gives:

M=C S
‘Ug(&)’no)‘ < 2— — n+1/ (&0 — 5d77d£

&=
MC’ & 770

LsCen // n— &) dnde.
2_50 o &

From here it easily follows the estimate ([2.58)).

Finally, we calculate:

& o
U (€0, m0) = /0 /g F(&, )Gl (€. : €0, o) iy de

where we used that Y = 0 on the line {n = ny}. Analogously, applying
to the last integral the estimates (2.42) and (2.45) for the derivative G,,,
which are even better than (2.41]) and ([2.44)), we obtain the estimate ([2.59)).
O

Corollary 2.5.1. Define the function

& Mo
U6, o) = /O /£ P& U(E n: &) dnde (260

with 0 < 8 <1 and F € CY(D). Then U, Us + U, € C(D\ (1,1)), U, €
C(D\ {n=&}) and for (&,m0) € D the following estimates hold

\UE,n)| < KMpE(2—&—n)™"
(Ue +U)(En)| < KMp(2 =€ —n) "1, (2.61)

U, (&) < KMpé(n—&)P2—&—n) !,

where K > 0 is a constant independent of F' and My is the constant defined
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by ([2.54]).

This assertion is a direct consequence of Theorem and Theorem
2.5.2) because U(&,n) = U (&,n) + U%(&,n).
2.6. Existence and uniqueness results

In this section we prove the existence and uniqueness of a generalized solu-

tion of Problem P,,» at certain conditions.

Theorem 2.6.1. Let 0 < 3 < 1 and F € C(D). Then each generalized

solution of Problem P,,5 has the following integral representation in D:
o f0
v = [ [T FEnrE o mande @6

Proof. Let U(&,n) be a generalized solution of Problem P,,5 in D. For

any arbitrary function (&, n) belonging to V® from ([2.20) we obtain the

identity
I6; n(n+1)
n—52/3{U + L2 (U —U,) — U—Fy¢dEdn =0,
where Ug, is the weak derivative of U. Therefore
n(n+1) 5
Uegp = F + U — Us—U,) € C(D),
&n (2—¢&—n)? 77_5(5 )) (D)

since F, U, Us — U, € C(D). From here it follows that Uy, is a classical
derivative of U and U (&, n) satisfies the differential equation (2.15)) in D in
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a classical sense.
Now, using the properties of the Riemann-Hadamard function, we ob-
tain the integral representation (2.62)) for the generalized solution of Prob-

lem P,,5 integrating by parts the identity

EB[U(£7 77)]‘1](57 n; 507 770) - F(€7 77)\1](57 m; 507 770)

over a triangle

Ts:={(§mn)0<E<§H—20,E+0<n<—0}

and then over the rectangle

s :={(&n): 0<E< & —20, &+ 0 <n<m}t

with 6 > 0 small enough, and finally letting 6 — 0. [

Actually, Theorem [2.6.1| claims the uniqueness of a generalized solution
of Problem P,,s.

Next, if additionally ' € C'(D), the function U(&,n) defined by
obviously coincides with the function ([2.60|) estimated in Corollary
and we will prove that this function is a generalized solution of Problem

ng in D.

Theorem 2.6.2. Let 0 < 8 < 1 and F € CY(D). Then there exists one
and only one generalized solution of Problem P,,o in D, which has integral

representation ([2.60) and it satisfies the estimates (2.61]).
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Proof. Let U(&,n) be the function from Corollary[2.5.1} Then U, U+
U, € C(D\ (1,1)),U, € C(D\ {n = £}), i.e. U(&,n) satisfies the prop-
erty (1) in Definition 2.3.1 From the estimates (2.61]) it follows that the
condition U(0,n) = 0 in Definition and the estimate hold as
well.

Finally, we have to prove that U(&,n) satisfies the identity (2.20). To

do this we need three steps.

Step 1. We prove that U(&, n) satisfies the differential equation ([2.15))
in a classical sense and (Uy), € C(D).

Following Smirnov [49], we find another representation formula for the

function U (&, n) from Theorem [2.5.1} Introduce the function

Ry (& m580,m0), 1> &o,
Ro(&,m;&0,m0) = " m ’

Ra(gan;g()an())) n < 507

where
CNB s N1-B
o (87780, h) no — &o n — &
XF1<1_/67671_672; no_nano_n)a
mo—E& Mo —§

o N n—£ﬁ<n—§>ﬁ
RO (57777507770) '_A(§O—§> mo — &

‘< Fi (6,6,5,1+2/3;

n—¢ n—€>
S—&m—¢)

76



2. The Protter problem for Keldysh-type equations

Here
—I'(B)
(1 —=p)Ir+2s)

and Fi(a, by, by, c;x,y) is the hypergeometric function (A.20) of two vari-

A:

ables. This series converges absolutely for |z| < 1, |y| < 1. For more
properties of Fi see [5], pp. 219 - 223.
From [49] it is known that for 0 < 8 < 1/2 the function Ry (&, n; o, o)

solves

8R0

o —(n =& TH(E i &o.m) for 0< &<, E<n<mo n#&.

Ro|y=p, = 0, Roly—¢ = 0
(2.63)
where (&y,m0) € D. Here we verify that in the more general case 0 < 5 < 1
this is still valid.

Further, it is known that the jump of Ry(&, n; &, 1) on the line

{n ==&} is
1
[Fol] = =75
Using (2.63) and (2.64)), after integration by parts we come to the

following integral representation:

(2.64)

o 0
(&, m0) / ' (n = &)F (& n)]Ro(&,n; &, no) dn dé

50
(&o— & F (& &)dE.

(2.65)

B

Differentiating (2.65]) we obtain that U satisfies the differential equa-
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tion

(Ugo{)no + no f 50 (Ufo UH) - (507 770)7 (266)

where all derivatives are in a classical sense and they are continuous in D.
Since H (&, n; o, mo) satisfies the differential equation (2.25)) with n = 0
and W = H + G satisfies (2.25)) with n > 0, for the difference G = ¥ — H

we obtain

B n(n+1) G- n(n+1)
1m0 — &o 2-&—m)?  (2—&—m)?

Now, for the function U%(&y, 1) from Theorem we calculate:

Gﬁono + (G&) - Gﬂo) - H.

G /3 e nin+1) ¢
(U§0>770 + (Ufo Uﬁo) (2 - &) - 7]0) U

/5/ PEn) |G+~ (G~ )

(n il 1) G| (&, &0, m0) dn d

(2 & —m)?
€o Mo
(2 Zo+1 / / F (& m)H (& n; €. mo) dn d€
_ on(n+1) g
o (2 . 50 . nO)QU ; (267)

where all derivatives are in a classical sense and they are continuous in D.

Since U = Uf + UY, from (2.66) and (2.67) we find that U(&y,n0)

satisfies the differential equation

B
mo — o

n(n+1)
(2 =& —m)?

(Ufo)no + (Ufo - Uno) - U= F(§07 770) (268)
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in a classical sense. But, since F, U, Ug, — U,, € C(D), it follows that
(Ufo)no 6 C(D)
Step 2. We will prove that identity (2.20) holds for all V(¢,1) € V®),

which, in addition, are equivalent to zero in a neighborhood of {n = ¢}.

Define

. Y 2n(n +1)
A R

2UV+2FV} d§ dn.
(2.69)
Using that the derivatives Ue, U, and (Ug), are continuous in D, we

integrate by parts in [y in the following way:

[w-euvacin=- [ w-¢7 [(Uan n @Ug] Vde dy (2.70)
D D n—=&

and

[-ervvedsn=- [ n-e” [(van " %vg] U dg dn,

There are not integrals on the boundary of D, because V(£,17) = 0 in a
neighborhood of {n = ¢} and V(£,1) =0, V¢(£,1) =0.
Further, since V' € C%(D), we have (Ve), = (Vi) - Then
2p

[o-eruvedgan=- [ -7 [(v;»g n fvg] U dg dn
D D n 3

- [w-97 [Ugvn _ Wy +vn>U] dé di

n—£&
_ 28 2B
- [0-9 [(Uan n_fUn]Vdgdn. 2.71)
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Again there are not integrals on the boundary of D in view of the boundary

condition U(0,n) = 0 and the properties of the function V (&, n).

Now, putting (2.70) and (2.71)) into (2.69)) we obtain

== [ n-e” {(Uan + (- vy

3
B n(n+1) B } _
Gl P Videdn=0

Step 3. Finally, we will prove that identity holds for all V' (&, 1) €
17428

Let x(s) be a function having the properties x(s) € C®(R!), x(s) =1
for s > 2, x(s) = 0 for s < 1 and let V(&,n) be an arbitrary function
belonging to V.

If £ € N, then the functions

Vi(&,n) =V (&n)x(k[n—£])

belong to V® and V;(¢,17) = 0 in a neighborhood of {n = ¢}. Therefore
the identity (2.20]) holds with V' (£, n) replaced by Vi(§,n). More precisely,

we may write:

2 2n(n + 1)
[o-er {Ufw,+Un%+(2_§_n)

T /D k(g — €% {Ue — Upb ¥ (kln— €DV dedy = Ty + Loy = 0. (2.72)

2UV+2FV}x(k[77—§]) dé dn

Obviously I, , — Iy as k — oo.
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Further, supp x/(k[n — &]) is contained in {1 < k[n —&] < 2}, so on

supp X' (k[n — £]) the functions

Wi(&,n) = k(n — ¥ {Us = Uy} X' (k[n = €D V(& m)

satisfy the estimate

[Wi(&,m)] < const (n — &),

where we take into account that the estimates hold and that V' =
0 in a neighborhood of (1,1) by definition. Then the sequence Wy (&, n)
converges pointwise almost everywhere to zero and it is dominated by a
Lebesgue integrable function in D for 0 < § < 1. Consequently, according
to the Lebesgue dominated convergence theorem, I, — 0 as k — oo.
Now, letting k — oo in (2.72)) we obtain that the identity holds

for all V € V). Consequently, the function U (€, n) is a generalized solution
of Problem P,,;. ]

From the existence and uniqueness of a generalized solution of Problem
P, it follows the existence and uniqueness of a generalized solution of

Problem P,,, stated in Theorems [2.2.112.2.2]

Proof of Theorem [2.2.1} Let wuy(z,t) and ug(z,t) be two different

generalized solutions of Problem P,,, which means that

u(z,t) = uy(z,t) — ug(z, t)
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is a generalized solution of the homogeneous Problem P,,. Then we claim
that u(z,t) = 0 in Q,,, i.e. all the coefficients u?(|x|,t) in the Fourier

expansion
oo 2n+1

ulwt) = 373 uillal, ;@) (273

n=0 s=1

are equivalent to zero in €2,,.
Indeed, the identity (2.10) with f = 0 holds for all test functions

v € V., of the form

v(z,t) = w(|z|, )Y (x). (2.74)
Now substitute - and (| into - with f = 0. Passing to the

spherical coordinates, using the orthogonality of the spherical functions and

the differential equation (2.6) that they satisfy, we find that the functions

U, n) =r&n)u,(r&n),t&n), n=0,12..., s=1,....2n+1

with

£=1 2 e 1—r+ 2 e
= —_r - — 2 f— —7r -
2—m 1T 2—m

should be generalized solutions of the homogeneous Problem P,,5. Accord-
ing to Theorem [2.6.1] the homogeneous Problem P, has only the trivial

solution, which confirms our assertion. l

Proof of Theorem 2.2.2. Let

2n+1

ZZfslxlt (z) € CH(Qm).

n=0 s=1
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Define
[ 2n+1

u(z,t) == Z Z uy (2], )Y (),

where u? (r,t) are such that the functions

Us(&m) :=r(&mn) ufl(r(f,n),t(ﬁ,n)), n=0,...,1, s=1,...,2n+1

are the generalized solutions of Problem P,,» with right-hand side functions

F(6m) = 3r(&m) (& m), 16 m).

Then we check that u(z,t) satisfies the properties (1)-(3) of Definition [2.2.1]
and satisfy the identity for the test functions v € V,, of the form
([2.74). But these functions are dense in V,, and therefore u(x,t) satisfies
the property (4) of Definition at all. Hence u(z,t) is a generalized
solution of Problem P,, with a right-hand side function f(z,t). O

2.7. Decomposition of the function W~ (&,1;&, 1)

Next, according to the estimates (2.61)), the generalized solution U (&, n) of
Problem P, is allowed to have a singularity of order no greater than n at
the point (1,1). But it is still not clear if such a singularity really exists and
how it depends on the right-hand side of the equation. From here we begin
to study the asymptotic behavior of the function U(, n) near the singular
point (1,1).

Firstly, we find an asymptotic expansion of the restriction U(&, 1) on
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the segment 0 < & < 1. To do this, we derive a special decomposition of
the Riemann-Hadamard function on the line {ny = 1}. We start with some

auxiliary lemmas.

Lemma 2.7.1. Let a > 0 and k € NU{0}. Then

0, N =2k+1,
_IEk N = 9k
(1/2 + a)y

Proof. According to the integral representation (A.5)) we have
1
o1 (a,—N,2a;2) = —)/ "t =)t =20V dt.  (2.76)
0
Then for k € NU {0} we have

QFl(a, —2k — 1, 2&; 2) = 0,

because the function h(t) := t271(1 — #)¢71(1 — 2¢)?**1 is antisymmetric in

respect to the point t = 1/2, i.e. h(1/2 —t) = —h(1/2 4+ 1).

In the case when N is an even number we proceed by the induction

method. For k =0 (resp. N =0) (2.75)) holds obviously.
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For N =2,4,6,... from (2.76) we get

—F(;L()QI;()“) Fia, N, 20:2) = - /O (1 - 205V d(t — )"

2N —1) [!
:u/ (1 — )1 — 20N 2 dt
a 0
2(N — DI'(a+ 1)T(a+1)
= F 1.2 — N.2a +2:2
aT'(2a + 2) 2Fi(a+1, 20+ 2;2),

or more simply

W=D pla+1,2-N.2(a+1):2).  (277)

F —N,2a;2) = ———=
2 l(aa y 205 ) (2a+1)

Our induction hypothesis is that for some k& € NU {0} the equality

zFﬂa,—2k,zu2)::E;%4%%5;

holds. But then for k£ 4 1 this equality will also hold, because according to

([2.77) we have

@k +DL/2k (12

QF““‘Qk"ZQWQ):(zz+1xa+4y2%'_(a+1/th'

The proof is complete. ]

Lemma 2.7.2. Let n,p e NU{0}, p<n, 0< <1 and

n—p
‘ 1—2z
Quaplz) =Y a;b; 2/ oy (n+p+j+ Lp—n+jp+j+l— ) :
=0
(2.78)
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where
By, tprDp-n)
To2s); g (p+1);
Then
0, n — p odd,
Qnp(z) = 1l p—nl
g Cn,p2F1<n+g+ 7p2n7§+ﬁ;22>7 n —p even,
(2.79)
where
ra/2)r 1

T ()

Proof. First, we expand the function oF; from (2.7§) in Taylor series

in powers of z:

) , , 1—2z
zﬂn+p+J+Lp—n+mp+J+h—3—>

_ "L m+p+7+1Ds(p—n+j)s (—z)s
(p+j+1)ss! 2

s=0

. , _ 1
xzﬂ(n+p+J+S+Lp—n+s+LP+J+s+h§>,

where we use (|A.10]) to compute the corresponding derivatives in the series.
By (A.17)-(A.19) we have that

1

I'(1/2)T'(p+ N +1)

, —n+N#-1,-3,...,
F(n—i—p—;N—H)F(p—n—;N—}—l) p 7é

0, p—n+N=-1-3,....
(2.81)
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Then @,,(z), using also (A.1)), becomes

SN (—1)°

N ) s

M@

Qnp(2)

=0 s

<.
I
an)

Now set N =7+ s:

7
i

—J

-t

N
Qn,p(z) - by NZCLJQN i (

=
cH:

Since (N — j)! = (=1)? N!/(=N);, for Q,,,(z) we obtain:

n—

Qnp(z) = o F1(B, —N,2B;2) by Ay

hS

(=2)V
N NI

(2.82)

=
)

There are two different cases:

A. Let n — p be an odd number. In this case (2.82) becomes

Qnp(2) =0

because:

a) for even indexes N according to (2.81) we have Ay = 0;

b) for odd indexes N Lemma2.7.1|with a = g gives o F1 (5, — N, 203;2) =

B. Let n — p be an even number. In this case, according to (2.81]), we

have nonzero coefficients Ay in (2.82)) only for even indexes N. Then we
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2. The Protter problem for Keldysh-type equations

set N = 2k and by Lemma we have

oy (1/2)
Now with we calculate:
(n+p+ 1)o = 22 (%p“) <%p+2) (284
k k

ok (PN p—n+1
(p—n)y =2 (—2 )k (—2 )k (2.85)
(2k)! = 2% G) k!, (2.86)

k

Applying the equalities ([2.83 into with N = 2k and

simplifying the derived expression we obtain:

(n—p)/2
B (1/2)k  bog Aok o,
Qn,p(z) — kz:% (1/2 + B)k 22k (Qk)!z
" 1/2 i p+ Dalp—n)y 2

=T(1/2)L(p+1) kz:; (1/2 + B)j, [ (L2682 p(p-ni iy 925 (2|

n+p+lp—nl
:Cn,p2F1< g 7p2 BZ>

The proof is complete. ]

Lemma 2.7.3. Define the function

5 n; fo sz bZ]PZ] 5 50 <( g)(l_n)>zj (_1)Z (77_5)]

i=0 j=0 1 =%
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2. The Protter problem for Keldysh-type equations

where
Pic) = S Y zfﬁn<a_?), (2.88)
g=i—j+1 T
_(B=1);(8);
b, = . (2.89)

and d; are the constants from (2.33). Then the following estimate holds:

: 1 —&

for (&,m) € DN {n < &}, where ky = const > 0.

Proof. In P, ;(&,&) we set the new index N = ¢+ j —i — 1 instead

of ¢ to obtain:
(14 B)x ] g\ Vit
_ i— ]+1
2](550) ( ) z]—i—lz 1—|—N, ]+1N'(1_§>

00 N+i—j+1
— (1)1 - B Z B+N)(B)y (1=&\"
Zj 1+Nz j—HN' 1_5 ’

0

where we used (A.1) and (A.4]). Since

B+ N

<1, 0<p<l,353=0,1,....1,
(1+ N)ijs1 /

for the function P, (&, &) it follows the estimate

g (LT S B 1=\
P3j(€. &) < (1= )iy (1_5) 2N (1_5>
(1 . fo)i*j+1
(1= 156 — &)°

(2.91)

=(1-08)iy

89



2. The Protter problem for Keldysh-type equations

for (£,m) € DN {n < &}. For the last equality we used (A.11]).
Applying this estimate into (2.87)) gives the final result (2.90). ]

Lemma 2.7.4. Define the function

1_

¢2(€77]7€0) = <§ _g

) Zd V(& m5:60, 1)Qi(€: 15 o), (2.92)

with
Qi€ m; &) - waX (& m; €0, 1), (2.93)

J=i+1

where X (&,m;80,m0) and Y (§,1;&,m0) are given by (2.23) and (2.24) re-
spectively, b; ; are the constants (2.89)) and d; are the constants from (2.33).

Then the following estimate holds:

1—&
(L=m)t=5(& —n)’

for (&,m) € DN{n < &}, where ko = const > 0.

1285 m; §0)| < k2 (2.94)

Proof. Setting j = N+i+ 1, with use of (A.1]) and (A.4]) we compute
Qi(&,m &) =(=1)'(1 = B);

= (54 NN+ N
XNZ:O N(2B + N)ig1(1 4+ N)iy1 N!

XVHE s &, 1),
(2.95)

Since

(B+N)(B+ Nis1
(28 + N)i1(1+ N)in
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2. The Protter problem for Keldysh-type equations
from here it follows the estimate

1
X(&m:6.1)

for (¢,m) € DN{n < &}. By (A.6) with o = 8 we have

A (5,6,25; 1 )‘Scw)(&_aﬁ(l_mﬂ. 2.97)

Q< (1- B)X " méo )2F1<6,B,2ﬁ; ) (2.96)

X (& m;6,1) (1 =€) (& —n)”
Applying ([2.96)-(2.97) into (2.92)) and taking into account that

1 _1-¢
— <1, =< 0<é<n< 2.98
we come to the estimate ([2.94)). [l

Now we are ready to prove the special decomposition of the function

T (&,m; 60, 1).

Theorem 2.7.1. The trace of the function W~ (&,1;&, 1) on the line

{no = 1} can be decomposed in the following way:

U (&,m; 80, 1) = Vi (§,m580) + Wy (§,m;60) (2.99)

with

[n/2]

Uy (& m;&) = (n— f?ﬁzv — &% EP (€, m) (2.100)

91



2. The Protter problem for Keldysh-type equations

and

v (n—&)*
(1—-8)5(1~

where 1 (€, &) and (€, 1;€0) are the functions [@87) and @92) from

Lemma |2.7.5 and Lemma |2.7.4] respectively, EZ’B(S,T]) are the functions
defined by (2.18) and A} = const # 0. The function V, (&,n;&) satisfies
for (&,m) € DN {n <&} the following estimate

Wy (€15 &) = 5{% &m;60) + a(E,mi&0) ), (2.101)

1—&
(Co—n)’(1—n)’

W5 (&,n;80)| < k k = const > 0. (2.102)

Proof. For U~ (£, n; &, 1) from (2.27)-(2.34)) we obtain

Ul = g _g 52265 by (—) (&5, 1),

1=0 j5=0

where b; ; are the constants ([2.89)).
For 0 < &€ < & < 1, using (A.11)), we have

g — &\ °°j—z+6 1—&\°
(b=¢) =2 ()

and according to this we find that

v(n—§)>*

V(& m; 60, 1) = A= &)P(1 - 5{¢ &, €0) +U1(€,m5 &) + (&, m5 &) }
S 5)25 (6T &) + T3 (6o, (2.103)
‘(1—5)(1 pyp BT B RS0

92



2. The Protter problem for Keldysh-type equations

where
w(£7777£0) =
n ] . ) . o - |
G — i+ B)g (—1)i(1 — £ T(1 — )i 3(n — £)
d; b ; . 7 | |
ﬁOFﬂgg oo (2—€—n)i(1— &) (2.104)

Next, we aim to extract in ¥ (&, n; &) the negative powers of 1 —¢&y. To

do this, we introduce the new index p = ¢ — 7 — ¢ instead of i:

) =3 (( 1-61-n) ))p

Z\R--nl-&
SN st ,(ﬁ—p—q>q( n—¢ )( - )
Lo L SO (Cpiihag \2—€—n) \2-€-n)

Using ({A.1]) and (A.4]) we simplify

B-p—J—a)iB-—p—aq)y _ (=1)*
(1= B)ptj+g (1 —=08)p

and we derive:

—~ 1= —=n 1\

2 (=1 dp((z—a—m(l—so))

(p—n)jn+p+1); (B); ( n—¢& )j
(p+1); (28);3' \2 =& —n

- (p_n+j>q(n+p+j+1>q< 1—n )q
(p+7+1)4q 2—&6—-n)

70
< 8

X

(]

o

S .
=

X

o

q:
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2. The Protter problem for Keldysh-type equations

which actually gives

(€ E) = pﬁ;(—w d, ((2 ¢ gf)s)l (;f)go)an,p (%) ,

where @), ,(2) is the function (2.78)) from Lemma [2.7.2]

Now, according to (2.79)) we have non-zero terms in the sum only for

indexes p of the same parity as n. For this reason we introduce the new

index k = (n — p)/2 and by Lemma we obtain:

o n—2k
@/J(ﬁ,n;ﬁo):Z(—l)”dn%(( (1-80d—n) ))

P 2—&6—-n)(1 -5
2
X Cpp—a2k 21 (n —k+ %, —k, % + 5; (%) )
[n/2]
= (1= =03 (~1)" du-snCamo By (€, m).
k=0

Putting this into (2.103)), we conclude that (2.99)-(2.101]) hold with

Z = (_1)ncn,n—2k dp—ok 7£ 0. (2105)

Finally, the estimate (2.102)) follows directly from the estimates ([2.90))
and ([2.94)). ]
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2. The Protter problem for Keldysh-type equations

2.8. Asymptotic expansion of the restriction U(¢, 1)

at the point £ =1

Now, introduce the scalar products

= /D (n— 2B (6, ) (€, m) dedn. (2.106)

Theorem 2.8.1. Suppose that F € CY(D). Then the restriction U (&, 1) of
the generalized solution of Problem P,,o has the following expansion on the

segment {0 < & < 1}:

[n/2] [n/2

]
ZW,;‘M M= MSON-™ " +g(€), (2.107)
k=0
where
1 m
— [ [ - e B G m) P dedm, (2108)
¢ Jo
Al = const # 0 (see ([2:107)), g(&) € C*([0,1)) and
9()] < CllFllemE( = &), (2.109)
with a constant C' > 0 independent of F.

Proof. According to Theorem the condition F' € C*(D) assures
that there exists an unique generalized solution U(&,7n) of Problem P
and according to Definition we see that the restriction U(&, 1) should
belong to C1([0,1)).
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2. The Protter problem for Keldysh-type equations

Next, according to Theorem the generalized solution at each point
(&0,m0) € D has the representation (2.62)), but we find that by continuity

for ng =1, 0 < & < 1 this equality still holds, i.e.

U6, 1) /a/ F(&,m)W(E, m; €0, 1) dde.

Using the decomposition of ¥~ (&,n; &y, 1) given in Theorem we

obtain

U6, 1) /%/® F(&, Wi (€, m; &) dide

S réo So 1l
_ . + :
+/0 /gv F(f)n)\PQ (5777750) dndf‘F/O /50 F(&n)qj (577775071) dndf
J1(o) + J2(&o) + J3(&o)-

According to (2.100) we have

n/2 b e
_ (] — 2k—n . 2BF Enw@ dnd
Al = -6 /0/507 P F(e, ) ELP(E, ) dnde
[n/2]
= DN = T () (1= )
k=0

From here it is easy to check that Ji(&) € C*([0,1)).

For J5(&p), using the estimate (2.102)) from Theorem [2.7.1] we obtain

& o
| J2(&o)| < K[| Fllop) (1 — fo)/o : (& —n) (1 —n)""dnd¢.  (2.110)
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2. The Protter problem for Keldysh-type equations

Using the calculations ([2.48))-(2.49)) with ny = 1, we have
€o .
[ < const (1 ) 111)
£
Consequently, applying this into ([2.110]) we obtain

| J2(€0)] < comst [|Flle(n)éo(1 — &), (2.112)

According to the estimates ([2.35) and (2.40)), we have an estimate

[T (&, m: &0, 1) < const (n — &) 7.

From here for J5(&y) we have
|J3(&0)| < const || F||c(pyéo(1 — &) 7. (2.113)

Finally, defining

9(&o) == J2(&) + J3(&o)
& réo o pl

[ [ Fenvemadnder [ [ remvcn g s
0 £ 0 &o

(2.114)

we see that the expansion (2.107)) holds, where (2.109) follows from the
estimates (2.112)), (2.113) and, obviously, g(¢) € C([0, 1)), because

9(&) = U(&,1) = Li(&).
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2. The Protter problem for Keldysh-type equations
The proof is complete. ]

Remark 2.8.1. For k =0,...,[n/2] the functions J,Z”B(f)(l — &% are

bounded on the segment 0 < & < 1 and satisfy the estimate

T (1 = &) < C||F|omy (1 — &)P (2.115)

with C' = const > 0 independent of F'. This means that the coefficients uk’ﬂ

in the expansion (2.107)) control entirely the singular part of the function
U, 1).

Indeed, the functions Ez’ﬁ (&,m), given by (2.18)), can be estimated in

D in the following way:
B (€ m)] < comst (1—€)77(1— )" 7, (2.116)
because the hypergeometric function in (2.18)) is bounded. Then we have

T (60)] < CillFllew / / n— %1 — €)1 — )2 dedy

< C”FHC (1 —&)" 2kt1= 5, C; = const > 0.

From here it follows the estimate ([2.115)).

2.9. The derivative U¢(¢, 1)

For our further considerations in this section we study the derivative Ug(&, 1).
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2. The Protter problem for Keldysh-type equations

Lemma 2.9.1. Let ¢ (&,1;&) be the function [2.87) from Lemma[2.7.3.
Then the following estimate holds for (£,n) € DN {n < &}:

(1-¢)’

(57 750) = W?

C' = const > 0. (2.117)

' 0y
9o

Proof. For the function P; (&, &) (see (2.8§)), with use of (A.1]) and
(A.4), we calculate

G—i+8)y (1—&\""
a@(§® 5 > ! CES (1—5>

g=i—j+1 -
_ (_1)1—‘7( 6)1 —j+1 i (1 + ﬁ)N <1 . &))NJFZ]
1-¢ ¢ (1+N)iy NI\ 1 —¢ -

Taking into account ({A.11]), we see that for j = 0,...,4 it is fulfilled
= 1-&\"
1<y} (1+B)w §o
(1+N)—; N\ 1-¢

N=0
S (L+ By (1-& 1-\"
<3 N ( 5) (&—f) |

N:

where 0 < <1, 0 < £ <& < 1. Then we have the estimate

_ i=J _£\B
<C (11 _?) g (5(01_ ;‘))HB, Ch = const > 0 (2.118)

‘8BJ@@@

9o

for0< <1, 0<€E<é <1
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2. The Protter problem for Keldysh-type equations

Next, we calculate:

O
8&)(5 ,1:60) =
. i—j (=80 -n)\"7 (1) (n—¢)
izo:jzgdlbz,jpz,](§7€0)l_§o( 1_50 ) (2_5_77)2
1-O1 -\ (=1) (n— &)
r 3 yangea (L) T REER

=0 j5=0

Applying here the estimates (2.91) and (2.118) we obtain the final result
(2.117). O

Lemma 2.9.2. Define the function

€, o) = w2<£,n;£o>—( 5) Qulé,n: &)
& — &
= (1__€> ZdiYi(&n;So,1)@-(6,?7;50), (2.119)
&—8&) =

where (&, m: &) and Qu(€, ;&) are the functions 292) and (E93) re-
spectively from Lemma m Then the following estimates hold for (&,m) €

prin=al 1—g)1—eo)

[Vs(&m &)l < C g3 6 (2.120)
03 C(1-¢)
L%(§”®)—< e I

with C' = const > 0.

Proof. In the proof of Lemma we have obtained an estimate for
the function Q;(&,m; &) with i = 0,...,n (see (2.96])), but if exclude i = 0,
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2. The Protter problem for Keldysh-type equations

we can improve this estimate. Actually, substituting in (2.95]) the relation

(28)N(28 + N)ip1 = 2828 + 1)N(28 + 1+ N);,

we obtain

Qi(&,m; &) :(—1)1';16— i

- (B+N)B)NB)N(B+ N)is1
3 ) (B)5 + N)

XN s &, 1),
(2.122)

26+ )n (28 +1+ N);(14 N);1y N!

Now we have

(B+ N)(B+ N)in
(20414 N);i(1+ N)in

<1l, 1=1,...,n, 0<pB <1,

and respectively

(1—5)

Qil < 25

—i—1 . ; !
X7 & m5€0,1) 2 (5’5’2ﬁ+ = X(f,n;éo,l))

<O X 7NEm €,1), Cp=const >0 (2.123)

for (£,m) € DN {n < &}, because the hypergeometric function here is
bounded according to (A.8)). Applying (2.123) into (2.119)) and recalling

the estimates ([2.98]), we find that (2.120)) holds.

Next, we calculate

O3

¢, —— (&1 60) = ¥3.1(§m5 60) + ¥32(8,m5 &) + ¥3.3(&,m; 60)
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2. The Protter problem for Keldysh-type equations

with
—B¥3(&,m;&0)

¢3,1(£7 Uk 50) = 50 _ 5 )

_eN\P ,
PsalE, ) = (ﬁ) S iy (YY) (€m0, DQUE T €0),
i=1

_e\P , .
V33(€,m; &) == (510_2) ;diY’(f,n;fo,l)g—%(g,n;go). (2.124)

A. Estimation of the function v31(&,1;&). Using the estimate (2.120)),
we immediately obtain:

(-&)(1-8° _ Gy (1-¢)

(1 =n)(& =" = (1 =) — (& —n)"
(2.125)

103.1(&,m;5&0)| < Co

where Cy = const > 0, (§,n) € DN {n < &}.
B. Estimation of the function 132(&,m;&). Using the estimates (2.98)),
©.123) and

1-90-n _ 1-n

|vao(£a 773507 1)‘ = (2 — é" — 77)(1 — 50)2 N (1 - 50)2

in DN {n <&}, we obtain

(1-¢)” Cs(1-¢)

T 67 = T nA& —6)& —n)°
(2.126)

|32(&,m;5&0)| < Cs

where C5 = const > 0, (§,n7) € DN {n < &}.

C. Estimation of the function 133(€,1n;&). First, from (2.122)) we
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calculate:
0Qi ., . (=1)'(1-p)
i (&m60) = 25

Z (B+N)B)N(B)N(B+ N)it
28+ Dn(28+ 1+ N)i(1+ N); N

_1 ~ (B+1)n(B)x (B+N+1)(8+N)
_2( 1)(1 B)2(25+1)NN'(26+1+N)(1—|—N)2

X X1/ X)), (€5 €0, 1)

X_N_i(l/X)§0(£7 n; 507 1)

N=

From here it follows

0Q;i

5 (57 1; 50)

< B)i| X1/ X)g (€, m: 60, 1))

l\DI»—k

X oF) (5 +1,8,28 + 1; ) (2.127)

1
X(&m:6.1)

for0 < <1, i=1,....,nand ({,n) € DN {n < &}. By (A.6) with
a = [ we have
(6o =671 —n)”

(1—=&)P(& —mn)"
(2.128)

Now, applying ([2.127))-([2.128]) into (2.124)) and taking into account that

oI <5+1,5725+1; < c(B)

1

1-90 =& _ 1—¢

W/ X)e (€m0 D = 7= —¢F <T@ — o

we obtain the following estimate

Cy(1-¢)
(1 =)A= &)(& —n)"

[¥3.3(§5m;&0)| < (2.129)
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where Cy = const > 0, (£,n) € DN {n < &}.

Finally, (2.121)) follows directly from the estimates (2.125]), (2.126]) and
©.129). 0

Theorem 2.9.1. Suppose that F € CY(D). Then the derivative Ug(&,1)
of the generalized solution of Problem P,,5 has the following representation

on the segment {0 < & < 1}:

[(n—1)/2]

= 2 = 2N - P ©) -
k=0
[n/2]
+Y M=o /O (€ — )P B (&, 6)F(£1,6) d& + ¢'(€), (2.130)

k=0

where A} # 0 are the constants and g(§) is the function from Theorem

2.8.1. The derivative g'(§) satisfies the estimate
9'(©)] < ClIFllem) (1 —€)77, (2.131)
with a constant C' > 0 independent of F'.

Proof. Obviously, formula (2.130]) is obtained by a straightforward
differentiation of (2.107)) and we only have to prove the estimate ([2.131]).

Recall that an explicit form of the function g(&) is given by (2.114)).
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Now, by (|2.101]) we have that

Ws(&,m560) = a __ggﬁ(g (& &) + (€ ms o)}

=9 (1-¢)"
= AP0 =) {%(f n; &) + ¥3(&m; &) — & _5)5}
H_(fan;g()a 1)7

where the functions ¢1 (67 n; 50)7 wl (57 1; fO) and ¢3(f; 1; fO) are defined in
Lemmas [2.7.3] and respectively and H~(&,n; &y, no) is given by
(2.29)). Applying this equality into (2.114]) we obtain:

9(&0) = 91(&0) + 92(&0) + g3(%0)

with

[ =9” ,
91(o) -—/0 /g A=) — n)ﬁ%(&ﬁ,ﬁo)F(&n) dndeg,
S réo _£)8
0o(&0) : / / e ” 5_ (%(& 15 6o) — ((510 ?)0 F(&,n) dnds,

& réo
gs(60) = /0 /g F(& n)H(€.m: €0, 1) dde

€o 1
+ .
Jr/0 /50 F(&,m)W™(&,m; &0, 1) dnde.
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A. Estimation of the function gi(&). First, we calculate

S réo 77 5‘ 25 oy -
i) = | [ T e (6 FE ) dde

50 v (& — &)
+/0 (1-¢6)°%(1 g)ﬁwl(f ;€03 §0) F'(§, 6o) d€.

Now, with use of the estimates ) and m we get:

S réo 77 g 25
\m@\<awmy{/'/ e g e

&o _
+A g)égﬁ}gcmmmmm—®rﬂ

where C, Cy = const > 0 are independent of [

B. Estimation of the function g(&y). Next, we compute

95(&0) =
DRy M- (s, B¢
0 /5 (1—=&)P(1—mn)s <8§O(§’n’§°)+(§0_§)1+ﬂ> F(&,m) dndg
Oy (&= (1—¢)
+/0 TEGEE <¢3(§ €0;&0) — PETE —5)5> F(€, &) dE.

From the estimate (2.120]) in Lemma we conclude that by continuity

we have

(1-¢)’
(& — &7

1V3(&,80:0)| < C 0 <& <.
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Using this together with the estimate (2.121]) from Lemma [2.9.2} we obtain

SRS 26 1-8
5] < Gl Fllow {// Ui io_g)(g_n)ﬁdndg
“ (& —€)F }
+/0 (1—¢&)° %

with C3 = const > 0 independent of F'.

Taking into account that

< (-7, 0<g<n<é

and using the inequality , we come to the estimate
195(&0)] < Cull Flley (1 — &) ™"

with Cy = const > 0 independent of F'.

C. Estimation of the function g5(&). We may rewrite the function

g3(&o) in the following way:

S réo
93(&o) :/0 /5 F(&n)H(&§m;&,1) dnd§
€o 1 & 1
+ . + .
+/0 /;0 F(fa 77)H (€7T]7€07 ]-) dndf + A /50 F(g,n)G (57777 &)’ 1) dndg

& 1
= U (&,1 F(&,n)GT(&,m; &, 1) dnd€.
(507 )+A /50 (5777) (57777‘507 ) n 5
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Then we have

&o 1
dh(60) = U (€. 1) + /O /5 F(6m)GE (62176, 1) dide
&o
- / F(€,60) G (€, &0: €0, 1) dE.

Applying here the estimates (2.40)-(2.41) and ([2.52)-(2.53)), we conclude

that
195(60)] < G5l Flloqp) (1 — &)™
with C'5s = const > 0 independent of F'.

The proof is complete. ]

Remark 2.9.1. For the terms
d n 1,0 2k—n n n,p 2k—n—1
gg RO =77 = (n = 2SO - ©)
¢ B
-7 [ - e B @ o0 de

in the expansion (2.130) we have the following estimate on the segment

0<E< T

< C||F|lem(1—=€)7"

PO -

with C = const > 0 independent of F'. This easily follows from the estimate
(2.115) and from (|2.116|) which implies the estimate

d
'd—gJ,?ﬁ(&)‘ < O\ Fllomy(1 — €)%, (2.132)
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2.10. Asymptotic expansion of the function U({, )

From here, using the data which we obtained for the generalized solution
on the boundary segment n =1, 0 < £ < 1, we will study the behavior of
U(&,n) in the region D. Actually, the generalized solution of Problem P,

can be obtained by solving the following Goursat problem:

Problem PS,. Given a point (&,1m9) € D, find a solution of the

equation

EslU] = F(&n)
in the region

HZ:{(f,n)10<f<fo, 770<77<1},

satisfying the following boundary conditions:

U(07 77) - 07
[n/2]

UE1) =Y M(up” = J7(€) (1= 9" + g(9).
k=0

(The function U(&, 1) is the one which we found in Theorem 2.8.1]).

The solution of this problem obtained by the Riemann method is the

following one:

€o
Uteam) = [ (VD) - 12U D) RIE 1363, m) dg

1 ré&
—//0 F(&,nR(E, n; &, o) dédn, (2.133)
Mo
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where R(&,1; &, mo) is the Riemann function for equation ([2.15]).
At the points (£,7n) € II, where |X(&,7;&,m)| < 1, the Riemann
function coincides with the function W (&, n; &, no) (see (2.22))), which may

be written as

_e\PL ,
‘I’Jr(fa??;fO:??O) - ( L 5 ) ZCZYZ2F1(671_572+17X) (2134)
m—2&/) =

If (&0, m0) belongs to the region

:{(g,n): 0<¢<1, %(1+§)<n<1}cD, (2.135)

then at all the points (,77) € II we have | X| < 1 and, respectively,
UH(E,m;&,mo) is well defined. Otherwise, if (£, m0) ¢ T, in a part of the
region II we may have X < —1. In this case, applying into ([2.134)),
the series W (&, m; &, mo) can be analytically continued in the whole region

II as

(€, n: _ (77 525 ~ i 1
A 7777507770)'_( T] 505262Y2F1 6+272+17Z)

(2.136)

or

(n—&)(mo — &)
(mo — &) F(n — &) 7

XY YO Fi(1—8,1=B+ii+1;Z) (2137)
1=0

UE(E,n;&0,m0) =
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with
g X _ (n=m)(& —¢)
X -1 (770—5)(77—50)'

Further, in dependence of the value of the parameter § the Riemann

function can be estimated in a different way in the region II:

A. The case 0 < [ < 1/2. In this case for the Riemann function it
is convenient to use the representation form W}. Note that according to
the hypergeometric function in ([2.136)) is bounded for 0 < 8 < 1/2.
Respectively we have

(n —€)*

(o — €)% (n — &))"’

B. The case 1/2 < [ < 1. In this case, according to (A.§), the

U (&, m; €0, m0)| < const (&,n) eIl (2.138)

hypergeometric function in (2.137)) is bounded and, respectively, for the
function ¥} we have

(n = &) (o — &)=
(0 — &) P (n — &)=
C. The case B = 1/2. Note that in this case the expressions ([2.136))

and ([2.137) coincide and the hypergeometric function in (2.136) (or (2.137)
becomes unbounded as Z — 1. According to (A.6)), for each a > 0 there

[W5(6,m: €0, 10)] < const (6m) €L (2.139)

exists a constant ¢(a) > 0 such that

(n—&)"(no — &)~

(1m0 — &)Y (n — &)Y2e
(2.140)

\‘Pﬁ(ﬁ,n;ﬁo,no)\ = |‘I’1§(§777;§0,770)\ < C(Of)

for (&,n) € I1.
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For the solution of Problem P%, (i.e. for the generalized solution of
P,.2) we obtain the following main result, which we will prove in the next

section:

Theorem 2.10.1. Let 0 < 3 < 1 and F € CY(D). Then the unique gener-
alized solution of Problem P,,5 has the following asymptotic representation

at the singular point (1,1):

[n/2]

Zu”ﬁ GENEmE ==+ GOE ), (&m) €D

where aZ’ﬂ = const # 0,

_ 2
() = 2F1<n—k+17_k7%+5; (- )

2 (2—¢&—n)?
and the function GV(&,n) € C(D) is such that GP)(1,1) = 0. For 0 <
B < 1/2 GV, n) satisfies the following estimate in D:

GO )| < K|Fllew)(L =€) 7(1+[In(l - €)])

with a constant K > 0 independent of F. For 1/2 < B < 1 such an
estimate holds at least in T C D.

Remark 2.10.1. Note that the functions GZ’B(é",n) are connected with

([2.18) by the following relation:

O i S /) i
(2—&—m) 2

EP(en) = Gy (&)

in D\(1,1).
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2. The Protter problem for Keldysh-type equations

2.11. Proof of Theorem 2.10.1]

Since the proof of this theorem is too long, we start here with some auxiliary

lemmas.

Lemma 2.11.1. Forp =1,2,..., 1 =0,1,2,... and a > —1 define the

integrals:
! 2 2
a . -1 i+1 «Q «
o, = /0 (t — wi2)P~ Y1 — 2wt)2 (1 — £)*(1 — ot)* dt,

where

: 0<w< = (2.141)

Then

L(p)il (1 - w)” s~ (1 + )is (p)s
(2 —s) sl

o, =

= 1 — 2w)%. 2.142
2 (1 +a)i+p ( ) ( )

5=0
Proof. First, by ([2.141]) we have

1—2wt =(1-w){o(l—t)+(1—-o0t)}.

Then I}, may be written as

1
o 2\p—1 21 a+1 o
]m:(l—w)a/o(t—wt P — 2wt) 2 (1 — 1) (1 — ot)™ dt

1l —w
a+1

/0 (t _ wt2)p—1(1 _ 2wt)2i%{(1 _ t)a+1}(1 . 0t)a+1 dt.

Next, integrating by parts in the second integral, for I}; we obtain four
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different cases in dependence of the parameters p and 1.

A. The case p =1, © = 0. In this case we have:

1 —w =1
1% = ———(1 —)*"}(1 — ot)>™!
1,0 a+1( ) ot)

_1—w
0 14 a

(2.143)

B. The case p =1, i =1,2,... In this case we obtain:

1 — _ t=1
I, = —Q—ﬁu — 2wt)%(1 — 1) (1 — o)
0
4iw(1 — ! .
— Zw(+ 1w) / (1 _ 2wt>21—1(1 _ t)a+1(1 _ Ot)a—H dt,
«Q 0

which actually gives the recurrence relation:

o _ 1—w_4iw(1—w)]a+1 B 1—w_i{1—(1_2w)2}]a+1
i = Li—1 = Li—1°
a+1 a+1 a+1 a+1

From here, taking into account ([2.143)), we find that

o (1l -w) i (L+®ims o o o
[1’i_(1+oz)i+1z (i s (1 —2w)~.

S=

C. The case i =0, p=2,3,... For I}, we get

a (p - 1)(1 - W) ! 2\p—2 a+1 a+1
]p,O = 1 i (t —wt)P=(1 = 2wt)(1 — ) (1 — at) dt,
or
a (p - 1)<1 - w) a+1
bo="——757 b0
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From this recurrence relation, starting from I, we find that

L(p)(L —w)”

oy =
p0 (14 ),

D. The case p=2,3,..., 1 =1,2,... For this case we have:

—1)(1 - 1 .
I;i — (p )( w) / (t . th)p—Q(l o 2wt)21+1(1 . t)oz—i—l(l o Ut)oz—i—l dt
’ o+ 1 0
4iw(1 — 1 .
—lﬂgifﬂ/Xt—m%%%1—zww4u—¢wﬂu—awﬁhw
o 0

This gives the following relation:

@ (p—l)(l—LU) a+1 .{1—(1—200)2} a+1

Now we try to find a representation of I}; of the form:

W Tt (1—w)P < (14 a)i 2s
I8, = (. ; a C,o(1 — 2w)?, (2.145)

where we suppose that C), s do not depend on ¢ and C 3 = 1. Putting this
expression into (2.144)) and simplifying, we find that the coefficients C),

must satisfy the relations:
Cp78 - Cp_175 + Cp75_17 Cp70 - Cl,S - 1'

From here we obtain

sl(p —1)! sl

CI%S -
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Substituting this into ([2.145)) gives the final result ([2.142]).

The proof is complete. ]

Lemma 2.11.2. For 0 < 8 <1 and p € NU O define the series

(8);(L—B); (mo—1)
JHG =D (o — &)
@ 9(¢)
o 1-¢

where ¢(&) is an integrable function, bounded on the interval [0,1]. Then

this series converges for (&y,m0) € T C D and the following estimate holds:

1S0(&0,m0)| < C M,

: :770 (1 + |In(1 — 50)\)7 (o,m0) €T,
1 =&

where C' = const > 0 and
My := max |p(£)].
¢ [Ofﬁ’(‘ €31

Further, So(&y,mo) can be analytically continued in the whole region D,
where:
(i) if 0 < 5 < 1/2, then

(1 —no) (o — &)"°

|SO(§07770>‘ < CM¢ (1 _ fO)HB

(1+]In(1 - &)I):
(i) if 1/2 < B < 1, then

(1 —no)(mo — &) °

1S0(&0,m0)| < C M, (1 — €)1 +h—<

(1+ (1 = &)l)
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with some € € (0, 5).

Proof. First, using (A.5)), we have

B n — 1 > (1+ B)k(2 =P (Uo—l)k
So(€o,m0) = K o — & l; (2) k! (0 — &o)*

goﬁ 1 p—ﬁ( 1% )k
01_5{/075 1 1_575 dt » d¢

T
— K, :7700_50 : 0% {/Oltp—%Fl(l +8,2—B,2;2) dt} ¢ (2.146)

with K7 = const = (1 — fB)(p— f+ 1) and

_(mo—1 14
S e

For (&y,m0) € T we have 0 < 1—ny < ng—&p (see (2.135))), which implies
|z| < 1. Then the series o F1(1 + 5,2 — [3,2; z) is absolutely convergent.

Next, to estimate the integrals involved in ([2.146)), with use of (A.13))

we obtain:
_ €0
So(fo;ﬁo):—Kli_gs i o(§)
1 v Fi(1 2;2)dt » d 2.148
R e =TGR DL RONCATY

Now, according to (|A.5)), (A.6) and (A.8), we have

|2 F1(1 —8,05,2; 2)| < const (2.149)
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and

tP=P dt

1
<0541 | g
1 1= 1-9!
= 1_52171 (p—ﬁ+1,1,p—5+2, 1_§> SC(Q>W7 (2.150)

where we choose o € (0, 1). Next, making a substitution £ = £yt and using

once again (|A.5)), we get

o (1 - éf)afl &o (1 . g)a—l
0<A mwaaﬁgé CEGI
11—«
_ 150_ L R(11-a,2— ;). (2151)

From the one hand, taking into account (A.12), we can estimate
1
2F1(17 1 - Q, 2— 05;50) < 2F1(17 17 27 0) - €_| ln(l - éO)l?
0

since
L=a)y M g
2—a); (2);

and from the other hand by (A.6)) we have

O<ax<xl

2P (1,1 = 0,2 = ;&) < e(8)(1 = &)~°
with 0 > 0, hence

2Fi(1,1—a,2 — a;&) < const (1+ |In(1 — &)|). (2.152)
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Applying the estimates (2.149))-(2.152)) into ([2.148)), we see that:

1S0(&o0,m0)| < C M, 1 20 (14 In(1 —&)|). (€0,m0) €T

Now, using (A.14)) we may prolong the series Sy(&p,79) in the whole

region D:

— — )8 rE0
So(&osmo) = — K4 < (17]0_)(;(31%60) 0 P(&)(1 - 5)6

7 1 2= N atld
/ {(1—¢) —(1—n) t}Hﬁz 1( Ha ’;> ¢

The hypergeometric series here is well defined in D, since for each point

(&0,m0) € D we have z < 0, which implies 0 < z/(z — 1) < 1.

A. The case 0 < [ < 1/2. In this case the series o F1(1 + 3, 3,2;()
is bounded as ¢ — 1. Then working in the same manner in which we

estimated ([2.148]), we obtain

= — &)’
\50(50,770” < C’M¢ ( (1770_)20)1% 0)

(14 In(1 —&)l), (&0,m0) € D.

B. The case 1/2 < f < 1. Taking into account that

— &) — g
12F1(3/2,1/2,2;()| < Constﬁ <1 — 11 _ZO t>

for some d € (0,1/2) and

£ \28-1 . 26-1
‘2F1(1 + 6757 27 <)| S const ((7710 _?0))26—1 <1 o 11 _7750 t) ) ﬁ > 1/27
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which follows from (A.7))-(A.6), with similar calculations we come to

1— — &P
S0 (€0, m0)| < C' My ( (1770_>(;(;1+§_03 (I+[In(1=&)I),  (§o,m0) € D,

where
J, g =1/2,

20—-1, 1/2<p<1.

E =

The proof is complete. [

Lemma 2.11.3. For0 < g < 1,i€ N and p € NUO define the series

=3 (8);(1=8); (mo—1)

€0 _
« | f%éﬂﬂ@%ﬁﬂ4ﬂf%—ﬁp—ﬁ+2%j%)d&

where ¢(§) is an integrable function, bounded on the interval [0,1] with
|6(&)| < My = const > 0. Then this series converges for (&y,m0) € T C D

and the following estimate holds:

Si(&o,mo)| < CMy (1+ |In(1 —&)),  (So,m0) €T, (2.153)

where C' = const > 0.
Further, S;(&,mo) can be analytically continued in the whole region D,

where:
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(i) if 0 < B < 1/2, then

(m0 — &)”

|5i(€0,m0)| < C' M, TESE

(1+ (1 = &))); (2.154)
(ii) if 1/2 < B < 1, then

B—e
1Si(€0, mo)| < C' M, (0 — &o)

B (L I - ) (2.155)

with some € € (0, 5).

Proof. The proof is very similar to the proof of the previous lemma.

First, in analogous way we come to

&0 1
Seom) — Ko [ { [ om0 - i dt} €
0 0

with

B 1 1 i—1
K5 = const = %, h(&, &, t) = (1 7 _? t)

and z defined by (2.147). Clearly, for 0 < £ < & < land 0 <t < 1 we
have |h(€, &, t)| < 1 and working in a similar manner as in Lemma [2.11.2

we come to the estimate ([2.153)).
Next, with use of ({A.14]), we continue the series S;(&y, 79) in the whole

region D and, in a similar manner as in Lemma [2.11.2] we get the estimates

@.154) and (2.155) in D. O

Lemma 2.11.4. Let (§g,m0) € D, 0 < 8 <1, p €N, p<n and p be of
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the same parity as n. Then

o
T, (€0 ) = (p— ) /0 (1= &) R(E, 1 6o, ) d

B Ky, 2 p+n+1 p—n
T 2=&-—nr ! 9 7 2

(n0 — &)? )

2— fO - 770)2
- Hp,n(£07 770)7 (2156)

1

where K, , = const # 0 and H,,(&,m0) is a function with the following

series representation in T C D:

Hy o (0,10) ZZ ”+1 )i(B);(1 — B);

2 2T+ ) (1)

(1 — o)™t
(2 — & — mo)i(no — &o)itP h

X (p 67 ]p—i_l_ﬁal_f())

(2.157)

Proof. First, suppose that (£, 7m9) € 7. Then we may represent the
function R(&,n; &, mo) by WH(E,m; &, mo) and according to ([2.134) we have

1);(8);(1 = B);
Ip,n(fo,no (p—05) ZXO:JX; Z—|—j)( iy
o (50 g)z—m( nO)H—j
| e e

For fixed indexes i, j consider a single term with

&o o o
S.i(60) = /0 (1— &) 9 p- 18 (g, — £)H9 .
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Making a substitution £ = t &y, with use of ({A.5]) we obtain:

Si,j(&O) - (Z)+]+1/ (1 — t)l-H(l _ &)t)—p—l—]—l—kﬁ dt
0

_ i L0+ J+1)
O Tl+j+2)

Fi(lip+i+j+1—01+7+2;&).

Next, we transform the hypergeometric function in the above expres-

sion by (|A.15)):

S;i(&) = &P
X{ I'(5 —p)
(1445 —p)
i+ +1D(p—p)
T(p+i+j+1—7)

X 2F1(i+j+1,1—p+5,1—p+5;1—§0)}

Fi(lip+i+j+1—-0,p+1—061—¢&)

(1= &)t

= 5 (&) + 52 ().

For va‘ly.)(ﬁo) by (A.13]) we have

1
s (&) = Gl — B i = jp 1= Gi1-6)

and for SZ-(? (&) by (A.11) we have

(i+7+1)I(p—B)

o S e
pritirlp)l S

r
2
Returning back to Z,,, (€0, n0) we obtain that

Lyn(0,m0) = Tpn(&o:m0) — Hpn(€0.m0), (2.158)
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where H,,,, (&0, o) is the series (2.157) and

| Fi+j+1D)0(p—p)
x7p,n(€07770)' 1_£0p 622 p—f—l—f‘]—i_l_ﬁ)

i+ D08 (-
NG U1 (= ) (2 — & — )"

(2.159)

The series (2.157) converges in T, because it is a superposition of the con-

vergent series 7, (&0, m0) and —Z, (&0, Mo)-
Simplifying the coeflicients in the series (2.159)), J, (&0, m0) becomes

Tpn(&0ym0) = (1 — &) PP Z Z (—n)i(n + 1)i(ﬁ')j'(1 _ @j_

=0 j=0 (p +1— B)H-j Z']' (—1)]
(1 — o)™
(M0 — €0)7H7(2 — &o — mo)’

(2.160)

or

(1—&) "7 (—n)iln+1); (1 =)’

-.7p,n(§07 770) = (770 _ 50)6 — (p +1— 6)2 7! (2 — & — 770)2

1

XQFl(ﬁ,l—ﬁ,pﬂ'H 5,770_510>

Now, applying (A.14)), we derive

e\ in+ 1) (1 =)’
Tpn(&o,m0) = (1 —&o) Zz:(): (p+1—=70)1!(2—& —m)

1_
xgﬂ(ﬁp+2p+z+1—51 ?v,(zmm
— G0
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which actually analytically continues the function 7, (&0, n0) at the points
(507 770) S D\T

Denoting for shortness

1 - 1
wi=——n =T (2.162)

and applying (A.5]), we have:

(1= B)p(1 —&)"

Tpn(&0,M0) = T'(p)
- (—n)i(n + 1>iwi ' pri=101 _ B — o) P
<> jﬁ PHL )P — o) dt (2.163)

and, consequently,

(1= 8)p(1 =&)7*
I'(p)

1
X / 2Fi(n+1,—n, p;wt) P11 — )P (1 — ot) P dt.
0

Tpn(&0,M0) =

Applying the auto transformation formula (A.13), we obtain

(1= 8)p(1 =&)7*
['(p)

1
X / 2Filp—n—1,p+n,p;wt) (t — wt2)p_1(1 — t)_ﬁ(l — at)_ﬂ dt.
0

Tpn(&0,M0) =

This makes possible to use the quadratic transformation (A.17)-(A.19) to
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derive

ho(1— B), LY (el (),
(P)(1 = &o)? ZZO: (3/2);1!

! w21 — 2wt 2 (] — 1B — o)
X/O(t 2Y1(1 — 2wt (1 — )0 (1 — o) dt

Tpn(&0,m0) = T

with
I'(=1/2)['(p)

(E5=)T(5)

hg =

where we took into account that n — p is an even number.

Note that o and w defined by (|2.162)) are connected by the relation

and, also, 0 < w < 1/2. Therefore we may apply Lemma [2.11.1] with

o = — [ to obtain

ha(1 — B), (n_zp)/z (P5)i("5)i

T (&osM0) = (1— &) (3/2);
1—w)P < 1 —p)i—s(p)s 2s
’ (§ —5>3+p; ( = S))! 21— 2
Noting that
l—-w 1

1-&% 2-&—n
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we come to
(n—p)/2
ho (p)s 2
\7 n 9 — 1 - Z(JJ 5
pn(&0-7h) (2 =& —m)? Zo T )
(n—p)/2 ptn+ly /p—n
1= B)is (5
XZ(,ﬁ) (2)(2).(2.164)
2. i—s) (3/2)(1—B+p)
Next, using (A.1]), we have:
(n—p)/2 n —n

3 (= Pis (L),

2. =) (3/2)(1— B+p)

n+1 —n o 2s n+1 25+p—n
G20 B+p. 2 () (+3/2,G+1- 5+
For the generalized hypergeometric series
L (1=p); () (),
2o T Gyt 1-B o)
2 1 2 — 3
= aFy (1, TR S PT y apst s
2 2 2
(2.166)

we can apply the Saalschutz’s Theorem (see page [146]) to obtain

2s+p+n+1 2s+p—n 3
3F2<1_67 p2 ) 5 78+1_6+p78+§71>

_ TA-B+p+s)(5— 8 —s)(E5)T(%")
T(1— B+ T = B+ 5T (=s — DT (p + 5)

. (2.167)
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Substituting ([2.165)-(2.167]) into (2.164)) and simplifying, we come to

n—p)/2 n
(n—p)/ (p+ -l-l)s(pT)

— Kp,n
s7p,n(£07 770) - (2 — & — nO)p ; (ﬁ + 1/2)8 !

Kyn p+n+1p—n
= ! F

(1 —2w)*

1 (o —&)
2" (2 =& —m)?

)(zm&

with 1
T -=-8+plG5-5)
Kp’n_F(l—B—l—%)F(%—ﬁ—i—an) £ 0. (2.169)

Finally, substituting (2.168)) into (2.158)), we complete the proof. [

Lemma 2.11.5. Let (§y,m0) € D, 0 < 8 < 1, p =0 and n be an even
number. Then formula (2.150)) is still valid, i.e.

o
Ton (&0, m0) = —5/ (1= &)7"R(& 15 &, mo) dE

(1m0 — &)?

n+1 —n 1'
27 (2—=& —mo)?

2 27

= KOnQFl ( 6 + ) - HO,n(€07770)7 (2170)

where Hy,,(§0,m0) is the function from Lemma 2.11.4) and K, , are the
coefficients ([2.169)).

Proof. We can repeat the calculations in the proof of Lemma [2.11.4

with p = 0 up to formula (2.161)). Formula (2.163]), obviously, is not well

defined for p = 0. The repeated calculations with p = 0 up to formula
(2.161)) give

Zo.n(&0sm0) = Tn(&0sm0) — Hon(€o, m0),

128



2. The Protter problem for Keldysh-type equations

where

_x~nin+ 1) (1= ) ( — .1_770>
(6o, m0) = - (1= 3) ! (Q—fo—ﬁo)iQFl B0+ 1 671—50 .

2

We have to prove that Y, (&, m0) = Jon(&o,m0), where Jp,,(&0,m0) is the
function ([2.168)).

For n = 0 we have obviously that Y¢(&o,m0) = Jo0(&0,m0) = 1. For
n=2,4,..., using (A.D), we may write:

Tn(an 770) =1- (n + 1)

n—1
1 2 ”
X n+ n+ ) / W1 —t)P(1 —ot) P dt
1=0 0

1
11—+ 1)w/ P (—n+1m 4 2,2:08) (1 — )21 — ot) 0 dt,
0

where o and w are given by ([2.162)). Next, we use the quadratic transfor-
mation (A.17)-(A.19)) to obtain:

with
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2. The Protter problem for Keldysh-type equations

Now we apply Lemma [2.11.1} with « = —f and p = 1:

1, (&0, m0) =1 — h(Q)n(n +1w(l —w)
(n—2)/2

" 2; 3/2 iT)i U= 0oy g

Bliv1 = (i—s)!

(n=2)/2 n+3\ . /2—-n 1
(52)i(551)i (1—f)is Y

Next, rearranging the above expression, we find that

n/2

To(&o.m0) = Y as(1 — 2w)™ (2.171)

with

and
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2. The Protter problem for Keldysh-type equations
Taking into account that

(1=0)ics (1= P)icss1 (1= f)i-s

(i — s)! - (i—s+1) :5(7;_8_'_1)!7 (2.173)
fors=1,...,(n —2)/2 we derive
_ p(2) (n+1)( )S I(Q_Tn)s—l
R S TR )
><3F2(—5,28+2n+1,282_n 1—5,s+; 1)

Applying here the Saalschutz’s Theorem and simplifying, we obtain:

(2.174)

(n—2)/2 n+3\ (2—n
o pnnt1l) ("32)i (557 ((1—5)i+1 (1—5)i>
W= T L G- L ar  aE
h2) n+1l nl
1y e () ]
(2)
—hT [3F2 (—5,n;1,—g;1—5%; 1> —1] -

For ¢ € (0,1) with use of (A.9) we calculate

n+1 n 1l (8—2)71/2
F oS tel) =2
(s~
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2. The Protter problem for Keldysh-type equations

and letting ¢ — 40 we find that

n+1 n 1 —2
F SR —
2 1( 9 ) 2727 ) h(2)

Then, using once again the Saalschutz’s Theorem and simplifying, for ag we

obtain the following value:

[(1-B)r(z - B)
= 2.175
“ G- p-DI1-4+D 2
For the coefficient a,,/, from (2.172)) we get:
[O-OMG-8)  (DplDue
- 176
" ETE =BT 6+3) (O () 210

[(1-B)(z - B)
T, ) =
Som) = T pra -4+
n+1 n 1 . (770 — 50)2 B
X 2F1 ( 9 a_§7§+67 (2_§O_n0)2> —jo,n(§07770)a
which completes the proof. l

Lemma 2.11.6. Let (&y,1m0) € D, 0< <1, pe NU{0}, p<n andp be

of the same parity as n. Next, define the function

o
Iy, (&,m) == (p - 5)/0 ep(E)(1 — &) PIR(E, 13 €0, m0) dE

&o
+ / (61— €)PRE, 1 9, m0) dE.
0
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2. The Protter problem for Keldysh-type equations

where @, € C1([0,1)) and for £ € 0,1)

|op(€)] < My(1— PP, OO < My(1—&P7  (2.177)

with a positive constant M. Then

0, (&0, m0) = I (&0, m0) — ©p(0) Hyp (€0, 70)

where Hy, (&0, m0) is the function from Lemmas|2.11.442.11.5 and Jg}n(fo, M)

satisfies the following estimate:

70, (E0vmo)| € OM, (1-6)" 2 (14 In(1-&)]),  (&0,m0) € T, (2.178)

with a positive constant C'. Further:

(i) if 0 < 5 < 1/2, then

T2 (&0, mo)| < C M, (1-&) 7 (14| In(1-&))), (é0,m0) € D; (2.179)

(i) if 1/2 < B < 1, then

(1 o 50)1—6+5
(10 — &o)°

Ty (€0.mo)| < CM,, (14 In(1—&)[), (&,m0) €D
(2.180)
with some € € (0, 3).

Additionally, this result holds for p = 0 also in the case when n is an

odd number.
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2. The Protter problem for Keldysh-type equations

Proof. First, consider the integral
0 €o _ N
SZ,J(g()) = / (pp(f)(]_ _ 5)—2_.7_17_ +ﬁ(€0 . £)l+.7 df
0

According to ({A.11]) we have

i+J

L o i — 1—
G- =gy ((1 _fg))s (2.181)
s=0 '
and hence we may write:
+j o,
(_Z 1 _5 “ —p—s
e =35 D B8l [P0 - s
An integration by parts gives:
_iijj(_i_j 1—50 /fo szrﬂdf
s! p+s—p
akl s (1—&)rth ) (—i—7)s (1 —&)°
+<,0p§02 s! p+s—p —gop(()); st p+s—p

Taking into account that (p — B+ s)(p—B)s = (p— B)(p — 5+ 1)s
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2. The Protter problem for Keldysh-type equations

and using (A.9) we come to

_ o
S0.(69) = — { / ()1 — )7+

R
b (p=Boi- g B4 ) de
— _ g\ pts (i +7)!
©p(80)(1 = &o) (p—B+ 1)y,

+p(0)2Fi(p— B, —t—jp— B+ 11— 50)} . (2.182)

Now, suppose that (£y,79) € 7. Then, representing the function
R(&,m;&0,m0) as U (E,m; &, mo), according to (2.134]) we write

];z()),n (50 770) —

S 1)i(8);(1 = B); (1 —m)™
Z Z' @+ )N (=10 (2=& —m0)'(no — &)*°

1=0 5=0

{ p—B)S / P (E)(1 — &) (g — )i dg}.

Substituting here (2.182]) and using once again ([2.181]) we derive:

I (&0, m0) = @) (€0, m0) + ©p(E0) Tpn (€0 m0) — ©p(0) Hp (€0, m0), (2.183)
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2. The Protter problem for Keldysh-type equations

where J,.,(&0,m0) is the series given by ([2.160]) and

S D@0 -8); (1w
i—0 j—0 Z']' (Z + j)' (—l)j (2 — & — Uo)i(no _ 50)j+5

&o _
x/o so;@)(l—g)—“ﬁ[F(p B4l —i—jp— B+ 12 5“)

1-¢
_2F1(p B,—i—jp—B+1; 1__?)] dé.

(a) In the case when p is of the same parity as n, according to Lemmas

2.11.4H2.11.5] the function J,, (&, m0) has the representation (2.168) in D

and obviously it satisfies the estimate

‘jp,n(ﬁo? 770>| < const (2 — & —no) 7, (&0, m0) € D.

Then, in view of (2.177), we have

|00(£0) Tpn(&osm0)| < C M, (1 — &) 7, (§0,m0) € D

and, clearly, ¢,(£0) Jp.n(€o, o) satisfies the same estimates ([2.178))-([2.180)])

as the function Jg’n(fo, no) should satisfy.

(b) In the case when p = 0 and n is an odd number we transform

the series Jp.,(&0,m0) into (2.161]) and with use of ( we conclude
that o(&0) Jo.n(&o,mo) satisfies the same estimates (|2.178|)—(|2.180|) as the

function J), (€. 1) should satisfy.
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2. The Protter problem for Keldysh-type equations

Next, to estimate ng(&), 1M0), subtracting term by term we derive:

Fi(p—pB+1,—t—g,p—F+1z)—Fi(p—B,—i—jp—B+1;2)
(i+7)2 o
e 1 p—B+1L1—i—jp—B+22)

and therefore Q) (&0, 70) becomes

0 . 1 - 50
Qp,n(foa%) - (770 . 50)5
= —n);(n —+ 1 i 1— ‘
X (50(50,770) + ; (=n) (z'! ) 2 (_ & no)m)iSi(ﬁo,??o)) ’

where Sy (&, m9) and S;(&p, no) are the series from Lemmas[2.11.242.11.3|with

¢(&) = Al

= m(l — &) e C([0,1)).

The function ¢(&) according to (2.177)) is bounded on the segment [0, 1].

Using the results of Lemmas|[2.11.2H2.11.3|we conclude that the function

J£7n(€0’ 770) = 2,71(507 770) + Sop(€0) \-710771(507 770)

satisfies the estimates (2.178])-(2.180]). Here we take into account that for

(€o,m0) € T we have 1 —ng < no — &.
Then, in view of (2.183]), the proof is complete. 0

Proof of Theorem [2.10.1] First, recall that the solution of Problem
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2. The Protter problem for Keldysh-type equations

PG, is given by ([2.133).

Taking into account the estimates (2.109)), (2.115]), (2.131]) and (2.132)

we apply here:

(a) Lemma 2.11.4] with p = n — 2k;
(b) Lemma [2.11.5]if n is an even number;

(¢) Lemma 2.11.6 with
p:n_2k7 9071—2/{(5) = J/?’B(f)a ]{ZO,...,[(TL— 1)/2]

and

Then, noting that
TEP0) =, g(0) =0,

we obtain:

/Ogo <Ug(f, 1) — %U(g, 1)) R(E,1; €, m0) dE

§
B play” 11 (0 — &0
_Z 2_60_ ngFl <n—k—i—§,—k,§+5,(2_50_770)2)

G\ (&oum), (2.184)
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2. The Protter problem for Keldysh-type equations

where aZ’ﬂ = const # 0 and the function G(IB )(f ,m) satisfies the estimates

|Ggﬁ)(foa770)| < KHFHC(D) (1 - fo)l_ﬁ (1 + |ln(1 - fo)|)7 (507770) €T,
(2.185)

G (& mo)| < K| Fllemy 1 —&) 72 1+ |In(1—&)]),  (&,m0) € D

in the case 0 < f < 1/2; (2.186)

(1 _ go)l—BJrs

(M0 — &o)°

GV (&,m0)| < K| Fllo) (1+|In(1-&)]), (,m) €D

in the case 1/2 < g <1 (2.187)

with a positive constant K and some € € (0, 3).

Next, using the estimates for the Riemann function (2.138))-(12.140]), we

find that the function

1 ré
G (€0, o) = — / / F(&, nYR(E, m; €0, m0) dedy

1o <0

satisfies the same estimates (2.185)-(2.187)) as the function Ggﬂ )(50, M0). Re-

spectively, for the function

such estimates hold as well.
To complete the proof we have to confirm that we have G¥) € C(D)
and G”)(1,1) = 0 even in the case 1/2 < < 1.
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2. The Protter problem for Keldysh-type equations

On the one hand the estimate (2.187) allows the function G¥)(¢&,n)
to have singularities on the line {n = £}, but on the other hand from

Theorem [2.6.2 we know that U(€,1) € C(D)\(1,1). Therefore G (&,n) €

C(D)\(1,1) as well. The lines

ls={En):n-¢=0(01-¢}, d€(0,1]

pass through the point (£,7) = (1, 1) and on each of them, according to the
estimate (2.187)) (applied to G®), we have

GOE 5 + (1= 0)) < 5 KN Fllemy (1= & (1+ [1n(1 = )],
implying

(f,n%;(1,1)G (&m) =0, (&n) € D\{n=¢}.

By continuity we have that this equality holds for (&,71) € D as well.
The proof is complete. ]

The assertions in Theorem 2.2.3 and Remark 2.2 Tl follow from Theorem
2.10.1] after the inverse transformation from Problem P,,» to Problem P,,.

To obtain this, take into account that the coefficients uzﬁ

are proportional
to the coefficients p;”"" with non-zero constants, which can be proved in

analogous way as Lemma [1.7.1]in Chapter 1.
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Appendix A.

Some formulas for the

hypergeometric function

In the present research we widely use various well known formulas (see for
example [3], [5], [48]), concerning the hypergeometric function and some of

its generalizations.

A. The Pochhammer symbol. In order to operate with the hyper-
geometric series we need to use some basic relations for the Pochhammer

symbol

(a); := ., a,a+1#0,—1,-2,...,

which for each a € C and nonnegative integer ¢ is also defined as

(a)j=ala+1)...(a+i—1), i€N, (a)=1
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Appendiz A. Some formulas for the hypergeometric function

Such basic relations are:

(@)ivj = (a)i(a+1i);, (A1)
- (=1 (a)
(a)z—j (1 N 0 — Z.)j, (A2)
(a)y = 2% (g) (“ ; 1) . (A.3)
(a); = (1) (1 —a—j);. (A4)

B. The Gauss hypergeometric series. The Gauss hypergeometric

series is defined as:

o Fi(a,b,c; () = Z (a)@(b)lgz a,bce C, ¢#0,—1,—-2,....

For || < 1 this series is absolutely convergent. In the case when a or b is a

nonpositive integer, o Fi(a, b, ¢; () becomes a polynomial and then it is well

defined for each ¢ € C.

e In the case when 0 < Rea < Re c the hypergeometric series has the

following integral representation:

o1 (a,b,¢;¢) = F(a)i((i)_ 3 /0 1=t (1= ¢t)dt. (AB)

e The hypergeometric series may become unbounded or it may be
bounded as ¢ — 1 and it satisfies the following estimates:

(i) If c—a—0b =0, then for each o > 0 there exists a constant c¢(a)) > 0
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Appendiz A. Some formulas for the hypergeometric function

such that
[ 2F31(a, b, ¢; Q)] < e(a)(1 — ()™ (A.6)

(ii) In the case ¢ —a — b < 0 we have a constant K > 0 such that:
[2F1(a,b,¢; Q)| < K(1—¢) ", (A7)

(iii) In the case ¢ —a — b > 0, as well as in the case when 5 Fi(a, b, ¢; ()
is a polynomial of a bounded argument (, we have a constant K > 0 such
that:

| 2F1(a,b,¢; Q)] < K. (A.8)

In the last case the hypergeometric series can be evaluated at ( =1 as

L(e)['(c—a—b)

Fi(a,b,c;1) = A9
2Fileb e l) = T Spe ) (4.9)
provided the Gamma functions in (A.9)) are well defined.
e The derivatives of 9 Fi(a, b, ¢; () are given by
da’ s(b)s
i o Fi(a,b,c;C) = (a()c)(s) oFi(a+s,b+s,c+s;(), s=0,1,2,....
(A.10)

e Some of the important simple particular cases of the hypergeometric
series are the following ones:

(i) The binomial series:

2Fi(a,b,a;¢) = (1 -7 (A.11)
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(ii) The function —¢ 1 In(1 — ¢):

JFL(1,1,2:C) = —%mu _0). (A12)

C. Transformations of the hypergeometric series. In the present
work we use various formulas transforming the hypergeometric series into
other hypergeometric series. Some of them give an analytical continuation
of 9Fi(a,b,c;C) for values of ¢ with || > 1. The hypergeometric series
with its maximal possible analytical continuation outside the circle |(]| < 1

represents the hypergeometric function.

e For the hypergeometric series the so called auto transformation

formula is valid:
2Fi(a,b,¢;¢) = (1= )" 2Fi(c —a,c — b, ¢ Q). (A.13)

e We use the next formulas, changing the argument ( in the hyperge-

ometric function:
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[(c)T'(c—a—0b)

[(c—a)l'(c—0b)

[(c)l(a+b—c)
['(a)l(b)

gFl(a,b,c;C): QFl(CL,b,CL—i—b—C—Fl;].—C)

(11— " Fi(c—a,c—bc—a—b+1;1—).

(A.15)

e In the case when b = 0,—1,—2,... and, simultaneously, a #

0,—1,—2,... the changing from ¢ to (1 — ¢)™!, ¢ # 1 is given by

b (1—-0)"F <c—a,b,b—a+1;rlc> .
(A.16)

2F1(a7 b: G, C) -

e In the special case when ¢ = (a + b+ 1)/2 it can be applied the so

called quadratic transformation:

a+b+1 a b 1
2F1(a,b, T; C) = hy 2k} (57 29 (1 - 2§)2>
a+1 b+1 3
Fha(1— 2000 (S 5 B - 202) L 4
with
T 1 r a+b+1 r 1 r a+b+1
1= (Zj)tl( ?)—&—1)’ ha = : 2?1 : b2 )’ (A.18)
L&) (5) LEI(3)
where we additionally define:
1 , 1
—— =lim—— =0, for k=0,-1,-2,.... (A.19)

F(]{) k—e F(lﬁ + 8)

D. Some generalizations of the hypergeometric series. In the
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present research we also use:

(i) The generalized hypergeometric series

with a,b,c,d,e € C and d,e #0,—1,—2,.. ;

(i) The hypergeometric series of two variables

F3(CL17 a2, bla b27 G, y) = Z

HQ(ala as, b17 b27 c, y) = Z
with a, ay,as,b1,bs,c € Cand ¢ #0,—1,-2,....
e The Saalschutz’s Theorem asserts:

Theorem A.0.1. Ifa, orb, or c is a nonpositive integer and a+b—+c+1 =
d+ e, then:

NI +a—el(L+b—el(l+ec—e)

sbalebredy e 1) = =R R @) — BT (d — o)
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