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Preface

Denoting (𝑥, 𝑡) := (𝑥1, 𝑥2, 𝑥3, 𝑡) ∈ R4, for 𝑚 ∈ R, 0 ≤ 𝑚 < 2 we consider

the equation

𝐿𝑚[𝑢] ≡ 𝑢𝑥1𝑥1
+ 𝑢𝑥2𝑥2

+ 𝑢𝑥3𝑥3
− (𝑡𝑚𝑢𝑡)𝑡 = 𝑓(𝑥, 𝑡) (0.1)

in the domain

Ω𝑚 :=

{︂
(𝑥, 𝑡) : 0 < 𝑡 < 𝑡0,

2

2−𝑚
𝑡
2−𝑚
2 < |𝑥| < 1− 2

2−𝑚
𝑡
2−𝑚
2

}︂
,

where 𝑡0 =
(︀
2−𝑚
4

)︀ 2
2−𝑚 . Here, as usual, |𝑥| =

√︀
𝑥21 + 𝑥22 + 𝑥23.

The region Ω𝑚 is bounded by the ball

Σ0 := {(𝑥, 𝑡) : 𝑡 = 0, |𝑥| < 1},

centered at the origin 𝑂(0, 0, 0, 0) and by the surfaces

Σ𝑚
1 :=

{︂
(𝑥, 𝑡) : 0 < 𝑡 < 𝑡0, |𝑥| = 1− 2

2−𝑚
𝑡
2−𝑚
2

}︂
,

Σ𝑚
2 :=

{︂
(𝑥, 𝑡) : 0 < 𝑡 < 𝑡0, |𝑥| =

2

2−𝑚
𝑡
2−𝑚
2

}︂
.
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Preface

In the present monograph we are interested basically in the case

0 <m < 2, when equation (0.1) is hyperbolic with power-type degenera-

tion at Σ0, or more precisely, it is a weakly hyperbolic equation of Keldysh

type. We study the so called Protter-Morawetz boundary value problem

(or, shortly, Protter problem) for this equation, i.e. we have the following

boundary conditions:

𝑢|Σ𝑚
1
= 0, 𝑡𝑚𝑢𝑡 → 0 as 𝑡→ +0.

In this work we denote this problem by 𝑃𝑚.

However, we begin our investigations with the limiting case m = 0

(Problem 𝑃0), when equation (0.1) becomes simply the four-dimensional

wave equation and the boundary condition on Σ0 turns to

𝑢𝑡|Σ0
= 0.

In this case the problem is much more simpler and, correspondingly, it is

very well studied, but here we derive some more precise results on the exact

behavior of the solutions. These results are helpful, since they suggest the

structure of the solutions of the boundary value problem in the more general

case 0 < 𝑚 < 2.

It is well known that different boundary value problems for mixed-

type equations have important applications in transonic gas dynamics, such

as modeling of certain flows around airfoils (see Bers [6], Morawetz [28],

2



Preface

Kuz’min [23]). After a space symmetry assumption, the transonic po-

tential flows in fluid dynamics are described in the hodograph plane by

two-dimensional boundary value problems (such as the famous Guderley-

Morawetz problem) for the Chaplygin equation

𝐾(𝑡)𝑢𝑥𝑥 − 𝑢𝑡𝑡 = 0

with 𝑡𝐾(𝑡) > 0 for 𝑡 ̸= 0. Clearly, this equation is elliptic in the subsonic

half-plane 𝑡 < 0 and hyperbolic in the supersonic half-plane 𝑡 > 0.

M. Protter [43, 44] proposed some multidimensional variants of the

Guderley-Morawetz problem in a domain consisting of a subsonic (𝑡 < 0)

and a supersonic part (𝑡 > 0). Restricting his investigation only in the

supersonic part of the domain, he also formulated some new boundary value

problems for the equation

𝑡𝑚
𝑁∑︁
𝑗=1

𝑢𝑥𝑗𝑥𝑗
− 𝑢𝑡𝑡 = 𝑓(𝑥, 𝑡) (0.2)

with 𝑁 ≥ 2, 𝑚 ≥ 0 and 𝑥 := (𝑥1, . . . , 𝑥𝑁). This equation obviously

is a multidimensional analogue of the Chaplygin equation with 𝐾(𝑡) =

sgn(𝑡) |𝑡|𝑚. More precisely, Protter formulated his new problems in a do-

main bounded by two characteristics surfaces of equation (0.2) as well as

by the surface {𝑡 = 0} and he prescribed the boundary data on one of

these characteristic surfaces and on the hyperplane {𝑡 = 0}. In this way,

the Protter problems are multidimensional analogues of the Darboux plane

problems for the Gellerstedt equation (𝑚 > 0) or for the wave equation

3



Preface

(𝑚 = 0). (Actually, for 𝑚 = 0, when we have Neumann boundary data

on Σ0, the corresponding four-dimensional Protter problem coincides with

Problem 𝑃0 which we study in the first chapter.)

However, while the two-dimensional Darboux problems are well posed,

this is not true for the Protter problems. Actually, these problems have

infinite-dimensional cokernels, which firstly were found out for the wave

equation ([50]) and, after, for the Gellerstedt equation ([41, 22]). This

means that for the existence of classical solutions it is necessary infinitely

many orthogonality conditions on the right-hand side of the equation to be

fulfilled. For this reason, Popivanov and Schneider [41] suggested the Prot-

ter problems to be studied in the frame of generalized solutions with possible

big singularities. Today it is well-known that such singularities really exist

(see for example [16, 33, 38, 41]). It is interesting that they are isolated at

one boundary point and do not propagate along the bicharacteristics, which

is not traditionally assumed for the hyperbolic equations.

Different aspects of the Protter problems and several their generaliza-

tions are studied by many authors, see for example [1, 2, 4, 8, 12, 32] and

references therein. For different statements of other related problems for

mixed-type equations, including nonlinear equations, see [9, 10, 21, 25, 27,

47].

The Chaplygin equation and its multidimensional variants are known

as Tricomi-type equations, while the mixed-type equation

𝑢𝑥𝑥 −𝐾(𝑡)𝑢𝑡𝑡 = 0

4



Preface

and its different generalizations (including equation (0.1) for 𝑚 ∈ (0, 2))

are known to be Keldysh-type equations.

It is known that the Keldysh-type equations also play an important

role in fluid mechanics, for example the equation

𝑢𝑥𝑥 + 𝑡𝑚𝑢𝑡𝑡 + 𝑎𝑢𝑥 + 𝑏𝑢𝑡 + 𝑐𝑢 = 0 (0.3)

near the line 𝑡 = 0. Keldysh [19], while studied the regularity of the so-

lutions of 2-D elliptic equations near the boundary, showed that for the

degenerating elliptic equation (0.3) the formulation of the Dirichlet prob-

lem may depend on the lower order terms (the dependence is different for

different values of 𝑚).

Fichera [11] generalized Keldysh’s results for multidimensional linear

equations with nonnegative characteristic form and now the boundary value

problems for them are well understood in the sense that boundary conditions

should not be imposed on the whole boundary. A summary of Fichera’s

theory can be found in Radkevich [45, 46]. Keyfitz [20] examined whether

the Fichera’s classification could be extended to quasilinear equations and

mentioned that the contrasting behavior of the characteristics of the Tricomi

and the Keldysh-type equations may have implications, unexplored yet, for

the solutions of some free boundary problems arising in the fluid dynamics.

Otway [34, 35] and Lupo, Monticelli and Payne [24] gave a statement of some

2-D boundary value problems for elliptic-hyperbolic Keldysh-type equations

with specific applications in plasma physics, including a model for analyzing

5



Preface

the possible heating in axisymmetric cold plasmas.

In view of all these results it is interesting for us to study the multidi-

mensional Protter problems for Keldysh-type equations.

In [17] Hristov, Popivanov and Schneider considered a three-dimensional

analogue of Problem 𝑃𝑚 (0 < 𝑚 < 2) involving lower order terms and

proved the uniqueness of quasiregular solution.

We mention here that a specific feature of the Keldysh-type equations

is that their solutions are not differentiable at the degenerate boundary

{𝑡 = 0} (see [7]). Then, in contrary to the Protter problems for Tricomi-

type equations, we cannot prescribe Neumann boundary data on {𝑡 = 0}.

Indeed, in our Problem 𝑃𝑚 (0 < 𝑚 < 2) we have no data on the ball Σ0.

Instead of this, we have only a limitation on the growth of the possible

singularity of the derivative 𝑢𝑡, imposed by the second condition in (2.2).

Nevertheless, in this works, based on series of our publications ([14,

15, 29, 31, 36, 37]), we find some essential similarities between Problem 𝑃𝑚

and the Protter problems for Tricomi-type equations: they have infinite-

dimensional co-kernel and they have generalized solutions with strong sin-

gularities isolated at one boundary point.

The present monograph consists of Preface, two chapters and Ap-

pendix. In the first chapter we treat a Protter problem for the wave equation

and we improve a well known asymptotic formula describing the exact be-

havior of the singular solutions. In the second chapter we treat a Protter

problem for equation (0.1) with 𝑚 ∈ (0, 2). For the case 0 < 𝑚 < 4/3 we

6



Preface

prove the existence and uniqueness of a generalized solution of this prob-

lem at certain conditions for the right-hand side of the equation, as well as

we find an asymptotic expansion of the singular solutions. The Appendix

contains various formulas for the hypergeometric function and some of its

generalizations as far as they are one of the basic tools which we apply in

our calculations.

7



1. The Protter problem for the

wave equation

In this chapter we study the case 𝑚 = 0, when equation (0.1) is hyperbolic,

with no degeneration on 𝑡 = 0. An important result concerning this research

we have announced in [29], this is Theorem 1.5.1 which we consider in

Sections 1.5-1.6.

1.1. Statement of the problem

More precisely, here we consider the four-dimensional wave equation

𝐿0[𝑢] ≡ 𝑢𝑥1𝑥1
+ 𝑢𝑥2𝑥2

+ 𝑢𝑥3𝑥3
− 𝑢𝑡𝑡 = 𝑓(𝑥, 𝑡) (1.1)

in

Ω0 := {(𝑥, 𝑡) : 0 < 𝑡 < 1/2, 𝑡 < |𝑥| < 1− 𝑡} .

The region Ω0 (see Fig. 1.1) is bounded by a non-characteristic surface,

this is the ball

Σ0 := {(𝑥, 𝑡) : 𝑡 = 0, |𝑥| < 1},

8



1. The Protter problem for the wave equation

and by two characteristic surfaces of equation (1.1)

Σ0
1 := {(𝑥, 𝑡) : 0 < 𝑡 < 1/2, |𝑥| = 1− 𝑡} ,

Σ0
2 := {(𝑥, 𝑡) : 0 < 𝑡 < 1/2, |𝑥| = 𝑡} .

Figure 1.1.: The region Ω0.

We consider the following boundary value problem:

Problem P0. Find a solution to equation (1.1) in Ω0 which satisfies the

boundary conditions

𝑢|Σ0
1
= 0, 𝑢𝑡|Σ0

= 0.

The adjoint problem to 𝑃0 is as follows:

Problem P*
0. Find a solution to the self-adjoint equation (1.1) in Ω0 which

9



1. The Protter problem for the wave equation

satisfies the boundary conditions

𝑢|Σ0
2
= 0, 𝑢𝑡|Σ0

= 0.

1.2. Some known results concerning Problem P0

Firstly, we give some well known results, developed in [38], [40].

As we mentioned in the Preface, the Protter problems are not well

posed. In particular, Problem 𝑃0 is ill-posed as well: the adjoint homoge-

neous Problem 𝑃 *
0 has infinitely many linearly independent classical solu-

tions.

In order to give their exact representation, for 𝑘, 𝑛 ∈ N∪{0} introduce

the following functions:

ℰ𝑛
𝑘 (|𝑥|, 𝑡) :=

𝑘∑︁
𝑖=0

𝐴𝑘
𝑖 |𝑥|−𝑛+2𝑖−1

(︀
|𝑥|2 − 𝑡2

)︀𝑛−𝑘−𝑖
,

where

𝐴𝑘
𝑖 := (−1)𝑖

(𝑘 − 𝑖+ 1)𝑖(𝑛− 𝑘 − 𝑖+ 1)𝑖
𝑖!(𝑛+ 1/2− 𝑖)𝑖

.

Here (𝑎)𝑖 := Γ(𝑎 + 𝑖)/Γ(𝑎), which gives (𝑎)𝑖 = 𝑎(𝑎 + 1) . . . (𝑎 + 𝑖 − 1) for

𝑖 ∈ N, and (𝑎)0 = 1.

Further, let us denote by 𝑌 𝑠
𝑛 (𝑥), 𝑛 ∈ N∪ {0}, 𝑠 = 1, 2, . . . , 2𝑛+1 the

three-dimensional spherical functions. They are usually defined on the unit

sphere 𝑆2 := {𝑥 ∈ R3 : |𝑥| = 1}, but for convenience of our discussions we

extend them out of 𝑆2 radially, keeping the same notation for the extended

10



1. The Protter problem for the wave equation

functions:

𝑌 𝑠
𝑛 (𝑥) := 𝑌 𝑠

𝑛 (𝑥/|𝑥|), 𝑥 ∈ R3 ∖ {0}.

Then the following lemma holds:

Lemma 1.2.1 ([38]). For 𝑘 = 0, . . . , [𝑛/2]− 2 and 𝑠 = 1, 2, . . . , 2𝑛+1 the

functions

𝑣𝑛𝑘,𝑠(𝑥, 𝑡) :=

⎧⎪⎨⎪⎩
ℰ𝑛
𝑘 (|𝑥|, 𝑡)𝑌 𝑠

𝑛 (𝑥), (𝑥, 𝑡) ̸= 𝑂,

0, (𝑥, 𝑡) = 𝑂

(1.2)

are classical solutions from 𝐶2(Ω̄0) of the homogeneous Problem 𝑃 *
0 .

It is easy to see that a necessary condition for the existence of a classical

solution of Problem 𝑃0 is the orthogonality of the right-hand side function

𝑓(𝑥, 𝑡) to all these functions 𝑣𝑛𝑘,𝑠(𝑥, 𝑡). Indeed∫︁
Ω𝑚

𝑣𝑛𝑘,𝑠(𝑥, 𝑡)𝑓(𝑥, 𝑡) 𝑑𝑥𝑑𝑡 =

∫︁
Ω𝑚

𝑣𝑛𝑘,𝑠(𝑥, 𝑡)𝐿0[𝑢](𝑥, 𝑡) 𝑑𝑥𝑑𝑡

=

∫︁
Ω𝑚

𝐿0[𝑣
𝑛
𝑘,𝑠](𝑥, 𝑡)𝑢(𝑥, 𝑡) 𝑑𝑥𝑑𝑡 = 0.

This means that an infinite number of orthogonality conditions 𝜇𝑛𝑘,𝑠 = 0

with

𝜇𝑛𝑘,𝑠 :=

∫︁
Ω0

𝑣𝑛𝑘,𝑠(𝑥, 𝑡)𝑓(𝑥, 𝑡) 𝑑𝑥𝑑𝑡 (1.3)

must be fulfilled.

In this case it is suitable to seek for solutions to this problem in a gen-

eralized sense. Similarly to Popivanov and Schneider [42], the generalized

solutions of Problem 𝑃0 are defined in the following way:

11



1. The Protter problem for the wave equation

Definition 1.2.1 ([38]). A function 𝑢 = 𝑢(𝑥, 𝑡) is called a generalized

solution of Problem 𝑃0 in Ω0 if:

(1) 𝑢 ∈ 𝐶1(Ω̄0∖𝑂), 𝑢|Σ0
1
= 0, 𝑢𝑡|Σ0∖𝑂 = 0;

(2) the identity∫︁
Ω0

(𝑢𝑡𝑣𝑡 − 𝑢𝑥1
𝑣𝑥1

− 𝑢𝑥2
𝑣𝑥2

− 𝑢𝑥3
𝑣𝑥3

− 𝑓𝑣) 𝑑𝑥𝑑𝑡 = 0

holds for all 𝑣 from

𝑉0 := {𝑣 ∈ 𝐶1(Ω̄0) : 𝑣𝑡|Σ0
= 0, 𝑣 ≡ 0 in a neighborhood of Σ0

2}.

This definition allows the generalized solutions to have strong singu-

larities at the point 𝑂. In the general case such singularities really exist.

Next, the following result on the existence and uniqueness of the gen-

eralized solution of Problem 𝑃0 is valid:

Theorem 1.2.1 ([38]). Problem 𝑃0 has at most one generalized solution

in Ω0. Additionally, suppose that the right-hand side of (1.1) belongs to

𝐶1(Ω̄0) and has the form

𝑓(𝑥, 𝑡) =
𝑙∑︁

𝑛=0

2𝑛+1∑︁
𝑠=1

𝑓 𝑠𝑛(|𝑥|, 𝑡)𝑌 𝑠
𝑛 (𝑥), (1.4)

where 𝑙 ∈ N∪ {0}. Then the unique generalized solution of the Problem 𝑃0

in Ω0 exists and it has the form

𝑢(𝑥, 𝑡) =
𝑙∑︁

𝑛=0

2𝑛+1∑︁
𝑠=1

𝑢𝑠𝑛(|𝑥|, 𝑡)𝑌 𝑠
𝑛 (𝑥). (1.5)

12



1. The Protter problem for the wave equation

Further, we will focus on the important particular case when the right-

hand side function 𝑓(𝑥, 𝑡) is of the form (1.4). Actually, it is well known

that the spherical functions form a complete orthonormal system in 𝐿2(𝑆
2)

(for detailed information on the spherical functions see for example [18]).

The next result describes the asymptotic behavior of the singularities

of the generalized solution:

Theorem 1.2.2 ([40]). Suppose that the right-hand side function 𝑓 ∈

𝐶1(Ω̄0) has the form (1.4). Then the unique generalized solution 𝑢(𝑥, 𝑡)

of Problem 𝑃0 belongs to 𝐶2(Ω̄0∖𝑂) and has the following asymptotic ex-

pansion at the singular point 𝑂:

𝑢(𝑥, 𝑡) =
𝑙+1∑︁
𝑝=1

(|𝑥|2 + 𝑡2)−𝑝/2𝐹𝑝(𝑥, 𝑡) + 𝐹 (𝑥, 𝑡), (1.6)

where

(i) the function 𝐹 ∈ 𝐶2(Ω̄0∖𝑂) and satisfies the a priori estimate

|𝐹 (𝑥, 𝑡)| ≤ 𝐶‖𝑓‖𝐶1(Ω0), (𝑥, 𝑡) ∈ Ω0

with a constant 𝐶 independent of 𝑓 ;

(ii) the functions 𝐹𝑝, 𝑝 = 1, . . . , 𝑙 + 1 satisfy the equalities

𝐹𝑝(𝑥, 𝑡) =

[(𝑙−𝑝+1)/2]∑︁
𝑘=0

2𝑝+4𝑘−1∑︁
𝑠=1

𝜇𝑝+2𝑘−1
𝑘,𝑠 𝐹 𝑝+2𝑘−1

𝑘,𝑠 (𝑥, 𝑡) (1.7)

with functions 𝐹 𝑛
𝑘,𝑠 ∈ 𝐶2(Ω̄0∖𝑂) bounded and independent of 𝑓 ;

(iii) if at least one of the constants 𝜇𝑝+2𝑘−1
𝑘,𝑠 in (1.7) is different from

13



1. The Protter problem for the wave equation

zero, then for the corresponding function 𝐹𝑝(𝑥, 𝑡) there exists a direction

(𝛼, 1) := (𝛼1, 𝛼2, 𝛼3, 1) with (𝛼, 1) 𝑡 ∈ Σ0
2 for 0 < 𝑡 < 1/2, such that

lim
𝑡→+0

𝐹𝑝(𝛼𝑡, 𝑡) = const ̸= 0.

This means that in this case the order of singularity of 𝑢(𝑥, 𝑡) will be no

smaller than 𝑝.

According to this theorem, the order of singularity of 𝑢(𝑥, 𝑡) can be

strictly fixed by the coefficients (1.3), i.e. by choosing the right-hand side

𝑓(𝑥, 𝑡) to be orthogonal to the appropriate functions 𝑣𝑛𝑘,𝑠(𝑥, 𝑡). Note also

that the derived asymptotic expansion clearly illustrates the fact that, as we

mentioned above, a necessary (but not sufficient) condition for the classical

solvability of Problem 𝑃0 is the orthogonality of 𝑓(𝑥, 𝑡) to all the classical

solutions of the adjoint homogenous Problem 𝑃 *
0 .

1.3. Two-dimensional problem corresponding to

Problem P0

Problem 𝑃0 in the case when the right-side function 𝑓(𝑥, 𝑡) is of the form

(1.4) reduces to a two-dimensional problem ([38]).

More precisely, let us look for a solution to Problem 𝑃0 of the form

(1.5). Using the spherical coordinates (𝑟, 𝜃, 𝜙, 𝑡) ∈ R4, 𝑟 > 0, 0 ≤ 𝜃 <

𝜋, 0 ≤ 𝜙 < 2𝜋 with

𝑥1 = 𝑟 sin 𝜃 cos𝜙, 𝑥2 = 𝑟 sin 𝜃 sin𝜙, 𝑥3 = 𝑟 cos 𝜃, (1.8)

14
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and later in the characteristic coordinates

𝜉 = 1− 𝑟 − 𝑡, 𝜂 = 1− 𝑟 + 𝑡,

for the functions

𝑈(𝜉, 𝜂) := 𝑟(𝜉, 𝜂)𝑢𝑠𝑛
(︀
𝑟(𝜉, 𝜂), 𝑡(𝜉, 𝜂)

)︀
the following Darboux-Goursat problem is obtained:

Problem P02. Find a solution of the equation

𝐸0[𝑈 ] ≡ 𝑈𝜉𝜂 −
𝑛(𝑛+ 1)

(2− 𝜉 − 𝜂)2
𝑈 = 𝐹 (𝜉, 𝜂) in 𝐷, (1.9)

satisfying the following boundary conditions

𝑈(0, 𝜂) = 0, (𝑈𝜉 − 𝑈𝜂)(𝜉, 𝜉) = 0, (1.10)

where

𝐷 := {(𝜉, 𝜂) : 0 < 𝜉 < 𝜂 < 1}

and

𝐹 (𝜉, 𝜂) :=
1

8
(2− 𝜉 − 𝜂)𝑓 𝑠𝑛(𝑟(𝜉, 𝜂), 𝑡(𝜉, 𝜂)).

Note that equation (1.9) involves a coefficient with singularity at the

point (𝜉, 𝜂) = (1, 1).

From the results in [38], [40] it is known that if 𝐹 ∈ 𝐶1(𝐷̄), then there

exists an unique function 𝑈(𝜉, 𝜂), belonging to 𝐶2(𝐷̄∖{(1, 1)}), which is a

15
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classical solution of the considered problem in each domain 𝐷∩{𝜉 < 𝛿, 0 <

𝛿 < 1}, but it may become unbounded as (𝜉, 𝜂) → (1, 1). In the present

paper this function will be called a generalized solution of Problem 𝑃02.

The asymptotic behavior of 𝑈(𝜉, 𝜂) at the point (1, 1) is closely con-

nected with the non-uniqueness results on the corresponding adjoint homo-

geneous problem

𝐸0[𝑈 ] = 0 in 𝐷, (1.11)

𝑈(𝜉, 1) = 0, (𝑈𝜂 − 𝑈𝜉)(𝜉, 𝜉) = 0. (1.12)

Indeed, for 𝑘 = 0, 1, . . . , [(𝑛− 3)/2] the functions

𝐸𝑛
𝑘 (𝜉, 𝜂) :=⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1− 𝜉)𝑛−2𝑘(1− 𝜂)𝑛−2𝑘

(2− 𝜉 − 𝜂)𝑛−2𝑘 2𝐹1

(︂
𝑛− 𝑘 +

1

2
, − 𝑘,

1

2
;

(𝜂 − 𝜉)2

(2− 𝜉 − 𝜂)2

)︂
,

(𝜉, 𝜂) ̸= (1, 1),

0, (𝜉, 𝜂) = (1, 1),

(1.13)

where 2𝐹1(𝑎, 𝑏, 𝑐; 𝜁) is the Gauss hypergeometric series, are classical solu-

tions to problem (1.11)-(1.12). They can be obtained from Lemma 1.2.1.

Actually, taking into account the formulas (A.4) and (A.16), one can see

that the functions 𝐸𝑛
𝑘 (𝜉, 𝜂) are connected with the functions ℰ𝑛

𝑘 (|𝑥|, 𝑡) by

16
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the relation

𝐸𝑛
𝑘 (𝜉, 𝜂) = 𝛾𝑛𝑘 (2− 𝜉 − 𝜂)ℰ𝑛

𝑘 (𝑟(𝜉, 𝜂), 𝑡(𝜉, 𝜂)), 𝛾𝑛𝑘 :=
(−1)𝑘 (1/2− 𝑛)𝑘
2𝑛−2𝑘+1 (1/2)𝑘

.

(1.14)

Further, it was derived a decomposition of the generalized solution of

Problem 𝑃02 in terms of the functions 𝐸𝑛
𝑘 (𝜉, 𝜂), or more precisely, with use

of the scalar products

𝜇𝑛𝑘 :=

∫︁
𝐷

𝐸𝑛
𝑘 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂. (1.15)

Namely, the function 𝑈(𝜉, 𝜂) according to [38], [40] may be expanded in the

following way:

𝑈(𝜉, 𝜂) =

[𝑛/2]∑︁
𝑘=0

𝜇𝑛𝑘𝐺
𝑛
𝑘(𝜉, 𝜂)(2− 𝜉 − 𝜂)2𝑘−𝑛 +𝐺(𝜉, 𝜂), (𝜉, 𝜂) ∈ 𝐷, (1.16)

where𝐺𝑛
𝑘(𝜉, 𝜂) and𝐺(𝜉, 𝜂) are bounded in 𝐷̄ functions, such that𝐺𝑛

𝑘(𝜉, 1) =

const ̸= 0 and

|𝐺(𝜉, 𝜂)| ≤ 𝐾‖𝐹‖𝐶1(𝐷)(2−𝜉−𝜂) (1+ | ln(2−𝜉−𝜂)|), (𝜉, 𝜂) ∈ 𝐷 (1.17)

with a positive constant 𝐾. The functions 𝐺𝑛
𝑘(𝜉, 𝜂) and the constant 𝐾 are

independent of 𝐹 (𝜉, 𝜂).

According to this decomposition, the order of singularity of the gener-

alized solution 𝑈(𝜉, 𝜂) at the point (1, 1) can be strictly fixed by the coef-

ficients 𝜇𝑛𝑘 , i.e. by choosing the right-hand side 𝐹 (𝜉, 𝜂) to be orthogonal to

the appropriate functions 𝐸𝑛
𝑘 (𝜉, 𝜂). Obviously, the asymptotic expansion of

17
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the generalized solution 𝑢(𝑥, 𝑡) of Problem 𝑃0 in Theorem 1.2.2 is closely

related to the expansion (1.16).

1.4. Further study of the function U(𝜉, 𝜂) and its

restriction U(𝜉,1)

Firstly, although an explicit form of the generalized solution 𝑈(𝜉, 𝜂) is given

in [38], [40], here we give a more simple one, with use of a Riemann-

Hadamard function. Furthermore, we impose a weaker condition on the

right-hand side 𝐹 (𝜉, 𝜂): for all our next calculations it is sufficient 𝐹 (𝜉, 𝜂)

to be continuous in 𝐷̄.

Theorem 1.4.1. Let 𝐹 ∈ 𝐶(𝐷̄). Then there exists an unique generalized

solution of Problem 𝑃02 and it has the following integral representation at

a point (𝜉0, 𝜂0) ∈ 𝐷:

𝑈(𝜉0, 𝜂0) =

∫︁ 𝜉0

0

∫︁ 𝜂0

𝜉

Φ(𝜉, 𝜂; 𝜉0, 𝜂0)𝐹 (𝜉, 𝜂) 𝑑𝜂𝑑𝜉 (1.18)

where the Riemann-Hadamard function Φ(𝜉, 𝜂; 𝜉0, 𝜂0) is defined as

Φ(𝜉, 𝜂; 𝜉0, 𝜂0) :=

⎧⎪⎨⎪⎩
Φ+(𝜉, 𝜂; 𝜉0, 𝜂0), 𝜂 > 𝜉0,

Φ−(𝜉, 𝜂; 𝜉0, 𝜂0), 𝜂 < 𝜉0

18
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with

Φ+(𝜉, 𝜂; 𝜉0, 𝜂0) := 2𝐹1(𝑛+ 1,−𝑛, 1;𝑌 ),

Φ−(𝜉, 𝜂; 𝜉0, 𝜂0) := 2𝐹1(𝑛+ 1,−𝑛, 1;𝑌 ) + 2𝐹1(𝑛+ 1,−𝑛, 1;𝑌 *)

and
𝑌 = 𝑌 (𝜉, 𝜂; 𝜉0, 𝜂0) :=

−(𝜉0 − 𝜉)(𝜂0 − 𝜂)

(2− 𝜉 − 𝜂)(2− 𝜉0 − 𝜂0)
,

𝑌 * = 𝑌 (𝜉, 𝜂; 𝜂0, 𝜉0) :=
−(𝜂0 − 𝜉)(𝜉0 − 𝜂)

(2− 𝜉 − 𝜂)(2− 𝜉0 − 𝜂0)
.

Proof. It is well known that Φ+(𝜉, 𝜂; 𝜉0, 𝜂0) is the Riemann function for

equation (1.9). Then, given a point (𝜉0, 𝜂0) ∈ 𝐷, the function Φ+(𝜉, 𝜂; 𝜉0, 𝜂0)

has the following properties, which we need for our considerations:

(i) 𝐸0[Φ
+](𝜉, 𝜂; 𝜉0, 𝜂0) = 0 in 𝐷;

(ii) Φ+(𝜉0, 𝜂; 𝜉0, 𝜂0) = 1, 𝜉0 ≤ 𝜂 ≤ 1;

(iii) Φ+(𝜉, 𝜂0; 𝜉0, 𝜂0) = 1, 0 ≤ 𝜉 ≤ 𝜉0.

Further, a direct calculation shows that

(iv) (Φ−
𝜉 − Φ−

𝜂 )(𝜉, 𝜉; 𝜉0, 𝜂0) = 0, 0 ≤ 𝜉 ≤ 𝜉0

and

(v) Φ−(𝜉, 𝜉0; 𝜉0, 𝜂0)− Φ+(𝜉, 𝜉0; 𝜉0, 𝜂0) = 1, 0 ≤ 𝜉 ≤ 𝜉0.

First, suppose that 𝑈(𝜉, 𝜂) is a generalized solution of Problem 𝑃02.

19
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Then applying an integration by parts into the identity∫︁ 𝜉0

0

∫︁ 𝜂0

𝜉0

𝐸0[𝑈 ](𝜉, 𝜂)Φ
+(𝜉, 𝜂;𝜉0, 𝜂0) 𝑑𝜂𝑑𝜉

+

∫︁ 𝜉0

0

∫︁ 𝜂

0

𝐸0[𝑈 ](𝜉, 𝜂)Φ
−(𝜉, 𝜂; 𝜉0, 𝜂0) 𝑑𝜉𝑑𝜂

=

∫︁ 𝜉0

0

∫︁ 𝜂0

𝜉0

𝐹 (𝜉, 𝜂)Φ+(𝜉, 𝜂; 𝜉0,𝜂0) 𝑑𝜂𝑑𝜉

+

∫︁ 𝜉0

0

∫︁ 𝜂

0

𝐹 (𝜉, 𝜂)Φ−(𝜉, 𝜂; 𝜉0, 𝜂0) 𝑑𝜉𝑑𝜂,

with use of the properties (i)-(v) of the function Φ(𝜉, 𝜂; 𝜉0, 𝜂0) and the

boundary conditions (1.10), we obtain that the function 𝑈(𝜉, 𝜂) should have

the representation (1.18) at the point (𝜉0, 𝜂0), which confirms the unique-

ness.

A direct calculation shows that in 𝐷̄∖(1, 1) the function 𝑈(𝜉, 𝜂), de-

fined by (1.18), really satisfies the differential equation and the boundary

conditions. To check this, take into account that the function Φ(𝜉, 𝜂; 𝜉0, 𝜂0)

solves the corresponding homogeneous equation not only in respect to the

variables 𝜉 and 𝜂, but also in respect to 𝜉0 and 𝜂0:

Φ𝜉0𝜂0 −
𝑛(𝑛+ 1)

(2− 𝜉0 − 𝜂0)2
Φ = 0.

This confirms the existence. �

Next, from here we derive a more accurate formula for the restriction

𝑈(𝜉, 1):

Theorem 1.4.2. Suppose that 𝐹 ∈ 𝐶(𝐷̄). Then the restriction 𝑈(𝜉, 1) of
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the generalized solution of Problem 𝑃02 has the following expansion on the

segment {0 ≤ 𝜉 < 1}:

𝑈(𝜉, 1) =

[𝑛/2]∑︁
𝑘=0

2𝑎𝑛𝑘𝜇
𝑛
𝑘(1− 𝜉)2𝑘−𝑛−

[𝑛/2]∑︁
𝑘=0

2𝑎𝑛𝑘𝐽
𝑛
𝑘 (𝜉)(1− 𝜉)2𝑘−𝑛+𝐽+(𝜉), (1.19)

where 𝜇𝑛𝑘 are the coefficients (1.15) and

𝑎𝑛𝑘 :=
(𝑛+ 1)𝑛−2𝑘(−𝑛)𝑛−2𝑘(1/2)𝑘
(𝑛− 2𝑘)! (𝑛− 𝑘)! (−1)𝑛+𝑘

, (1.20)

𝐽𝑛
𝑘 (𝜉) :=

∫︁ 1

𝜉

∫︁ 𝜂1

0

𝐸𝑛
𝑘 (𝜉1, 𝜂1)𝐹 (𝜉1, 𝜂1) 𝑑𝜉1𝑑𝜂1, (1.21)

𝐽+(𝜉) :=

∫︁ 1

𝜉

∫︁ 𝜉

0

Φ+(𝜉1, 𝜂1; 𝜉, 1)𝐹 (𝜉1, 𝜂1) 𝑑𝜉1𝑑𝜂1.

Proof. Actually, we will prove that the function Φ−(𝜉, 𝜂; 𝜉0, 1) has the

following expansion in negative powers of (1− 𝜉0):

Φ−(𝜉, 𝜂; 𝜉0, 1) =

[𝑛/2]∑︁
𝑘=0

2𝑎𝑛𝑘𝐸
𝑛
𝑘 (𝜉, 𝜂)(1− 𝜉0)

2𝑘−𝑛. (1.22)

Then (1.19) would follow directly from Theorem 1.4.1, where Φ−(𝜉, 𝜂; 𝜉0, 1)

is represented by (1.22).

With use of (A.10) the function 2𝐹1(𝑛 + 1,−𝑛, 1; 𝑎𝜁 + 𝑏) can be ex-

panded in Taylor series in powers of 𝜁:

2𝐹1(𝑛+ 1,−𝑛, 1; 𝑎𝜁 + 𝑏)

=
𝑛∑︁

𝑠=0

(𝑛+ 1)𝑠(−𝑛)𝑠
𝑠! 𝑠!

2𝐹1(𝑛+ 1 + 𝑠,−𝑛+ 𝑠, 1 + 𝑠; 𝑏) 𝑎𝑠𝜁𝑠.
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Then, denoting for shortness

𝑌1 := 𝑌 (𝜉, 𝜂; 𝜉0, 1) =
−(𝜉0 − 𝜉)(1− 𝜂)

(2− 𝜉 − 𝜂)(1− 𝜉0)
,

𝑌 *
1 := 𝑌 (𝜉, 𝜂; 1, 𝜉0) =

−(1− 𝜉)(𝜉0 − 𝜂)

(2− 𝜉 − 𝜂)(1− 𝜉0)
,

we obtain:

2𝐹1(𝑛+ 1,−𝑛, 1;𝑌1) =
𝑛∑︁

𝑠=0

𝑐𝑛𝑠𝑄
𝑛
𝑠 (𝜉, 𝜂)(1− 𝜉0)

−𝑠, (1.23)

2𝐹1(𝑛+ 1,−𝑛, 1;𝑌 *
1 ) =

𝑛∑︁
𝑠=0

𝑐𝑛𝑠𝑄
𝑛
𝑠 (𝜂, 𝜉)(1− 𝜉0)

−𝑠, (1.24)

where

𝑐𝑛𝑠 :=
(𝑛+ 1)𝑠(−𝑛)𝑠

𝑠! 𝑠!
(−1)𝑠, (1.25)

𝑄𝑛
𝑠 (𝜉, 𝜂) := 2𝐹1

(︂
𝑛+ 1 + 𝑠,−𝑛+ 𝑠, 1 + 𝑠;

1− 𝜂

2− 𝜉 − 𝜂

)︂
(1− 𝜉)𝑠(1− 𝜂)𝑠

(2− 𝜉 − 𝜂)𝑠
.

(1.26)

Applying the quadratic transformation (A.17)-(A.19) to the function

2𝐹1 (𝑛+ 1 + 𝑠,−𝑛+ 𝑠, 1 + 𝑠; 𝜁) gives:

2𝐹1 (𝑛+ 1 + 𝑠,−𝑛+ 𝑠, 1 + 𝑠; 𝜁)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝛼𝑛
𝑠 2𝐹1

(︂
𝑛+ 𝑠+ 1

2
,
𝑠− 𝑛

2
,
1

2
; (1− 2𝜁)2

)︂
, 𝑛− 𝑠 even,

𝛽𝑛
𝑠 (1− 2𝜁) 2𝐹1

(︂
𝑛+ 2 + 𝑠

2
,
𝑠− 𝑛+ 1

2
,
3

2
; (1− 2𝜁)2

)︂
, 𝑛− 𝑠 odd
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with

𝛼𝑛
𝑠 :=

Γ(12) 𝑠!

Γ(𝑛+2+𝑠
2 )Γ(−𝑛+𝑠+1

2 )
, 𝛽𝑛

𝑠 :=
Γ(−1

2) 𝑠!

Γ(𝑛+𝑠+1
2 )Γ(−𝑛+𝑠

2 )
. (1.27)

From here we have:

𝑐𝑛𝑛−2𝑘𝑄
𝑛
𝑛−2𝑘(𝜉, 𝜂) = 𝑐𝑛𝑛−2𝑘𝑄

𝑛
𝑛−2𝑘(𝜂, 𝜉) = 𝑎𝑛𝑘𝐸

𝑛
𝑘 (𝜉, 𝜂),

𝑘 = 0, . . . , [𝑛/2], (1.28)

𝑐𝑛𝑛−2𝑘−1𝑄
𝑛
𝑛−2𝑘−1(𝜉, 𝜂) = −𝑐𝑛𝑛−2𝑘−1𝑄

𝑛
𝑛−2𝑘−1(𝜂, 𝜉) = 𝑏𝑛𝑘𝐻

𝑛
𝑘 (𝜉, 𝜂),

𝑘 = 0, . . . , [(𝑛− 1)/2], (1.29)

where

𝑎𝑛𝑘 := 𝑐𝑛𝑛−2𝑘𝛼
𝑛
𝑛−2𝑘, 𝑏𝑛𝑘 := 𝑐𝑛𝑛−2𝑘−1𝛽

𝑛
𝑛−2𝑘−1 (1.30)

and

𝐻𝑛
𝑘 (𝜉, 𝜂) :=

(︀
𝜂 − 𝜉

)︀ (1− 𝜉)𝑛−2𝑘−1(1− 𝜂)𝑛−2𝑘−1

(2− 𝜉 − 𝜂)𝑛−2𝑘

× 2𝐹1

(︂
𝑛− 𝑘 +

1

2
,−𝑘, 3

2
;

(𝜂 − 𝜉)2

(2− 𝜉 − 𝜂)2

)︂
. (1.31)
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Then the expansions (1.23)-(1.24) can be replaced by:

𝐹 (𝑛+ 1,−𝑛, 1;𝑌1) =
[𝑛/2]∑︁
𝑘=0

𝑎𝑛𝑘𝐸
𝑛
𝑘 (𝜉, 𝜂)(1− 𝜉0)

2𝑘−𝑛

+

[(𝑛−1)/2]∑︁
𝑘=0

𝑏𝑛𝑘𝐻
𝑛
𝑘 (𝜉, 𝜂)(1− 𝜉0)

2𝑘+1−𝑛 (1.32)

𝐹 (𝑛+ 1,−𝑛, 1;𝑌 *
1 ) =

[𝑛/2]∑︁
𝑘=0

𝑎𝑛𝑘𝐸
𝑛
𝑘 (𝜉, 𝜂)(1− 𝜉0)

2𝑘−𝑛

−
[(𝑛−1)/2]∑︁

𝑘=0

𝑏𝑛𝑘𝐻
𝑛
𝑘 (𝜉, 𝜂)(1− 𝜉0)

2𝑘+1−𝑛. (1.33)

It is easy to check that the coefficients 𝑎𝑛𝑘 defined by (1.30) coincide

with the corresponding coefficients defined by (1.20).

Finally, the expansion (1.22) follows directly from (1.32)-(1.33), which

completes the proof. �

Remark 1.4.1. It is known ([38], [22]) that for 𝑘 = 0, 1, . . . , [𝑛/2] − 1

the functions 𝐻𝑛
𝑘 (𝜉, 𝜂) (see (1.31)), continued as 𝐻𝑛

𝑘 (1, 1) := 0, are classi-

cal solutions to a problem analogous to (1.11)-(1.12), but with a Dirichlet

boundary condition 𝑈(𝜉, 𝜉) = 0 instead of (𝑈𝜂 − 𝑈𝜉)(𝜉, 𝜉) = 0.

Remark 1.4.2. The constants 𝑏𝑛𝑘 in (1.30) can be evaluated as

𝑏𝑛𝑘 =
(𝑛+ 1)𝑛−2𝑘−1(−𝑛)𝑛−2𝑘−1(3/2)𝑘

(𝑛− 2𝑘 − 1)! (𝑛− 𝑘 − 1)! (−1)𝑛+𝑘+1
. (1.34)

In our further investigation we will need to know the derivative of the
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function 𝑈(𝜉, 1), given in Theorem 1.4.2.

Lemma 1.4.1. If 𝐹 ∈ 𝐶(𝐷̄), then the derivative 𝑈𝜉(𝜉, 1) has the following

representation on the segment {0 ≤ 𝜉 < 1}:

𝑈𝜉(𝜉, 1) =

[(𝑛−1)/2]∑︁
𝑘=0

2𝑎𝑛𝑘(𝑛− 2𝑘)(1− 𝜉)2𝑘−𝑛−1(𝜇𝑛𝑘 − 𝐽𝑛
𝑘 (𝜉))

+

∫︁ 𝜉

0

𝐹 (𝜉1, 𝜉) 𝑑𝜉1+

∫︁ 1

𝜉

𝐹 (𝜉, 𝜂1) 𝑑𝜂1+

∫︁ 1

𝜉

∫︁ 𝜉

0

Φ+
𝜉 (𝜉1, 𝜂1; 𝜉, 1)𝐹 (𝜉1, 𝜂1) 𝑑𝜉1𝑑𝜂1.

(1.35)

Proof. A direct calculation gives:

𝑈𝜉(𝜉, 1) =

[(𝑛−1)/2]∑︁
𝑘=0

2𝑎𝑛𝑘(𝑛− 2𝑘)(1− 𝜉)2𝑘−𝑛−1(𝜇𝑛𝑘 − 𝐽𝑛
𝑘 (𝜉))

+

[𝑛/2]∑︁
𝑘=0

2𝑎𝑛𝑘(1− 𝜉)2𝑘−𝑛

∫︁ 𝜉

0

𝐸𝑛
𝑘 (𝜉1, 𝜉)𝐹 (𝜉1, 𝜉) 𝑑𝜉1

−
∫︁ 𝜉

0

Φ+(𝜉1, 𝜉; 𝜉, 1)𝐹 (𝜉1, 𝜉) 𝑑𝜉1 +

∫︁ 1

𝜉

𝐹 (𝜉, 𝜂1) 𝑑𝜂1

+

∫︁ 1

𝜉

∫︁ 𝜉

0

Φ+
𝜉 (𝜉1, 𝜂1; 𝜉, 1)𝐹 (𝜉1, 𝜂1) 𝑑𝜉1𝑑𝜂1. (1.36)

According to (1.22) we have

[𝑛/2]∑︁
𝑘=0

2𝑎𝑛𝑘(1− 𝜉)2𝑘−𝑛𝐸𝑛
𝑘 (𝜉1, 𝜉) = Φ−(𝜉1, 𝜉; 𝜉, 1) =

Φ+(𝜉1, 𝜉; 𝜉, 1) + Φ+(𝜉1, 𝜉; 1, 𝜉) = Φ+(𝜉1, 𝜉; 𝜉, 1) + 1,

which we substitute in (1.36) to obtain (1.35). �
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1.5. An improved asymptotic representation of the

function U(𝜉, 𝜂)

In order to represent our next results in a more compact form, we introduce

the functions

𝐸̃𝑛
𝑘 (𝜉, 𝜂) :=

𝛼𝑛
𝑛−2𝑘

(2− 𝜉 − 𝜂)𝑛−2𝑘 2𝐹1

(︂
𝑛− 𝑘 +

1

2
,−𝑘, 1

2
;

(𝜂 − 𝜉)2

(2− 𝜉 − 𝜂)2

)︂
,

𝐻̃𝑛
𝑘 (𝜉, 𝜂) :=

𝛽𝑛
𝑛−2𝑘−1 (𝜂 − 𝜉)

(2− 𝜉 − 𝜂)𝑛−2𝑘 2𝐹1

(︂
𝑛− 𝑘 +

1

2
,−𝑘, 3

2
;

(𝜂 − 𝜉)2

(2− 𝜉 − 𝜂)2

)︂
,

where 𝛼𝑛
𝑠 and 𝛽𝑛

𝑠 are the coefficients (1.27). These functions are obviously

connected with the functions (1.13) and (1.31) by the relations

𝛼𝑛
𝑛−2𝑘 𝐸

𝑛
𝑘 (𝜉, 𝜂) = (1− 𝜉)𝑛−2𝑘(1− 𝜂)𝑛−2𝑘𝐸̃𝑛

𝑘 (𝜉, 𝜂), (1.37)

𝛽𝑛
𝑛−2𝑘−1𝐻

𝑛
𝑘 (𝜉, 𝜂) = (1− 𝜉)𝑛−2𝑘−1(1− 𝜂)𝑛−2𝑘−1𝐻̃𝑛

𝑘 (𝜉, 𝜂). (1.38)

In the next theorem we show another exact formula for the general-

ized solution 𝑈(𝜉, 𝜂), which actually gives an explicit form of the functions

𝐺𝑛
𝑘(𝜉, 𝜂) and 𝐺(𝜉, 𝜂) in the asymptotic representation (1.16).

Theorem 1.5.1. Let 𝐹 ∈ 𝐶(𝐷̄). Then the generalized solution of Problem
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𝑃02 has the following representation in 𝐷:

𝑈(𝜉, 𝜂) =

[𝑛/2]∑︁
𝑘=0

2𝑎𝑛𝑘𝐸̃
𝑛
𝑘 (𝜉, 𝜂)

∫︁ 𝜉

0

∫︁ 𝜂1

0

𝐸𝑛
𝑘 (𝜉1, 𝜂1)𝐹 (𝜉1, 𝜂1) 𝑑𝜉1𝑑𝜂1

+

[(𝑛−1)/2]∑︁
𝑘=0

2𝑎𝑛𝑘𝐸
𝑛
𝑘 (𝜉, 𝜂)

∫︁ 𝜉

0

∫︁ 𝜂1

0

𝐸̃𝑛
𝑘 (𝜉1, 𝜂1)𝐹 (𝜉1, 𝜂1) 𝑑𝜉1𝑑𝜂1

+

[𝑛/2]∑︁
𝑘=0

𝑎𝑛𝑘𝐸̃
𝑛
𝑘 (𝜉, 𝜂)

∫︁ 𝜂

𝜉

∫︁ 𝜉

0

𝐸𝑛
𝑘 (𝜉1, 𝜂1)𝐹 (𝜉1, 𝜂1) 𝑑𝜉1𝑑𝜂1

+

[(𝑛−1)/2]∑︁
𝑘=0

𝑎𝑛𝑘𝐸
𝑛
𝑘 (𝜉, 𝜂)

∫︁ 𝜂

𝜉

∫︁ 𝜉

0

𝐸̃𝑛
𝑘 (𝜉1, 𝜂1)𝐹 (𝜉1, 𝜂1) 𝑑𝜉1𝑑𝜂1

+

[(𝑛−1)/2]∑︁
𝑘=0

𝑏𝑛𝑘𝐻̃
𝑛
𝑘 (𝜉, 𝜂)

∫︁ 𝜂

𝜉

∫︁ 𝜉

0

𝐻𝑛
𝑘 (𝜉1, 𝜂1)𝐹 (𝜉1, 𝜂1) 𝑑𝜉1𝑑𝜂1

+

[𝑛/2]−1∑︁
𝑘=0

𝑏𝑛𝑘𝐻
𝑛
𝑘 (𝜉, 𝜂)

∫︁ 𝜂

𝜉

∫︁ 𝜉

0

𝐻̃𝑛
𝑘 (𝜉1, 𝜂1)𝐹 (𝜉1, 𝜂1) 𝑑𝜉1𝑑𝜂1,

(1.39)

where the coefficients 𝑎𝑛𝑘 and 𝑏𝑛𝑘 are given by (1.20) and (1.34) respectively.

The proof of this theorem is too long and we leave it for the next

section.

Corollary 1.5.1. Let 𝐹 ∈ 𝐶(𝐷̄). Then the asymptotic expansion of

𝑈(𝜉, 𝜂) given by (1.16) is still valid, i.e.

𝑈(𝜉, 𝜂) =

[𝑛/2]∑︁
𝑘=0

𝜇𝑛𝑘𝐺
𝑛
𝑘(𝜉, 𝜂)(2− 𝜉 − 𝜂)2𝑘−𝑛 +𝐺(𝜉, 𝜂), (𝜉, 𝜂) ∈ 𝐷,
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(even if 𝐹 /∈ 𝐶1(𝐷̄)). Furthermore, we may specify

𝐺𝑛
𝑘(𝜉, 𝜂) = 2𝑎𝑛𝑘𝛼

𝑛
𝑛−2𝑘 2𝐹1

(︂
𝑛− 𝑘 +

1

2
,−𝑘, 1

2
;

(𝜂 − 𝜉)2

(2− 𝜉 − 𝜂)2

)︂
.

For the function 𝐺(𝜉, 𝜂) there exists a positive constant 𝐾 independent of

𝐹 , such that a following estimate holds

|𝐺(𝜉, 𝜂)| ≤ 𝐾‖𝐹‖𝐶(𝐷)(2− 𝜉 − 𝜂), (𝜉, 𝜂) ∈ 𝐷, (1.40)

which improves the corresponding estimate (1.17).

Proof. The first term in the representation (1.39) may become un-

bounded as (𝜉, 𝜂) → (1, 1) and the other terms are bounded. Actually,

defining

𝐺𝑛
𝑘(𝜉, 𝜂) := 2𝑎𝑛𝑘(2− 𝜉 − 𝜂)𝑛−2𝑘𝐸̃𝑛

𝑘 (𝜉, 𝜂),

the first term may be written as

[𝑛/2]∑︁
𝑘=0

2𝑎𝑛𝑘𝐸̃
𝑛
𝑘 (𝜉, 𝜂)

∫︁ 𝜉

0

∫︁ 𝜂1

0

𝐸𝑛
𝑘 (𝜉1, 𝜂1)𝐹 (𝜉1, 𝜂1) 𝑑𝜉1𝑑𝜂1

=

[𝑛/2]∑︁
𝑘=0

2𝑎𝑛𝑘𝜇
𝑛
𝑘𝐸̃

𝑛
𝑘 (𝜉, 𝜂)−

[𝑛/2]∑︁
𝑘=0

2𝑎𝑛𝑘𝐸̃
𝑛
𝑘 (𝜉, 𝜂)

∫︁ 1

𝜉

∫︁ 𝜂1

0

𝐸𝑛
𝑘 (𝜉1, 𝜂1)𝐹 (𝜉1, 𝜂1) 𝑑𝜉1𝑑𝜂1

=

[𝑛/2]∑︁
𝑘=0

𝜇𝑛𝑘𝐺
𝑛
𝑘(𝜉, 𝜂)(2− 𝜉 − 𝜂)2𝑘−𝑛 −

[𝑛/2]∑︁
𝑘=0

2𝑎𝑛𝑘𝐸̃
𝑛
𝑘 (𝜉, 𝜂)𝐽

𝑛
𝑘 (𝜉).

Next, defining

𝐺(𝜉, 𝜂) := 𝑈(𝜉, 𝜂)−
[𝑛/2]∑︁
𝑘=0

𝜇𝑛𝑘𝐺
𝑛
𝑘(𝜉, 𝜂)(2− 𝜉 − 𝜂)2𝑘−𝑛,
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we obtain (1.40) with use of the estimates

|𝐸(𝜉, 𝜂)| ≤ 𝐶(1− 𝜂)𝑛−2𝑘, |𝐻(𝜉, 𝜂)| ≤ 𝐶(1− 𝜂)𝑛−2𝑘−1,

|𝐸̃(𝜉, 𝜂)| ≤ 𝐶(1− 𝜉)2𝑘−𝑛, |𝐻̃(𝜉, 𝜂)| ≤ 𝐶(1− 𝜉)2𝑘+1−𝑛,
(1.41)

where 𝐶 = const > 0. The estimates (1.41) easily follow, taking into ac-

count that the hypergeometric series of the form 2𝐹1(𝑎,−𝑘, 𝑐; 𝜁), |𝜁| ≤ 1,

𝑘 ∈ N ∪ {0} are bounded, because they are polynomials of 𝜁. �

Remark 1.5.1. The expansion (1.19) is in accordance with the derived

expansion of 𝑈(𝜉, 𝜂). Comparing (1.19) with (1.16) we have

𝐺(𝜉, 1) = −
[𝑛/2]∑︁
𝑘=0

2𝑎𝑛𝑘𝐽
𝑛
𝑘 (𝜉)(1− 𝜉)2𝑘−𝑛 + 𝐽+(𝜉)

and

𝐺𝑛
𝑘(𝜉, 1) = 2𝑎𝑛𝑘 .

1.6. Proof of Theorem 1.5.1

At first we will prove some auxiliary lemmas.

Lemma 1.6.1. For 𝑝 = 1, . . . , 𝑛 the following relation holds :

𝑛∑︁
𝑠=0

𝑝

𝑠+ 𝑝

𝑐𝑛𝑠𝑄
𝑛
𝑠 (𝜉, 𝜂)

(1− 𝜉)𝑠
= (1− 𝜂)−𝑝𝑄𝑛

𝑝(𝜉, 𝜂), (1.42)

where 𝑐𝑛𝑠 are the constants (1.25) and 𝑄𝑛
𝑠 (𝜉, 𝜂) are the functions (1.26).
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Proof. For 𝑝 = 1, . . . , 𝑛 we have:

𝑛∑︁
𝑠=0

𝑝

𝑠+ 𝑝

𝑐𝑛𝑠𝑄
𝑛
𝑠 (𝜉, 𝜂)

(1− 𝜉)𝑠
=

𝑛∑︁
𝑠=0

𝑛−𝑠∑︁
𝑗=0

(𝑝)𝑠
(𝑝+ 1)𝑠

(𝑛+ 1)𝑗+𝑠(−𝑛)𝑗+𝑠

(−1)𝑠(1)𝑗+𝑠 𝑗! 𝑠!

(1− 𝜂)𝑗+𝑠

(2− 𝜉 − 𝜂)𝑗+𝑠

=
𝑛∑︁

𝑚=0

(𝑛+ 1)𝑚(−𝑛)𝑚
𝑚!𝑚!

(1− 𝜂)𝑚

(2− 𝜉 − 𝜂)𝑚

𝑚∑︁
𝑠=0

(𝑝)𝑠(−𝑚)𝑠
(𝑝+ 1)𝑠 𝑠!

,

where we used (A.1)-(A.2). Further, using (A.9) we see that

2𝐹1(𝑝,−𝑚, 𝑝+ 1; 1) =
Γ(𝑝+ 1)Γ(𝑚+ 1)

Γ(1)Γ(𝑝+𝑚+ 1)
=

𝑚!

(𝑝+ 1)𝑚
.

Then we obtain:

𝑛∑︁
𝑠=0

𝑝

𝑠+ 𝑝

𝑐𝑛𝑠𝑄
𝑛
𝑠 (𝜉, 𝜂)

(1− 𝜉)𝑠
= 2𝐹1

(︂
𝑛+ 1,−𝑛, 𝑝+ 1;

1− 𝜂

2− 𝜉 − 𝜂

)︂
.

Finally, by the auto transformation formula (A.13) we have:

2𝐹1

(︂
𝑛+ 1,−𝑛, 𝑝+ 1;

1− 𝜂

2− 𝜉 − 𝜂

)︂
=

(1− 𝜉)𝑝

(2− 𝜉 − 𝜂)𝑝
2𝐹1

(︂
𝑝+ 𝑛+ 1, 𝑝− 𝑛, 𝑝+ 1;

1− 𝜂

2− 𝜉 − 𝜂

)︂
,

which completes the proof. �
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Lemma 1.6.2. Define

𝑆(1)(𝜉0, 𝜂0) :=

−
𝑛∑︁

𝑠=1

𝑛∑︁
𝑝=0

𝑐𝑛𝑠𝑐
𝑛
𝑝𝑄

𝑛
𝑝(𝜉0, 𝜂0)

(︂∫︁ 𝜉0

0

∫︁ 𝜂

0

(1− 𝜂)−𝑠−𝑝𝑄𝑛
𝑠 (𝜂, 𝜉)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

+

∫︁ 𝜉0

0

∫︁ 1

𝜉

(1− 𝜉)−𝑠−𝑝𝑄𝑛
𝑠 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜂𝑑𝜉

)︂
. (1.43)

Then

𝑆(1)(𝜉0, 𝜂0) = 𝒥 (𝜉0, 𝜂0)− 𝒥0(𝜉0, 𝜂0), (1.44)

where

𝒥 (𝜉0, 𝜂0) :=

∫︁ 𝜉0

0

∫︁ 𝜂

0

Φ+(𝜂, 1; 𝜉0, 𝜂0)𝑄
𝑛
0(𝜂, 𝜉)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

+

∫︁ 𝜉0

0

∫︁ 1

𝜉

Φ+(𝜉, 1; 𝜉0, 𝜂0)𝑄
𝑛
0(𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜂𝑑𝜉, (1.45)

𝒥0(𝜉0, 𝜂0) :=

∫︁ 𝜉0

0

∫︁ 𝜂

0

Φ+(𝜂, 1; 𝜉0, 𝜂0)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

+

∫︁ 𝜉0

0

∫︁ 1

𝜉

Φ+(𝜉, 1; 𝜉0, 𝜂0)𝐹 (𝜉, 𝜂) 𝑑𝜂𝑑𝜉. (1.46)

Proof. According to (1.23)

𝑛∑︁
𝑠=0

𝑐𝑛𝑠𝑄
𝑛
𝑠 (𝜂, 𝜉)(1− 𝜂)−𝑠 = Φ+(𝜂, 𝜉; 𝜂, 1) = 1,

𝑛∑︁
𝑠=0

𝑐𝑛𝑠𝑄
𝑛
𝑠 (𝜉, 𝜂)(1− 𝜉)−𝑠 = Φ+(𝜉, 𝜂; 𝜉, 1) = 1.
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Therefore
𝑛∑︁

𝑠=1

𝑐𝑛𝑠𝑄
𝑛
𝑠 (𝜂, 𝜉)(1− 𝜂)−𝑠 = 1−𝑄𝑛

0(𝜂, 𝜉),

𝑛∑︁
𝑠=1

𝑐𝑛𝑠𝑄
𝑛
𝑠 (𝜉, 𝜂)(1− 𝜉)−𝑠 = 1−𝑄𝑛

0(𝜉, 𝜂),

(1.47)

as far as 𝑐𝑛0 = 1.

On the other hand, again by (1.23), we have

𝑛∑︁
𝑝=0

𝑐𝑛𝑝𝑄
𝑛
𝑝(𝜉0, 𝜂0)(1− 𝜂)−𝑝 = Φ+(𝜉0, 𝜂0; 𝜂, 1) = Φ+(𝜂, 1; 𝜉0, 𝜂0),

𝑛∑︁
𝑝=0

𝑐𝑛𝑝𝑄
𝑛
𝑝(𝜉0, 𝜂0)(1− 𝜉)−𝑝 = Φ+(𝜉0, 𝜂0; 𝜉, 1) = Φ+(𝜉, 1; 𝜉0, 𝜂0),

(1.48)

where we take into account that

Φ+(𝜉0, 𝜂0; 𝜉, 𝜂) = Φ+(𝜉, 𝜂; 𝜉0, 𝜂0).

Then (1.44) follows directly from (1.47) and (1.48). �

Lemma 1.6.3. Define

𝑆(2)(𝜉0, 𝜂0) :=
𝑛∑︁

𝑝=1

𝑛∑︁
𝑠=1

𝑐𝑛𝑠𝑐
𝑛
𝑝

𝑝

𝑠+ 𝑝
𝑄𝑛

𝑝(𝜉0, 𝜂0)

(︂∫︁ 𝜉0

0

∫︁ 𝜂

0

(1− 𝜂)−𝑠−𝑝𝑄𝑛
𝑠 (𝜂, 𝜉)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

+

∫︁ 𝜉0

0

∫︁ 1

𝜉

(1− 𝜉)−𝑠−𝑝𝑄𝑛
𝑠 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜂𝑑𝜉

)︂
. (1.49)
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Then

𝑆(2)(𝜉0, 𝜂0) =

[(𝑛−1)/2]∑︁
𝑘=0

𝑎𝑛𝑘𝐸
𝑛
𝑘 (𝜉0, 𝜂0)

∫︁ 1

𝜉0

∫︁ 𝜉0

0

𝐸̃𝑛
𝑘 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

+

[𝑛/2]−1∑︁
𝑘=0

𝑏𝑛𝑘𝐻
𝑛
𝑘 (𝜉0, 𝜂0)

∫︁ 1

𝜉0

∫︁ 𝜉0

0

𝐻̃𝑛
𝑘 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

+

[(𝑛−1)/2]∑︁
𝑘=0

2𝑎𝑛𝑘𝐸
𝑛
𝑘 (𝜉0, 𝜂0)

∫︁ 𝜉0

0

∫︁ 𝜂

0

𝐸̃𝑛
𝑘 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

− 𝒥 (𝜉0, 𝜂0) + ℐ0(𝜉0, 𝜂0),

where 𝒥 (𝜉0, 𝜂0) is the function (1.45) from Lemma 1.6.2 and

ℐ0(𝜉0, 𝜂0) := 𝑄𝑛
0(𝜉0, 𝜂0)

(︂∫︁ 𝜉0

0

∫︁ 𝜂

0

𝑄𝑛
0(𝜂, 𝜉)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

+

∫︁ 𝜉0

0

∫︁ 1

𝜉

𝑄𝑛
0(𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜂𝑑𝜉

)︂
. (1.50)

Proof. First, recalling (1.48), we note that

𝒥 (𝜉0, 𝜂0)− ℐ0(𝜉0, 𝜂0) =
𝑛∑︁

𝑝=1

𝑐𝑛𝑝𝑄
𝑛
𝑝(𝜉0, 𝜂0)

(︂∫︁ 𝜉0

0

∫︁ 𝜂

0

(1− 𝜂)−𝑝𝑄𝑛
0(𝜂, 𝜉)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

+

∫︁ 𝜉0

0

∫︁ 1

𝜉

(1− 𝜉)−𝑝𝑄𝑛
0(𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜂𝑑𝜉

)︂
.
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Then

𝑆(2)(𝜉0, 𝜂0) + 𝒥 (𝜉0, 𝜂0)− ℐ0(𝜉0, 𝜂0) =
𝑛∑︁

𝑝=1

𝑛∑︁
𝑠=0

𝑐𝑛𝑠𝑐
𝑛
𝑝

𝑝

𝑠+ 𝑝
𝑄𝑛

𝑝(𝜉0, 𝜂0)

(︂∫︁ 𝜉0

0

∫︁ 𝜂

0

(1− 𝜂)−𝑠−𝑝𝑄𝑛
𝑠 (𝜂, 𝜉)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

+

∫︁ 𝜉0

0

∫︁ 1

𝜉

(1− 𝜉)−𝑠−𝑝𝑄𝑛
𝑠 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜂𝑑𝜉

)︂
.

Now, with Lemma 1.6.1 we come to

𝑆(2)(𝜉0, 𝜂0) + 𝒥 (𝜉0, 𝜂0)− ℐ0(𝜉0, 𝜂0) =
𝑛∑︁

𝑝=1

𝑐𝑛𝑝𝑄
𝑛
𝑝(𝜉0, 𝜂0)

(︂∫︁ 𝜉0

0

∫︁ 𝜂

0

(1− 𝜉)−𝑝(1− 𝜂)−𝑝𝑄𝑛
𝑝(𝜂, 𝜉)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

+

∫︁ 𝜉0

0

∫︁ 1

𝜉

(1− 𝜉)−𝑝(1− 𝜂)−𝑝𝑄𝑛
𝑝(𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜂𝑑𝜉

)︂
. (1.51)

Comparing the relations (1.28)-(1.30) and (1.37)-(1.38) we see that

𝑄𝑛
𝑛−2𝑘(𝜉, 𝜂) = 𝑄𝑛

𝑛−2𝑘(𝜂, 𝜉) = (1− 𝜉)𝑛−2𝑘(1− 𝜂)𝑛−2𝑘𝐸̃𝑛
𝑘 (𝜉, 𝜂),

𝑘 = 0, . . . , [𝑛/2], (1.52)

𝑄𝑛
𝑛−2𝑘−1(𝜉, 𝜂) = −𝑄𝑛

𝑛−2𝑘−1(𝜂, 𝜉) = (1− 𝜉)𝑛−2𝑘−1(1− 𝜂)𝑛−2𝑘−1𝐻̃𝑛
𝑘 (𝜉, 𝜂),

𝑘 = 0, . . . , [(𝑛− 1)/2]. (1.53)

Applying (1.28)-(1.29) and (1.52)-(1.53) into (1.51) completes the proof

of the lemma. �
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Lemma 1.6.4. For 𝑘 = 0, . . . , [(𝑛− 1)/2] and (𝜉0, 𝜂0) ∈ 𝐷 define

𝐼𝑛𝑘 (𝜉0, 𝜂0) := (𝑛− 2𝑘)

∫︁ 𝜉0

0

(︀
𝜇𝑛𝑘 − 𝐽𝑛

𝑘 (𝜉)
)︀
(1− 𝜉)2𝑘−𝑛−1Φ+(𝜉, 1; 𝜉0, 𝜂0) 𝑑𝜉.

(1.54)

Then

𝐼𝑛𝑘 (𝜉0, 𝜂0) = 𝐸̃𝑛
𝑘 (𝜉0, 𝜂0)

∫︁ 𝜉0

0

∫︁ 𝜂

0

𝐸𝑛
𝑘 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂 + 𝑃 𝑛

𝑘 (𝜉0, 𝜂0), (1.55)

where

𝑃 𝑛
𝑘 (𝜉0, 𝜂0) :=

𝑛∑︁
𝑠=0

𝑛− 2𝑘

𝑠+ 𝑛− 2𝑘
𝑐𝑛𝑠𝑄

𝑛
𝑠 (𝜉0, 𝜂0)

∫︁ 𝜉0

0

𝑑𝐽𝑛
𝑘 (𝜉)

𝑑𝜉
(1− 𝜉)2𝑘−𝑛−𝑠 𝑑𝜉.

(1.56)

Proof. Since Φ+(𝜉, 𝜂; 𝜉0, 𝜂0) = Φ+(𝜉0, 𝜂0; 𝜉, 𝜂), by (1.23) we have:

Φ+(𝜉, 1; 𝜉0, 𝜂0) =
𝑛∑︁

𝑠=0

𝑐𝑛𝑠𝑄
𝑛
𝑠 (𝜉0, 𝜂0)(1− 𝜉)−𝑠. (1.57)

Then

𝐼𝑛𝑘 (𝜉0, 𝜂0) =
𝑛∑︁

𝑠=0

𝑛− 2𝑘

𝑠+ 𝑛− 2𝑘
𝑐𝑛𝑠𝑄

𝑛
𝑠 (𝜉0, 𝜂0)

∫︁ 𝜉0

0

(︀
𝜇𝑛𝑘−𝐽𝑛

𝑘 (𝜉)
)︀ 𝑑
𝑑𝜉

(1−𝜉)2𝑘−𝑛−𝑠 𝑑𝜉.

Integrating by parts and taking into account that 𝐽𝑛
𝑘 (0) = 𝜇𝑛𝑘 (see

(1.21) and (1.15)), we obtain:

𝐼𝑛𝑘 (𝜉0, 𝜂0) = 𝑃 𝑛
𝑘 (𝜉0, 𝜂0) +

𝑛∑︁
𝑠=0

𝑛− 2𝑘

𝑠+ 𝑛− 2𝑘

𝑐𝑛𝑠𝑄
𝑛
𝑠 (𝜉0, 𝜂0)

(1− 𝜉0)𝑛−2𝑘+𝑠

(︀
𝜇𝑛𝑘 − 𝐽𝑛

𝑘 (𝜉0)
)︀
.
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Then, taking into account (1.52), from the relation

𝜇𝑛𝑘 − 𝐽𝑛
𝑘 (𝜉0) =

∫︁ 𝜉0

0

∫︁ 𝜂

0

𝐸𝑛
𝑘 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

and from Lemma 1.6.1 with 𝑝 = 𝑛− 2𝑘 it follows (1.55) . �

Lemma 1.6.5. Define

𝐼(𝜉0, 𝜂0) :=

∫︁ 𝜉0

0

(︂∫︁ 1

𝜉

∫︁ 𝜉

0

Φ+
𝜉 (𝜉1, 𝜂1; 𝜉, 1)𝐹 (𝜉1, 𝜂1) 𝑑𝜉1𝑑𝜂1

)︂
Φ+(𝜉, 1; 𝜉0, 𝜂0) 𝑑𝜉.

(1.58)

Then

𝐼(𝜉0, 𝜂0) =

[(𝑛−1)/2]∑︁
𝑘=0

𝑎𝑛𝑘𝐸̃
𝑛
𝑘 (𝜉0, 𝜂0)

∫︁ 1

𝜉0

∫︁ 𝜉0

0

𝐸𝑛
𝑘 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

+

[𝑛/2]−1∑︁
𝑘=0

𝑏𝑛𝑘𝐻̃
𝑛
𝑘 (𝜉0, 𝜂0)

∫︁ 1

𝜉0

∫︁ 𝜉0

0

𝐻𝑛
𝑘 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

+

[(𝑛−1)/2]∑︁
𝑘=0

𝑎𝑛𝑘𝐸
𝑛
𝑘 (𝜉0, 𝜂0)

∫︁ 1

𝜉0

∫︁ 𝜉0

0

𝐸̃𝑛
𝑘 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

+

[𝑛/2]−1∑︁
𝑘=0

𝑏𝑛𝑘𝐻
𝑛
𝑘 (𝜉0, 𝜂0)

∫︁ 1

𝜉0

∫︁ 𝜉0

0

𝐻̃𝑛
𝑘 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

+

[(𝑛−1)/2]∑︁
𝑘=0

2𝑎𝑛𝑘𝐸
𝑛
𝑘 (𝜉0, 𝜂0)

∫︁ 𝜉0

0

∫︁ 𝜂

0

𝐸̃𝑛
𝑘 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

− 𝒥0(𝜉0, 𝜂0) + ℐ0(𝜉0, 𝜂0)−
[(𝑛−1)/2]∑︁

𝑘=0

2𝑎𝑛𝑘𝑃
𝑛
𝑘 (𝜉0, 𝜂0),

where 𝒥0(𝜉0, 𝜂0) is the function (1.46) from Lemma 1.6.2, ℐ0(𝜉0, 𝜂0) is the

function (1.50) from Lemma 1.6.3 and 𝑃 𝑛
𝑘 (𝜉0, 𝜂0) are the functions (1.56)
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from Lemma 1.6.4.

Proof. Using the expansions (1.23) and (1.57) we may write:

𝐼(𝜉0, 𝜂0) =
𝑛∑︁

𝑝=1

𝑛∑︁
𝑠=0

𝑐𝑛𝑠𝑐
𝑛
𝑝

𝑝

𝑠+ 𝑝
𝑄𝑛

𝑠 (𝜉0, 𝜂0)

∫︁ 𝜉0

0

ϒ𝑛
𝑝(𝜉)

𝑑

𝑑𝜉
(1− 𝜉)−𝑠−𝑝 𝑑𝜉

with

ϒ𝑛
𝑝(𝜉) :=

∫︁ 1

𝜉

∫︁ 𝜉

0

𝑄𝑛
𝑝(𝜉1, 𝜂1)𝐹 (𝜉1, 𝜂1) 𝑑𝜉1𝑑𝜂1.

Integrating by parts, we obtain:

𝐼(𝜉0, 𝜂0) = 𝐼(1)(𝜉0, 𝜂0) + 𝐼(2)(𝜉0, 𝜂0),

where

𝐼(1)(𝜉0, 𝜂0) :=
𝑛∑︁

𝑝=1

𝑛∑︁
𝑠=0

𝑐𝑛𝑠𝑐
𝑛
𝑝

𝑝

𝑠+ 𝑝
𝑄𝑛

𝑠 (𝜉0, 𝜂0)ϒ
𝑛
𝑝(𝜉0)(1− 𝜉0)

−𝑠−𝑝,

𝐼(2)(𝜉0, 𝜂0) := −
𝑛∑︁

𝑠=1

𝑛∑︁
𝑝=0

𝑐𝑛𝑠𝑐
𝑛
𝑝

𝑠

𝑠+ 𝑝
𝑄𝑛

𝑝(𝜉0, 𝜂0)

∫︁ 𝜉0

0

𝑑ϒ𝑛
𝑠 (𝜉)

𝑑𝜉
(1− 𝜉)−𝑠−𝑝 𝑑𝜉.

A. Calculation of 𝐼(1)(𝜉0, 𝜂0). First, we apply Lemma 1.6.1 to obtain:

𝐼(1)(𝜉0, 𝜂0) =
𝑛∑︁

𝑝=1

𝑐𝑛𝑝ϒ
𝑛
𝑝(𝜉0)(1− 𝜉0)

−𝑝(1− 𝜂0)
−𝑝𝑄𝑛

𝑝(𝜉0, 𝜂0).
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Then with (1.28)-(1.29) and (1.52)-(1.53) we come to

𝐼(1) =

[(𝑛−1)/2]∑︁
𝑘=0

𝑎𝑛𝑘𝐸̃
𝑛
𝑘 (𝜉0, 𝜂0)

∫︁ 1

𝜉0

∫︁ 𝜉0

0

𝐸𝑛
𝑘 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

+

[𝑛/2]−1∑︁
𝑘=0

𝑏𝑛𝑘𝐻̃
𝑛
𝑘 (𝜉0, 𝜂0)

∫︁ 1

𝜉0

∫︁ 𝜉0

0

𝐻𝑛
𝑘 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂.

B. Calculation of 𝐼(2)(𝜉0, 𝜂0). First, we calculate:

𝑑ϒ𝑛
𝑠 (𝜉)

𝑑𝜉
= −

∫︁ 𝜉

0

𝑄𝑛
𝑠 (𝜉1, 𝜉)𝐹 (𝜉1, 𝜉) 𝑑𝜉1 +

∫︁ 1

𝜉

𝑄𝑛
𝑠 (𝜉, 𝜂1)𝐹 (𝜉, 𝜂1) 𝑑𝜂1.

Then we have:

𝐼(2)(𝜉0, 𝜂0) =
𝑛∑︁

𝑠=1

𝑛∑︁
𝑝=0

𝑐𝑛𝑠𝑐
𝑛
𝑝

𝑠

𝑠+ 𝑝
𝑄𝑛

𝑝(𝜉0, 𝜂0)

(︂∫︁ 𝜉0

0

∫︁ 𝜂

0

(1− 𝜂)−𝑠−𝑝𝑄𝑛
𝑠 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

−
∫︁ 𝜉0

0

∫︁ 1

𝜉

(1− 𝜉)−𝑠−𝑝𝑄𝑛
𝑠 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜂𝑑𝜉

)︂
.

Now, using the relations (1.28)-(1.29), we see that

𝑛∑︁
𝑠=1

𝑛∑︁
𝑝=0

𝑐𝑛𝑠𝑐
𝑛
𝑝

𝑠

𝑠+ 𝑝
𝑄𝑛

𝑝(𝜉0, 𝜂0)

∫︁ 𝜉0

0

∫︁ 𝜂

0

(1− 𝜂)−𝑠−𝑝𝑄𝑛
𝑠 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

= −
𝑛∑︁

𝑠=1

𝑛∑︁
𝑝=0

𝑐𝑛𝑠𝑐
𝑛
𝑝

𝑠

𝑠+ 𝑝
𝑄𝑛

𝑝(𝜉0, 𝜂0)

∫︁ 𝜉0

0

∫︁ 𝜂

0

(1− 𝜂)−𝑠−𝑝𝑄𝑛
𝑠 (𝜂, 𝜉)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

−
[(𝑛−1)/2]∑︁

𝑘=0

2𝑎𝑛𝑘𝑃
𝑛
𝑘 (𝜉0, 𝜂0), (1.59)
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where we take into account that

−
[(𝑛−1)/2]∑︁

𝑘=0

2𝑎𝑛𝑘𝑃
𝑛
𝑘 (𝜉0, 𝜂0) =

[(𝑛−1)/2]∑︁
𝑘=0

𝑛∑︁
𝑝=0

2𝑎𝑛𝑘
𝑛− 2𝑘

𝑝+ 𝑛− 2𝑘
𝑐𝑛𝑝𝑄

𝑛
𝑝(𝜉0, 𝜂0)

×
∫︁ 𝜉0

0

∫︁ 𝜂

0

(1− 𝜂)2𝑘−𝑛−𝑝𝐸𝑛
𝑘 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂,

since
𝑑𝐽𝑛

𝑘 (𝜉)

𝑑𝜉
= −

∫︁ 𝜉

0

𝐸𝑛
𝑘 (𝜉1, 𝜉)𝐹 (𝜉1, 𝜉) 𝑑𝜉1.

Consequently, 𝐼(2)(𝜉0, 𝜂0) becomes

𝐼(2)(𝜉0, 𝜂0) =

−
𝑛∑︁

𝑠=1

𝑛∑︁
𝑝=0

𝑐𝑛𝑠𝑐
𝑛
𝑝

𝑠

𝑠+ 𝑝
𝑄𝑛

𝑝(𝜉0, 𝜂0)

(︂∫︁ 𝜉0

0

∫︁ 𝜂

0

(1− 𝜂)−𝑠−𝑝𝑄𝑛
𝑠 (𝜂, 𝜉)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

+

∫︁ 𝜉0

0

∫︁ 1

𝜉

(1− 𝜉)−𝑠−𝑝𝑄𝑛
𝑠 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜂𝑑𝜉

)︂
−

[(𝑛−1)/2]∑︁
𝑘=0

2𝑎𝑛𝑘𝑃
𝑛
𝑘 (𝜉0, 𝜂0).

Applying here the simple equality

𝑠

𝑠+ 𝑝
= 1− 𝑝

𝑠+ 𝑝
,

we decompose 𝐼(2)(𝜉0, 𝜂0) as

𝐼(2)(𝜉0, 𝜂0) = 𝑆(1)(𝜉0, 𝜂0) + 𝑆(2)(𝜉0, 𝜂0)−
[(𝑛−1)/2]∑︁

𝑘=0

2𝑎𝑛𝑘𝑃
𝑛
𝑘 (𝜉0, 𝜂0), (1.60)

where 𝑆(1)(𝜉0, 𝜂0) and 𝑆(2)(𝜉0, 𝜂0) are the functions (1.43) and (1.49) re-

spectively. Finally, applying Lemma 1.6.2 and Lemma 1.6.3 into (1.60) we
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derive

𝐼(2)(𝜉0, 𝜂0) =

[(𝑛−1)/2]∑︁
𝑘=0

𝑎𝑛𝑘𝐸
𝑛
𝑘 (𝜉0, 𝜂0)

∫︁ 1

𝜉0

∫︁ 𝜉0

0

𝐸̃𝑛
𝑘 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

+

[𝑛/2]−1∑︁
𝑘=0

𝑏𝑛𝑘𝐻
𝑛
𝑘 (𝜉0, 𝜂0)

∫︁ 1

𝜉0

∫︁ 𝜉0

0

𝐻̃𝑛
𝑘 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

+

[(𝑛−1)/2]∑︁
𝑘=0

2𝑎𝑛𝑘𝐸
𝑛
𝑘 (𝜉0, 𝜂0)

∫︁ 𝜉0

0

∫︁ 𝜂

0

𝐸̃𝑛
𝑘 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

− 𝒥0(𝜉0, 𝜂0) + ℐ0(𝜉0, 𝜂0)−
[(𝑛−1)/2]∑︁

𝑘=0

2𝑎𝑛𝑘𝑃
𝑛
𝑘 (𝜉0, 𝜂0)

The proof is complete. �

Lemma 1.6.6. Let ℐ0(𝜉0, 𝜂0) be the function defined by (1.50).

(i) If 𝑛 is an even number, then

ℐ0(𝜉0, 𝜂0) = 𝑎𝑛𝑛/2𝐸̃
𝑛
𝑛/2(𝜉0, 𝜂0)

(︂∫︁ 𝜉0

0

∫︁ 𝜂

0

2𝐸𝑛
𝑛/2(𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

+

∫︁ 1

𝜉0

∫︁ 𝜉0

0

𝐸𝑛
𝑛/2(𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂

)︂
.

(ii) If 𝑛 is an odd number, then

ℐ0(𝜉0, 𝜂0) = 𝑏𝑛(𝑛−1)/2𝐻̃
𝑛
(𝑛−1)/2(𝜉0, 𝜂0)

∫︁ 1

𝜉0

∫︁ 𝜉0

0

𝐻𝑛
(𝑛−1)/2(𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂.

The proof of this lemma follows directly from the relations (1.28)-(1.29)

and (1.52)-(1.53).

Proof of Theorem 1.5.1. Obviously, the function 𝑈(𝜉, 𝜂) is a solu-
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tion of the following Goursat problem:

𝑈𝜉𝜂 −
𝑛(𝑛+ 1)

(2− 𝜉 − 𝜂)2
𝑈 = 𝐹 (𝜉, 𝜂),

𝑈(0, 𝜂) = 0,

𝑈(𝜉, 1) =

[𝑛/2]∑︁
𝑘=0

2𝑎𝑛𝑘𝜇
𝑛
𝑘(1− 𝜉)2𝑘−𝑛 −

[𝑛/2]∑︁
𝑘=0

2𝑎𝑛𝑘𝐽
𝑛
𝑘 (𝜉)(1− 𝜉)2𝑘−𝑛 + 𝐽+(𝜉),

(see (1.9)-(1.10) and Theorem 1.4.2).

Then, solving this problem by the Riemann method, we obtain

𝑈(𝜉0, 𝜂0) = 𝑊 (𝜉0, 𝜂0)−
∫︁ 1

𝜂0

∫︁ 𝜉0

0

Φ+(𝜉, 𝜂; 𝜉0, 𝜂0)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂, (1.61)

where

𝑊 (𝜉0, 𝜂0) :=

∫︁ 𝜉0

0

𝑈𝜉(𝜉, 1)Φ
+(𝜉, 1; 𝜉0, 𝜂0) 𝑑𝜉. (1.62)

On the one hand, according to (1.61) and the representation (1.18) in

Theorem 1.4.1 we have

𝑊 (𝜉0, 𝜂0) =

∫︁ 𝜉0

0

∫︁ 1

𝜉

Φ(𝜉, 𝜂; 𝜉0, 𝜂0)𝐹 (𝜉, 𝜂) 𝑑𝜂𝑑𝜉. (1.63)

On the other hand, using Lemma 1.4.1, we can evaluate the integral in

(1.62) directly:

𝑊 (𝜉0, 𝜂0) =

[(𝑛−1)/2]∑︁
𝑘=0

2𝑎𝑛𝑘𝐼
𝑛
𝑘 (𝜉0, 𝜂0) + 𝒥0(𝜉0, 𝜂0) + 𝐼(𝜉0, 𝜂0), (1.64)

where 𝐼𝑛𝑘 (𝜉0, 𝜂0), 𝒥0(𝜉0, 𝜂0) and 𝐼(𝜉0, 𝜂0) are the functions defined by (1.54),
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(1.46) and (1.58) respectively. Applying Lemma 1.6.4, Lemma 1.6.5 and

Lemma 1.6.6 to (1.64) gives that

𝑊 (𝜉0, 𝜂0) =

∫︁ 𝜉0

0

∫︁ 1

𝜉

Φ̃(𝜉, 𝜂; 𝜉0, 𝜂0)𝐹 (𝜉, 𝜂) 𝑑𝜂𝑑𝜉, (1.65)

where

Φ̃(𝜉, 𝜂; 𝜉0, 𝜂0) :=

⎧⎪⎨⎪⎩
Φ̃+(𝜉, 𝜂; 𝜉0, 𝜂0), 𝜂 > 𝜉0,

Φ̃−(𝜉, 𝜂; 𝜉0, 𝜂0), 𝜂 < 𝜉0

(1.66)

with

Φ̃−(𝜉, 𝜂; 𝜉0, 𝜂0) :=

[𝑛/2]∑︁
𝑘=0

2𝑎𝑛𝑘𝐸̃
𝑛
𝑘 (𝜉0, 𝜂0)𝐸

𝑛
𝑘 (𝜉, 𝜂)+

[(𝑛−1)/2]∑︁
𝑘=0

2𝑎𝑛𝑘𝐸
𝑛
𝑘 (𝜉0, 𝜂0)𝐸̃

𝑛
𝑘 (𝜉, 𝜂),

(1.67)

Φ̃+(𝜉, 𝜂; 𝜉0, 𝜂0) :=

[𝑛/2]∑︁
𝑘=0

𝑎𝑛𝑘𝐸̃
𝑛
𝑘 (𝜉0, 𝜂0)𝐸

𝑛
𝑘 (𝜉, 𝜂) +

[(𝑛−1)/2]∑︁
𝑘=0

𝑎𝑛𝑘𝐸
𝑛
𝑘 (𝜉0, 𝜂0)𝐸̃

𝑛
𝑘 (𝜉, 𝜂)

+

[(𝑛−1)/2]∑︁
𝑘=0

𝑏𝑛𝑘𝐻̃
𝑛
𝑘 (𝜉0, 𝜂0)𝐻

𝑛
𝑘 (𝜉, 𝜂) +

[𝑛/2]−1∑︁
𝑘=0

𝑏𝑛𝑘𝐻
𝑛
𝑘 (𝜉0, 𝜂0)𝐻̃

𝑛
𝑘 (𝜉, 𝜂). (1.68)

Since 𝐹 (𝜉, 𝜂) is an arbitrary continuous function, comparing the iden-

tities (1.63) and (1.65), we conclude that

Φ̃(𝜉, 𝜂; 𝜉0, 𝜂0) ≡ Φ(𝜉, 𝜂; 𝜉0, 𝜂0).

Finally, applying the expansion (1.66)-(1.68) into (1.18) completes the

proof of the theorem. �
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1.7. Asymptotic expansion of the generalized

solution of Problem P0

Lemma 1.7.1. For 𝑘 = 0, . . . , [𝑛/2] the following relations hold:

𝜇𝑛𝑘 = 𝛾𝑛𝑘𝜇
𝑛
𝑘,𝑠,

where the coefficients 𝜇𝑛𝑘,𝑠, 𝛾
𝑛
𝑘 , 𝜇

𝑛
𝑘 are defined by (1.3), (1.14), (1.15) re-

spectively.

Proof. Denote

𝐺0 := {(𝑟, 𝑡) : 0 < 𝑡 < 1/2, 𝑡 < 𝑟 < 1− 𝑡} .

Denote also by 𝒴𝑠
𝑛 the spherical functions expressed in the spherical coordi-

nates, i.e. 𝑌 𝑠
𝑛 (𝑥) = 𝒴𝑠

𝑛(𝜃(𝑥), 𝜙(𝑥)). Then, using the orthonormality of the

spherical functions on the unit sphere 𝑆2 and the relation (1.14), a direct

calculation gives:

𝜇𝑛𝑘,𝑠 =

∫︁
Ω0

𝑣𝑛𝑘,𝑠(𝑥, 𝑡)𝑓(𝑥, 𝑡) 𝑑𝑥𝑑𝑡

=

∫︁ 𝜋

0

∫︁ 2𝜋

0

∫︁
𝐺0

ℰ𝑛
𝑘 (𝑟, 𝑡)𝒴𝑠

𝑛(𝜃, 𝜙)

(︃
𝑙∑︁

𝑝=0

2𝑝+1∑︁
𝑞=1

𝑓 𝑞𝑝 (𝑟, 𝑡)𝒴𝑞
𝑝(𝜃, 𝜙)

)︃
sin 𝜃 𝑟2 𝑑𝑟𝑑𝑡𝑑𝜙𝑑𝜃

=

∫︁
𝑆2

(𝒴𝑠
𝑛)

2(𝜃, 𝜙) 𝑑𝑆

∫︁
𝐺0

(ℰ𝑛
𝑘 𝑓

𝑠
𝑛)(𝑟, 𝑡) 𝑟

2 𝑑𝑟𝑑𝑡 =
𝜇𝑛𝑘
𝛾𝑛𝑘
.

The proof is complete. �
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Now, the inverse transformation from Problem 𝑃02 to Problem 𝑃0 gives

the following improvement of Theorem 1.2.2:

Theorem 1.7.1. Suppose that the right-hand side function 𝑓 ∈ 𝐶(Ω̄0) has

the form (1.4). Then the unique generalized solution 𝑢(𝑥, 𝑡) of Problem 𝑃0

has the following asymptotic expansion at the singular point 𝑂:

𝑢(𝑥, 𝑡) =
𝑙∑︁

𝑝=0

|𝑥|−𝑝−1𝐹𝑝(𝑥, 𝑡) + 𝐹 (𝑥, 𝑡), (1.69)

where

(i) the function 𝐹 (𝑥, 𝑡) satisfies the a priori estimate

|𝐹 (𝑥, 𝑡)| ≤ 𝐶‖𝑓‖𝐶(Ω0), (𝑥, 𝑡) ∈ Ω0

with a constant 𝐶 independent of 𝑓 ;

(ii) the functions 𝐹𝑝, 𝑝 = 0, . . . , 𝑙 satisfy the equalities

𝐹𝑝(𝑥, 𝑡) =

[(𝑙−𝑝)/2]∑︁
𝑘=0

2𝑝+4𝑘+1∑︁
𝑠=1

𝜇𝑝+2𝑘
𝑘,𝑠 𝐹 𝑝+2𝑘

𝑘,𝑠 (𝑥, 𝑡),

where

𝐹 𝑛
𝑘,𝑠(𝑥, 𝑡) = 22𝑘−𝑛+1𝛾𝑛𝑘𝑎

𝑛
𝑘𝛼

𝑛
𝑛−2𝑘 2𝐹1

(︂
𝑛− 𝑘 +

1

2
,−𝑘, 1

2
;
𝑡2

|𝑥|2

)︂
𝑌 𝑠
𝑛 (𝑥),

and the constants 𝛾𝑛𝑘 , 𝑎
𝑛
𝑘 , 𝛼

𝑛
𝑘 are given by (1.14), (1.20), (1.27) respectively ;

(iii) if at least one of the constants 𝜇𝑝+2𝑘
𝑘,𝑠 in (1.7) is different from

zero, then for the corresponding function 𝐹𝑝(𝑥, 𝑡) there exists a direction
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(𝛼, 1) := (𝛼1, 𝛼2, 𝛼3, 1) with (𝛼, 1) 𝑡 ∈ Σ0
2 for 0 < 𝑡 < 1/2, such that

lim
𝑡→+0

𝐹𝑝(𝛼𝑡, 𝑡) = const ̸= 0.

This means that the order of singularity of 𝑢(𝑥, 𝑡) will be no smaller than

𝑝+ 1.

To obtain this result, we use Corollary 1.5.1 and Lemma 1.7.1.

Remark 1.7.1. Using (1.14) we see that the hypergeometric functions

2𝐹1

(︀
𝑛− 𝑘 + 1/2,−𝑘, 1/2; 𝑡2/|𝑥|2

)︀
are connected with ℰ𝑛

𝑘 (|𝑥|, 𝑡) in Ω0 in

the following way :

2𝐹1

(︂
𝑛− 𝑘 +

1

2
,−𝑘, 1

2
;
𝑡2

|𝑥|2

)︂
= 𝛾𝑛𝑘

(2|𝑥|)𝑛−2𝑘+1

(|𝑥|2 − 𝑡2)𝑛−2𝑘
ℰ𝑛
𝑘 (|𝑥|, 𝑡).

Consequently,

𝑣𝑛𝑘,𝑠(𝑥, 𝑡) = 𝐾 𝐹 𝑛
𝑘,𝑠(𝑥, 𝑡)

(|𝑥|2 − 𝑡2)𝑛−2𝑘

|𝑥|𝑛−2𝑘+1
, (𝑥, 𝑡) ∈ Ω0

with 𝐾 = const ̸= 0.
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Keldysh-type equations

In this chapter we study the case 0 < 𝑚 < 2, when equation (0.1) is weakly

hyperbolic. For 0 < 𝑚 < 4/3 we derive some results on the generalized

solvability of the considered boundary value problem, as well as we clarify

the asymptotic behavior of the singularities of the generalized solutions. An

essential part of this investigation we have published in [14], [15], [36], [37]

and [31].

2.1. Statement of the problem

For 𝑚 ∈ R, 0 < 𝑚 < 2 consider the equation

𝐿𝑚[𝑢] ≡ 𝑢𝑥1𝑥1
+ 𝑢𝑥2𝑥2

+ 𝑢𝑥3𝑥3
− (𝑡𝑚𝑢𝑡)𝑡 = 𝑓(𝑥, 𝑡) (2.1)

in the domain

Ω𝑚 :=

{︂
(𝑥, 𝑡) : 0 < 𝑡 < 𝑡0,

2

2−𝑚
𝑡
2−𝑚
2 < |𝑥| < 1− 2

2−𝑚
𝑡
2−𝑚
2

}︂
,
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with 𝑡0 =
(︀
(2 − 𝑚)/4

)︀2/(2−𝑚). The region Ω𝑚 is bounded by the ball Σ0

and by two characteristic surfaces of equation (2.1)

Σ𝑚
1 :=

{︂
(𝑥, 𝑡) : 0 < 𝑡 < 𝑡0, |𝑥| = 1− 2

2−𝑚
𝑡
2−𝑚
2

}︂
,

Σ𝑚
2 :=

{︂
(𝑥, 𝑡) : 0 < 𝑡 < 𝑡0, |𝑥| =

2

2−𝑚
𝑡
2−𝑚
2

}︂
,

(see Fig. 2.1).

Figure 2.1.: The region Ω𝑚.

Note that the hyperplane {𝑡 = 0} is tangential to the characteristics

Σ𝑚
1 and Σ𝑚

2 and the ball Σ0 is also a characteristic surface of equation (2.1).

We study the following boundary value problem:

Problem Pm. Find a solution to equation (2.1) in Ω𝑚 which satisfies the
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2. The Protter problem for Keldysh-type equations

boundary conditions

𝑢|Σ𝑚
1
= 0, 𝑡𝑚𝑢𝑡 → 0 as 𝑡→ +0. (2.2)

The adjoint problem to 𝑃𝑚 is as follows:

Problem P*
m. Find a solution to the self-adjoint equation (2.1) in Ω𝑚

which satisfies the boundary conditions

𝑢|Σ𝑚
2
= 0, 𝑡𝑚𝑢𝑡 → 0 as 𝑡→ +0. (2.3)

Note that there is no data on the degenerate boundary Σ0. Instead,

the derivative 𝑢𝑡 is allowed to have singularity on it up to the prescribed

level.

2.2. Generalized solvability of Problem Pm and

asymptotic behavior of the singularities of the

generalized solutions

Similarly to Problem 𝑃0, Problem 𝑃𝑚 is not well posed, because its adjoint

homogeneous Problem 𝑃 *
𝑚 has infinitely many nontrivial classical solutions.

Indeed, for 𝑘, 𝑛 ∈ N ∪ {0} let us introduce the functions

ℰ𝑛,𝑚
𝑘 (|𝑥|, 𝑡) :=

𝑘∑︁
𝑖=0

𝐴𝑘,𝑚
𝑖 |𝑥|−𝑛+2𝑖−1

(︂
|𝑥|2 − 4

(2−𝑚)2
𝑡2−𝑚

)︂𝑛−𝑘−𝑖− 𝑚
2(2−𝑚)

(2.4)
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with

𝐴𝑘,𝑚
𝑖 := (−1)𝑖

(𝑘 − 𝑖+ 1)𝑖(𝑛− 𝑘 − 𝑖+ (4− 3𝑚)/(4− 2𝑚))𝑖
𝑖!(𝑛+ 1/2− 𝑖)𝑖

.

Then the following lemma holds:

Lemma 2.2.1. For all 𝑚 ∈ R, 0 < 𝑚 < 2, 𝑘, 𝑛 ∈ N ∪ {0},

𝑛 > 𝑁(𝑚, 𝑘) := 2𝑘+1+𝑚/(2−𝑚) and 𝑠 = 1, 2, . . . , 2𝑛+1, the functions

𝑣𝑛,𝑚𝑘,𝑠 (𝑥, 𝑡) :=

⎧⎪⎨⎪⎩
ℰ𝑛,𝑚
𝑘 (|𝑥|, 𝑡)𝑌 𝑠

𝑛 (𝑥), (𝑥, 𝑡) ̸= 𝑂,

0, (𝑥, 𝑡) = 𝑂

(2.5)

are classical solutions from 𝐶2(Ω𝑚) ∩ 𝐶(Ω̄𝑚) of the homogeneous Problem

𝑃 *
𝑚.

Proof. First, we have obviously that 𝑣𝑛,𝑚𝑘,𝑠 (𝑥, 𝑡) ∈ 𝐶∞(Ω𝑚).

For 𝑛 > 𝑁(𝑚, 𝑘) we see that ℰ𝑛,𝑚
𝑘 (|𝑥|, 𝑡) → 0 as (𝑥, 𝑡) → 𝑂. Therefore

𝑣𝑛,𝑚𝑘,𝑠 (𝑥, 𝑡) ∈ 𝐶∞(Ω𝑚) ∩ 𝐶(Ω̄𝑚).

It is easy to check that for 𝑛 > 𝑁(𝑚, 𝑘) the boundary conditions (2.3)

are also satisfied.

Now, let us look for solutions of the homogeneous Problem 𝑃 *
𝑚 of the

form (2.5). Passing to the spherical coordinates (1.8) in the homogeneous

equation (2.1) and using that the spherical functions satisfy the differential

equation

1

sin 𝜃

𝜕

𝜕𝜃

(︂
sin 𝜃

𝜕

𝜕𝜃
𝑌 𝑠
𝑛

)︂
+

1

sin2 𝜃

𝜕2

𝜕𝜙2
𝑌 𝑠
𝑛 + 𝑛(𝑛+ 1)𝑌 𝑠

𝑛 = 0, (2.6)
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we see that the functions ℰ𝑛,𝑚
𝑘 should be solutions of the equation

𝑣𝑟𝑟 +
2

𝑟
𝑣𝑟 − (𝑡𝑚𝑣𝑡)𝑡 −

𝑛(𝑛+ 1)

𝑟2
𝑣 = 0 (2.7)

in

𝐺𝑚 :=

{︂
(𝑟, 𝑡) : 0 < 𝑡 < 𝑡0,

2

2−𝑚
𝑡
2−𝑚
2 < 𝑟 < 1− 2

2−𝑚
𝑡
2−𝑚
2

}︂
.

A direct calculation of the derivatives of ℰ𝑛,𝑚
𝑘 (𝑟, 𝑡) shows that these functions

indeed satisfy equation (2.7).

The proof is complete. �

Consequently, a necessary condition for the existence of a classical so-

lution of Problem 𝑃𝑚 is the orthogonality of the right-hand side function

𝑓(𝑥, 𝑡) to all these functions 𝑣𝑛,𝑚𝑘,𝑠 (𝑥, 𝑡). Respectively, an infinite number of

orthogonality conditions 𝜇𝑛,𝑚𝑘,𝑠 = 0 with

𝜇𝑛,𝑚𝑘,𝑠 :=

∫︁
Ω𝑚

𝑣𝑛,𝑚𝑘,𝑠 (𝑥, 𝑡)𝑓(𝑥, 𝑡) 𝑑𝑥𝑑𝑡 (2.8)

must be fulfilled.

According to this situation, we consider solutions to this problem in

a generalized sense. We focus on the case 0 < 𝑚 < 4/3 and we use the

following definition of a generalized solution of Problem 𝑃𝑚:

Definition 2.2.1. We call a function 𝑢(𝑥, 𝑡) a generalized solution of Prob-

lem 𝑃𝑚 in Ω𝑚, 0 < 𝑚 < 4/3, for equation (2.1) if :

(1) 𝑢, 𝑢𝑥𝑗
∈ 𝐶(Ω̄𝑚 ∖𝑂), 𝑗 = 1, 2, 3, 𝑢𝑡 ∈ 𝐶(Ω̄𝑚 ∖ Σ̄0);
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(2) 𝑢|Σ𝑚
1
= 0;

(3) for each 𝜀 ∈ (0, 1) there exists a constant 𝐶(𝜀) > 0, such that

|𝑢𝑡(𝑥, 𝑡)| ≤ 𝐶(𝜀)𝑡−
3𝑚
4 in Ω𝑚 ∩ {|𝑥| > 𝜀} ; (2.9)

(4) the identity∫︁
Ω𝑚

{𝑡𝑚𝑢𝑡𝑣𝑡 − 𝑢𝑥1
𝑣𝑥1

− 𝑢𝑥2
𝑣𝑥2

− 𝑢𝑥3
𝑣𝑥3

− 𝑓𝑣} 𝑑𝑥𝑑𝑡 = 0 (2.10)

holds for all 𝑣 from

𝑉𝑚 :=
{︁
𝑣(𝑥, 𝑡) : 𝑣 ∈ 𝐶2(Ω̄𝑚), 𝑣|Σ𝑚

2
= 0, 𝑣 ≡ 0 𝑖𝑛 𝑎 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑜𝑓 𝑂

}︁
.

We mention that the inequality (2.9) restricts the generalized solution’s

function space to a class which is smaller than it is allowed by the second

boundary condition in (2.2).

In this paper we will prove the following results on the existence and

uniqueness of a generalized solution of Problem 𝑃𝑚:

Theorem 2.2.1. If 𝑚 ∈ (0, 4/3), then there exists at most one generalized

solution of Problem 𝑃𝑚 in Ω𝑚.

Theorem 2.2.2. Let 𝑚 ∈ (0, 4/3). Suppose that the right-hand side func-

tion 𝑓(𝑥, 𝑡) is of the form (1.4) and 𝑓 ∈ 𝐶1(Ω̄𝑚). Then there exists an

unique generalized solution 𝑢(𝑥, 𝑡) of Problem 𝑃𝑚 in Ω𝑚 and it has the

form (1.5).

The proof of Theorems 2.2.1-2.2.2 will be given Section 2.6.
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We mention also that Definition 2.2.1 allows the generalized solutions

to have some singularity at the point 𝑂. Indeed there exist such singular

solutions to this problem and we will prove the following theorem describing

their asymptotic behavior:

Theorem 2.2.3. Let 𝑚 ∈ (0, 43) and the right-hand side function 𝑓 ∈

𝐶1(Ω̄𝑚) has the form (1.4). Then the unique generalized solution 𝑢(𝑥, 𝑡) of

Problem 𝑃𝑚 has the following expansion at the point 𝑂:

𝑢(𝑥, 𝑡) =
𝑙∑︁

𝑝=0

𝐹𝑚
𝑝 (𝑥, 𝑡)|𝑥|−𝑝−1 + 𝐹 (𝑚)(𝑥, 𝑡)|𝑥|−1, (2.11)

where

(i) the function 𝐹 (𝑚)(𝑥, 𝑡) ∈ 𝐶(Ω̄𝑚), 𝐹 (𝑚)(𝑂) = 0 and in the case

0 < 𝑚 < 1 it satisfies in Ω𝑚 the a priori estimate

|𝐹 (𝑚)(𝑥, 𝑡)| ≤ 𝐶‖𝑓‖𝐶(Ω𝑚)|𝑥|1−𝛽
(︀
1 +

⃒⃒
ln |𝑥|

⃒⃒)︀
, 𝛽 =

𝑚

2(2−𝑚)
, (2.12)

with a constant 𝐶 > 0 independent of 𝑓 ;

(ii) the functions 𝐹𝑚
𝑝 (𝑥, 𝑡), 𝑝 = 0, . . . , 𝑙 have the following structure

𝐹𝑚
𝑝 (𝑥, 𝑡) =

[(𝑙−𝑝)/2]∑︁
𝑘=0

2𝑝+4𝑘+1∑︁
𝑠=1

𝑐𝑝+2𝑘,𝑚
𝑘 𝜇𝑝+2𝑘,𝑚

𝑘,𝑠 𝐻𝑝+2𝑘,𝑚
𝑘,𝑠 (𝑥, 𝑡), (2.13)

where 𝑐𝑝+2𝑘,𝑚
𝑘 ̸= 0 are constants independent of 𝑓(𝑥, 𝑡) and

𝐻𝑛,𝑚
𝑘,𝑠 (𝑥, 𝑡) = 2𝐹1

(︂
𝑛− 𝑘 +

1

2
,−𝑘, 1

2−𝑚
;

4𝑡2−𝑚

(2−𝑚)2 |𝑥|2

)︂
𝑌 𝑠
𝑛 (𝑥);
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(iii) if at least one of the constants 𝜇𝑝+2𝑘,𝑚
𝑘,𝑠 in (2.13) is different from

zero, then for the corresponding function 𝐹𝑚
𝑝 (𝑥, 𝑡) there exists a vector 𝛼 ∈

R3, |𝛼| = 1, such that

lim
𝑡→+0

𝐹𝑚
𝑝 (𝜎(𝑡), 𝑡) = const ̸= 0,

where

(𝜎(𝑡), 𝑡) :=

(︂
2

2−𝑚
𝛼𝑡

2−𝑚
2 , 𝑡

)︂
∈ Σ𝑚

2 , 0 < 𝑡 < 𝑡0.

This means that the order of singularity of 𝑢(𝑥, 𝑡) will be no smaller than

𝑝+ 1.

Remark 2.2.1. In the case 1 ≤ 𝑚 < 4/3 we prove that the estimate (2.12)

holds at least in the subset

Ω𝑚 ∩
{︂
|𝑥| < 6

2−𝑚
𝑡
2−𝑚
2

}︂
.

Remark 2.2.2. The functions 𝐻𝑛,𝑚
𝑘,𝑠 (𝑥, 𝑡) are connected with 𝑣𝑛,𝑚𝑘,𝑠 (𝑥, 𝑡) for

(𝑥, 𝑡) ̸= 𝑂 by the relation

𝑣𝑛,𝑚𝑘,𝑠 (𝑥, 𝑡) = 𝐾𝑚𝐻
𝑛,𝑚
𝑘,𝑠 (𝑥, 𝑡) |𝑥|2𝑘−𝑛−1

(︂
|𝑥|2 − 4

(2−𝑚)2
𝑡2−𝑚

)︂𝑛−2𝑘− 𝑚
2(2−𝑚)

,

where

𝐾𝑚 = const =
(−1)𝑘

(︀
1

2−𝑚

)︀
𝑘

(1/2− 𝑛)𝑘
̸= 0.

To confirm the assertions in Theorem 2.2.3 from here on we will study

a two-dimensional problem related to Problem 𝑃𝑚.
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2.3. Two-dimensional problem corresponding to

Problem Pm

In the case when the right-side function 𝑓(𝑥, 𝑡) is of the form (1.4) Problem

𝑃𝑚 can be reduced to a two-dimensional problem.

To do this, let us look for a solution of the form (1.5). Passing to the

spherical coordinates (1.8) and using that the spherical functions satisfy the

differential equation (2.6), for the coefficients 𝑢𝑠𝑛(𝑟, 𝑡) corresponding to the

right-hand sides 𝑓 𝑠𝑛(𝑟, 𝑡) we obtain the 2-D equation

𝑢𝑟𝑟 +
2

𝑟
𝑢𝑟 − (𝑡𝑚𝑢𝑡)𝑡 −

𝑛(𝑛+ 1)

𝑟2
𝑢 = 𝑓(𝑟, 𝑡).

Then using the characteristic coordinates

𝜉 = 1− 𝑟 − 2

2−𝑚
𝑡
2−𝑚
2 , 𝜂 = 1− 𝑟 +

2

2−𝑚
𝑡
2−𝑚
2 , (2.14)

for the functions

𝑈(𝜉, 𝜂) := 𝑟(𝜉, 𝜂)𝑢𝑠𝑛
(︀
𝑟(𝜉, 𝜂), 𝑡(𝜉, 𝜂)

)︀
we obtain the following Darboux-Goursat problem:

Problem Pm2. Find a solution of the equation

𝐸𝛽[𝑈 ] ≡ 𝑈𝜉𝜂 +
𝛽

𝜂 − 𝜉
(𝑈𝜉 − 𝑈𝜂)−

𝑛(𝑛+ 1)

(2− 𝜉 − 𝜂)2
𝑈 = 𝐹 (𝜉, 𝜂) in 𝐷,

(2.15)
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satisfying the following boundary conditions

𝑈(0, 𝜂) = 0, lim
𝜂−𝜉→+0

(𝜂 − 𝜉)2𝛽
(︁
𝑈𝜉 − 𝑈𝜂

)︁
= 0, (2.16)

where

𝐷 := {(𝜉, 𝜂) : 0 < 𝜉 < 𝜂 < 1},

𝐹 (𝜉, 𝜂) :=
1

8
(2− 𝜉 − 𝜂)𝑓 𝑠𝑛(𝑟(𝜉, 𝜂), 𝑡(𝜉, 𝜂)), (2.17)

and

𝛽 :=
𝑚

2(2−𝑚)
.

Remark 2.3.1. As far as we consider Problem 𝑃𝑚 in the case 𝑚 ∈ (0, 4/3),

for the parameter 𝛽 we have

0 < 𝛽 < 1.

Directly from Lemma 2.2.1, with use of (A.4) and (A.16), we find that

for 𝑘 = 0, 1, . . . , [𝑛/2]− 1 the functions

𝐸𝑛,𝛽
𝑘 (𝜉, 𝜂) :=⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1− 𝜉)𝑛−2𝑘−𝛽(1− 𝜂)𝑛−2𝑘−𝛽

(2− 𝜉 − 𝜂)𝑛−2𝑘 2𝐹1

(︂
𝑛− 𝑘 +

1

2
, − 𝑘,

1

2
+ 𝛽;

(𝜂 − 𝜉)2

(2− 𝜉 − 𝜂)2

)︂
,

(𝜉, 𝜂) ̸= (1, 1),

0, (𝜉, 𝜂) = (1, 1)

(2.18)
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solve the corresponding adjoint homogeneous problem

𝐸𝛽[𝑈 ] = 0 in 𝐷,

𝑈(𝜉, 1) = 0, lim
𝜂−𝜉→+0

(𝜂 − 𝜉)2𝛽
(︁
𝑈𝜉 − 𝑈𝜂

)︁
= 0.

The functions 𝐸𝑛,𝛽
𝑘 (𝜉, 𝜂) are connected with the functions ℰ𝑛,𝑚

𝑘 (|𝑥|, 𝑡) by

the relation

𝐸𝑛,𝛽
𝑘 (𝜉, 𝜂) = 𝛾𝑛,𝛽𝑘 (2− 𝜉 − 𝜂)ℰ𝑛,𝑚

𝑘 (𝑟(𝜉, 𝜂), 𝑡(𝜉, 𝜂)),

𝛾𝑛,𝛽𝑘 :=
(−1)𝑘 (1/2− 𝑛)𝑘
2𝑛−2𝑘+1 (1/2 + 𝛽)𝑘

.

In conformity with Definition 2.2.1, we define a generalized solution of

Problem 𝑃𝑚2 in the following way:

Definition 2.3.1. We call a function 𝑈(𝜉, 𝜂) a generalized solution of Prob-

lem 𝑃𝑚2 in 𝐷, (0 < 𝛽 < 1), if:

(1) 𝑈, 𝑈𝜉 + 𝑈𝜂 ∈ 𝐶(𝐷̄ ∖ (1, 1)) , 𝑈𝜉 − 𝑈𝜂 ∈ 𝐶(𝐷̄ ∖ {𝜂 = 𝜉});

(2) 𝑈(0, 𝜂) = 0;

(3) for each 𝜀 ∈ (0, 1) there exists a constant 𝐶(𝜀) > 0, such that

|(𝑈𝜉 − 𝑈𝜂)(𝜉, 𝜂)| ≤ 𝐶(𝜀)(𝜂 − 𝜉)−𝛽 in 𝐷 ∩ {𝜉 < 1− 𝜀}; (2.19)

(4) the identity∫︁
𝐷

(𝜂 − 𝜉)2𝛽
{︂
𝑈𝜉𝑉𝜂 + 𝑈𝜂𝑉𝜉 +

2𝑛(𝑛+ 1)

(2− 𝜉 − 𝜂)2
𝑈𝑉 + 2𝐹𝑉

}︂
𝑑𝜉 𝑑𝜂 = 0 (2.20)
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holds for all

𝑉 ∈ 𝑉 (2) := {𝑉 (𝜉, 𝜂) : 𝑉 ∈ 𝐶2(𝐷̄), 𝑉 (𝜉, 1) = 0,

𝑉 ≡ 0 𝑖𝑛 𝑎 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑜𝑓 (1, 1)}.

2.4. Riemann-Hadamard function associated to

Problem Pm2

Using a Riemann-Hadamard function associated to Problem 𝑃𝑚2, we give

an explicit integral representation of the generalized solution 𝑈(𝜉, 𝜂). The

Riemann-Hadarmard function can be represented in the following way:

Ψ(𝜉, 𝜂; 𝜉0, 𝜂0) =

⎧⎪⎨⎪⎩
Ψ+(𝜉, 𝜂; 𝜉0, 𝜂0), 𝜂 > 𝜉0,

Ψ−(𝜉, 𝜂; 𝜉0, 𝜂0), 𝜂 < 𝜉0,

(2.21)

where

Ψ+(𝜉, 𝜂; 𝜉0, 𝜂0) :=

(︂
𝜂 − 𝜉

𝜂0 − 𝜉0

)︂𝛽

𝐹3(𝛽, 𝑛+ 1, 1− 𝛽,−𝑛, 1;𝑋, 𝑌 ),

Ψ−(𝜉, 𝜂; 𝜉0, 𝜂0) := 𝛾

(︂
𝜂 − 𝜉

𝜂0 − 𝜉0

)︂𝛽

𝑋−𝛽𝐻2

(︂
𝛽, 𝛽,−𝑛, 𝑛+ 1, 2𝛽;

1

𝑋
,−𝑌

)︂
,

(2.22)

𝑋 = 𝑋(𝜉, 𝜂; 𝜉0, 𝜂0) :=
(𝜉0 − 𝜉)(𝜂0 − 𝜂)

(𝜂 − 𝜉)(𝜂0 − 𝜉0)
, (2.23)

𝑌 = 𝑌 (𝜉, 𝜂; 𝜉0, 𝜂0) :=
−(𝜉0 − 𝜉)(𝜂0 − 𝜂)

(2− 𝜉 − 𝜂)(2− 𝜉0 − 𝜂0)
, (2.24)

𝛾 =
Γ(𝛽)

Γ(1− 𝛽)Γ(2𝛽)
.
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Here 𝐹3(𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐;𝑥, 𝑦) is the Appell series (A.21) which, in the

general case, converges absolutely for |𝑥| < 1, |𝑦| < 1 and𝐻2(𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐;

𝑥, 𝑦) is the Horn series (A.22) which in the general case converges absolutely

for |𝑥| < 1, |𝑦|(1 + |𝑥|) < 1. For basic information on the Appell and the

Horn series, see [5], pp. 220 - 228.

We mention however that in our particular case in the series (A.21)-

(A.22) we have finite sums with respect to 𝑖, because 𝑛 ∈ N ∪ {0}. More

precisely, as it will be seen further (Lemma 2.4.1), these series involve a

finite number of hypergeometric series 2𝐹1(𝑎, 𝑏, 𝑐;𝑥). Consequently, in our

case we have an absolute convergence for |𝑦| <∞ and |𝑥| < 1.

Remark 2.4.1. The function Ψ(𝜉, 𝜂; 𝜉0, 𝜂0) is closely connected to the

Riemann-Hadamard function announced in [51] (p. 25, example 7 ), which

is associated to a Cauchy-Goursat problem for an equation connected with

(2.15) with some appropriate substitutions.

According to Gellerstedt [13] and the results of Nakhushev mentioned

in the book of Smirnov [49], for (𝜉0, 𝜂0) ∈ 𝐷 the Riemann-Hadamard func-

tion Ψ(𝜉, 𝜂; 𝜉0, 𝜂0) should have the following main properties:

(i) The function Ψ as a function of (𝜉0, 𝜂0) satisfies

𝜕2Ψ

𝜕𝜉0𝜕𝜂0
+

𝛽

𝜂0 − 𝜉0

(︂
𝜕Ψ

𝜕𝜉0
− 𝜕Ψ

𝜕𝜂0

)︂
− 𝑛(𝑛+ 1)

(2− 𝜉0 − 𝜂0)2
Ψ = 0 (2.25)

and with respect to the first pair of variables (𝜉, 𝜂)

𝜕2Ψ

𝜕𝜉𝜕𝜂
− 𝜕

𝜕𝜉

(︂
𝛽Ψ

𝜂 − 𝜉

)︂
+

𝜕

𝜕𝜂

(︂
𝛽Ψ

𝜂 − 𝜉

)︂
− 𝑛(𝑛+ 1)

(2− 𝜉 − 𝜂)2
Ψ = 0 (2.26)
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for 0 < 𝜉 < 𝜉0, 𝜉 < 𝜂 < 𝜂0, 𝜂 ̸= 𝜉0;

(ii) Ψ+(𝜉0, 𝜂0; 𝜉0, 𝜂0) = 1;

(iii) Ψ+(𝜉, 𝜂0; 𝜉0, 𝜂0) =

(︂
𝜂0 − 𝜉

𝜂0 − 𝜉0

)︂𝛽

;

(iv) Ψ+(𝜉0, 𝜂; 𝜉0, 𝜂0) =

(︂
𝜂 − 𝜉0
𝜂0 − 𝜉0

)︂𝛽

;

(v) Ψ− vanishes on the line {𝜂 = 𝜉} of power 2𝛽;

(vi) the jump of the function Ψ on the line {𝜂 = 𝜉0} is

[[Ψ]] := lim
𝛿→+0

{Ψ−(𝜉, 𝜉0 − 𝛿; 𝜉0, 𝜂0)−Ψ+(𝜉, 𝜉0 + 𝛿; 𝜉0, 𝜂0)}

= cos 𝜋𝛽 lim
𝛿→+0

{Ψ+(𝜉, 𝜉0 + 𝛿; 𝜉0, 𝜉0 + 𝛿)Ψ+(𝜉0, 𝜉0 + 𝛿; 𝜉0, 𝜂0)}

= cos 𝜋𝛽

(︂
𝜉0 − 𝜉

𝜂0 − 𝜉0

)︂𝛽

.

The series Ψ+(𝜉, 𝜂; 𝜉0, 𝜂0) at the points where it converges coincides

with the Riemann function for equation (2.15).

These properties will be justified below, but before this we will give a

special decomposition of the function Ψ(𝜉, 𝜂; 𝜉0, 𝜂0), which will be useful for

our further considerations.

Define the functions

𝐻(𝜉, 𝜂; 𝜉0, 𝜂0) :=

⎧⎪⎨⎪⎩
𝐻+(𝜉, 𝜂; 𝜉0, 𝜂0), 𝜂 > 𝜉0,

𝐻−(𝜉, 𝜂; 𝜉0, 𝜂0), 𝜂 < 𝜉0,

(2.27)
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where

𝐻+(𝜉, 𝜂; 𝜉0, 𝜂0) :=

(︂
𝜂 − 𝜉

𝜂0 − 𝜉0

)︂𝛽

2𝐹1(𝛽, 1− 𝛽, 1;𝑋), (2.28)

𝐻−(𝜉, 𝜂; 𝜉0, 𝜂0) := 𝛾

(︂
𝜂 − 𝜉

𝜂0 − 𝜉0

)︂𝛽

𝑋−𝛽
2𝐹1

(︂
𝛽, 𝛽, 2𝛽;

1

𝑋

)︂
(2.29)

and

𝐺(𝜉, 𝜂; 𝜉0, 𝜂0) :=

⎧⎪⎨⎪⎩
𝐺+(𝜉, 𝜂; 𝜉0, 𝜂0), 𝜂 > 𝜉0,

𝐺−(𝜉, 𝜂; 𝜉0, 𝜂0), 𝜂 < 𝜉0,

(2.30)

where

𝐺+(𝜉, 𝜂; 𝜉0, 𝜂0) :=

(︂
𝜂 − 𝜉

𝜂0 − 𝜉0

)︂𝛽 𝑛∑︁
𝑖=1

𝑐𝑖𝑌
𝑖
2𝐹1(𝛽, 1− 𝛽, 𝑖+ 1;𝑋), (2.31)

𝐺−(𝜉, 𝜂; 𝜉0, 𝜂0) := 𝛾

(︂
𝜂 − 𝜉

𝜂0 − 𝜉0

)︂𝛽

𝑋−𝛽
𝑛∑︁

𝑖=1

𝑑𝑖𝑌
𝑖
2𝐹1

(︂
𝛽 − 𝑖, 𝛽, 2𝛽;

1

𝑋

)︂
,

(2.32)

𝑐𝑖 :=
(𝑛+ 1)𝑖(−𝑛)𝑖

𝑖! 𝑖!
, 𝑑𝑖 :=

(𝑛+ 1)𝑖(−𝑛)𝑖
(1− 𝛽)𝑖 𝑖!

. (2.33)

Actually, the function 𝐻(𝜉, 𝜂; 𝜉0, 𝜂0) is the Riemann-Hadamard func-

tion associated to Problem 𝑃𝑚2 in the case 𝑛 = 0 (see Gellerstedt [13] and

M. Smirnov [49]).

Lemma 2.4.1. For (𝜉0, 𝜂0) ∈ 𝐷 and 0 < 𝜉 < 𝜉0, 𝜉 < 𝜂 < 𝜂0, 𝜂 ̸= 𝜉0 the

function Ψ(𝜉, 𝜂; 𝜉0, 𝜂0) has the following decomposition

Ψ(𝜉, 𝜂; 𝜉0, 𝜂0) = 𝐻(𝜉, 𝜂; 𝜉0, 𝜂0) +𝐺(𝜉, 𝜂; 𝜉0, 𝜂0). (2.34)
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Proof. For (𝜉0, 𝜂0) ∈ 𝐷 and 0 < 𝜉 < 𝜉0, 𝜉 < 𝜂 < 𝜂0, 𝜂 ̸= 𝜉0 we have

|𝑌 | <∞, |𝑋| < 1 if 𝜂 > 𝜉0 and |1/𝑋| < 1 if 𝜂 < 𝜉0, therefore the functions

𝐻(𝜉, 𝜂; 𝜉0, 𝜂0) and 𝐺(𝜉, 𝜂; 𝜉0, 𝜂0) are well defined.

In view of (A.21) we have

𝐹3(𝛽, 𝑛+1, 1− 𝛽,−𝑛, 1;𝑋, 𝑌 ) =
𝑛∑︁

𝑖=0

∞∑︁
𝑗=0

(𝛽)𝑗(1− 𝛽)𝑗(𝑛+ 1)𝑖(−𝑛)𝑖
(1)𝑖+𝑗 𝑖! 𝑗!

𝑋𝑗𝑌 𝑖.

Since (1)𝑖+𝑗 = (𝑖+ 𝑗)! = 𝑖! (𝑖+1)𝑗 for 𝑖, 𝑗 ∈ N∪{0}, we obtain from (2.22)

Ψ+(𝜉, 𝜂; 𝜉0, 𝜂0) = 𝐻+(𝜉, 𝜂; 𝜉0, 𝜂0) +𝐺+(𝜉, 𝜂; 𝜉0, 𝜂0).

Next, in view of (A.22) we have

𝐻2

(︂
𝛽, 𝛽,−𝑛, 𝑛+ 1, 2𝛽;

1

𝑋
, 𝑌

)︂
:=

𝑛∑︁
𝑖=0

∞∑︁
𝑗=0

(𝛽)𝑗−𝑖(𝛽)𝑗(−𝑛)𝑖(1− 𝑛)𝑖
(2𝛽)𝑗𝑖!𝑗!

𝑋−𝑗(−𝑌 )𝑖.

For 0 < 𝛽 < 1 and 𝑖, 𝑗 ∈ N ∪ {0} we have

(𝛽)𝑗−𝑖 =
Γ(𝛽 + 𝑗 − 𝑖)

Γ(𝛽)
=

Γ(𝛽 − 𝑖)

Γ(𝛽)
(𝛽 − 𝑖)𝑗.

Using this and also the relation Γ(𝑧)Γ(1− 𝑧) = 𝜋/ sin 𝜋𝑧 we calculate

(𝛽)𝑗−𝑖(1− 𝛽)𝑖 = (𝛽 − 𝑖)𝑗
Γ(𝛽 − 𝑖)Γ(1− 𝛽 + 𝑖)

Γ(𝛽)Γ(1− 𝛽)

= (𝛽 − 𝑖)𝑗
sin 𝛽𝜋

sin(𝛽 − 𝑖)𝜋
= (−1)𝑖(𝛽 − 𝑖)𝑗.
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Then from (2.22) it follows

Ψ−(𝜉, 𝜂; 𝜉0, 𝜂0) = 𝐻−(𝜉, 𝜂; 𝜉0, 𝜂0) +𝐺−(𝜉, 𝜂; 𝜉0, 𝜂0),

which completes the proof. �

The properties (i)-(vi) of the function Ψ(𝜉, 𝜂; 𝜉0, 𝜂0) listed above can

be confirmed in the following way:

(i) Using the systems of differential equations that 𝐹3 and 𝐻2 satisfy

(see [5], p. 227 - 228) with straightforward calculation we check that the

function Ψ(𝜉, 𝜂; 𝜉0, 𝜂0) satisfies the equations (2.25) and (2.26).

(ii)-(iv) Since𝑋(𝜉0, 𝜂; 𝜉0, 𝜂0) = 𝑋(𝜉, 𝜂0; 𝜉0, 𝜂0) = 0 and 𝑌 (𝜉0, 𝜂; 𝜉0, 𝜂0) =

𝑌 (𝜉, 𝜂0; 𝜉0, 𝜂0) = 0 we see that the function Ψ(𝜉, 𝜂; 𝜉0, 𝜂0) has the properties

(ii), (iii) and (iv).

(v) The property (v) easily follows from the fact that on the line

{𝜂 = 𝜉} we have 1/𝑋 = 0.

(vi) Using (A.9), for 𝑖 ∈ N we calculate

𝑐𝑖 2𝐹1(𝛽, 1−𝛽, 𝑖+1; 1) = 𝛾 𝑑𝑖 2𝐹1(𝛽− 𝑖, 𝛽, 2𝛽; 1) =
(𝑛+ 1)𝑖(−𝑛)𝑖

𝑖Γ(1− 𝛽 + 𝑖)Γ(𝛽 + 𝑖)
.

Applying this into (2.31) and (2.32), we see that

𝐺+(𝜉, 𝜉0; 𝜉0, 𝜂0) = 𝐺−(𝜉, 𝜉0; 𝜉0, 𝜂0),

i.e. the function 𝐺(𝜉, 𝜂; 𝜉0, 𝜂0) has no jump on the line {𝜂 = 𝜉0}. Then,

in view of (2.34), we have [[Ψ]] = [[𝐻]]. It is well known that [[𝐻]] =
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cos 𝜋𝛽
(︁

𝜉0−𝜉
𝜂0−𝜉0

)︁𝛽
(see Gellerstedt [13]), which confirms the property (vi).

Remark 2.4.2. The Riemann-Hadamard function Φ(𝜉, 𝜂; 𝜉0, 𝜂0) associated

to Problem 𝑃02, which we introduced in Theorem 1.4.1, can be obtained as

Φ(𝜉, 𝜂; 𝜉0, 𝜂0) = lim
𝛽→0

Ψ(𝜉, 𝜂; 𝜉0, 𝜂0).

Indeed, using that 2𝐹1(0, 𝑏, 𝑐; 𝜁) = 1, we have that

Φ+(𝜉, 𝜂; 𝜉0, 𝜂0) = lim
𝛽→0

Ψ+(𝜉, 𝜂; 𝜉0, 𝜂0),

because

lim
𝛽→0

𝐻+(𝜉, 𝜂; 𝜉0, 𝜂0) = 1, lim
𝛽→0

𝐺+(𝜉, 𝜂; 𝜉0, 𝜂0) =
𝑛∑︁

𝑖=1

𝑐𝑖𝑌
𝑖.

Further, we have

Ψ−(𝜉, 𝜂; 𝜉0, 𝜂0) =

1

Γ(1− 𝛽)

(︂
𝜂 − 𝜉

𝜂0 − 𝜉0

)︂𝛽 𝑛∑︁
𝑖=0

𝑑𝑖𝑌
𝑖

∞∑︁
𝑗=0

(𝛽 − 𝑖)𝑗Γ(𝛽 + 𝑗)

Γ(2𝛽 + 𝑗) 𝑗!
𝑋−𝑗−𝛽 =

1

Γ(1− 𝛽)

(︂
𝜂 − 𝜉

𝜂0 − 𝜉0

)︂𝛽 𝑛∑︁
𝑖=0

𝑑𝑖𝑌
𝑖

[︃
Γ(𝛽)

Γ(2𝛽)
𝑋−𝛽 +

∞∑︁
𝑗=1

(𝛽 − 𝑖)𝑗Γ(𝛽 + 𝑗)

Γ(2𝛽 + 𝑗) 𝑗!
𝑋−𝑗−𝛽

]︃
.

Using the well known relation Γ(2𝑧)Γ(1/2) = 22𝑧−1Γ(𝑧)Γ(𝑧+1/2), we have

lim
𝛽→0

Γ(𝛽)

Γ(2𝛽)
= lim

𝛽→0

Γ(1/2)Γ(𝛽)

22𝛽−1Γ(𝛽)Γ(𝛽 + 1/2)
= 2
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and consequently, with use of (A.11), we calculate

lim
𝛽→0

Ψ−(𝜉, 𝜂; 𝜉0, 𝜂0) =
𝑛∑︁

𝑖=0

𝑐𝑖𝑌
𝑖

[︃
2 +

∞∑︁
𝑗=1

(−𝑖)𝑗
𝑗!

𝑋−𝑗

]︃

=
𝑛∑︁

𝑖=0

𝑐𝑖𝑌
𝑖
[︀
1 + (1− 1/𝑋)𝑖

]︀
= 𝐹 (𝑛+ 1,−𝑛, 1;𝑌 ) + 𝐹 (𝑛+ 1,−𝑛, 1;𝑌 (1− 1/𝑋)) = Φ−(𝜉, 𝜂; 𝜉0, 𝜂0).

2.5. Estimates for integrals involving the

Riemann-Hadamard function

In order to prove an existence result for Problem 𝑃𝑚2 we need to obtain

a priori estimates for some integrals involving the function Ψ(𝜉, 𝜂; 𝜉0, 𝜂0).

First, we estimate the functions 𝐻(𝜉, 𝜂; 𝜉0, 𝜂0) and 𝐺(𝜉, 𝜂; 𝜉0, 𝜂0) and their

first derivatives.

Lemma 2.5.1. Let 0 < 𝛽 < 1 and (𝜉0, 𝜂0) ∈ 𝐷. Then there exists a

constant 𝐶𝐻 > 0 such that

|𝐻+(𝜉, 𝜂; 𝜉0, 𝜂0)| ≤ 𝐶𝐻(𝜂 − 𝜉0)
−𝛽, (2.35)

|𝐻+
𝜂0
(𝜉, 𝜂; 𝜉0, 𝜂0)| ≤ 𝐶𝐻

(𝜂 − 𝜉0)
−𝛽

𝜂0 − 𝜉0
(2.36)

for 0 < 𝜉 < 𝜉0, 𝜉0 < 𝜂 < 𝜂0 and

|𝐻−(𝜉, 𝜂; 𝜉0, 𝜂0)| ≤ 𝐶𝐻(𝜉0 − 𝜂)−𝛽, (2.37)

|𝐻−
𝜂0
(𝜉, 𝜂; 𝜉0, 𝜂0)| ≤ 𝐶𝐻

(𝜉0 − 𝜂)−𝛽

𝜂0 − 𝜂
(2.38)

64



2. The Protter problem for Keldysh-type equations

for 0 < 𝜉 < 𝜂 < 𝜉0.

Proof. First, using (A.6) we find that for each 𝛼 > 0 there exists a

constant 𝑐(𝛼) > 0 such that

|𝐻+(𝜉, 𝜂; 𝜉0, 𝜂0)| ≤ 𝑐(𝛼)
(𝜂 − 𝜉)𝛼+𝛽(𝜂0 − 𝜉0)

𝛼−𝛽

(𝜂 − 𝜉0)𝛼(𝜂0 − 𝜉)𝛼
,

|𝐻−(𝜉, 𝜂; 𝜉0, 𝜂0)| ≤ 𝑐(𝛼)
(𝜂 − 𝜉)2𝛽(𝜉0 − 𝜉)𝛼−𝛽(𝜂0 − 𝜂)𝛼−𝛽

(𝜂0 − 𝜉)𝛼(𝜉0 − 𝜂)𝛼
.

(2.39)

From here choosing 𝛼 = 𝛽 we obtain the estimates (2.35), (2.37).

Next, using (A.10) for the derivatives with respect to 𝜂0 we obtain

𝐻+
𝜂0
=

−𝛽
𝜂0 − 𝜉0

𝐻+ + 𝛽(1− 𝛽)

(︂
𝜂 − 𝜉

𝜂0 − 𝜉0

)︂𝛽

𝑋𝜂0 2𝐹1(1 + 𝛽, 2− 𝛽, 2;𝑋)

and

𝐻−
𝜂0
=

𝛽𝐻−

𝜂 − 𝜂0

+
𝛾𝛽(𝜂 − 𝜉)2𝛽

2(𝜉0 − 𝜉)𝛽(𝜂0 − 𝜂)𝛽

(︂
1

𝑋

)︂
𝜂0

2𝐹1

(︂
1 + 𝛽, 1 + 𝛽, 1 + 2𝛽;

1

𝑋

)︂
.

Now with use of (A.7) we obtain the estimates (2.36), (2.38). �

Lemma 2.5.2. Let 0 < 𝛽 < 1 and (𝜉0, 𝜂0) ∈ 𝐷. Then there exists a

constant 𝐶𝐺 > 0 such that

|𝐺+(𝜉, 𝜂; 𝜉0, 𝜂0)| ≤ 𝐶𝐺(𝜂0 − 𝜉0)
−𝛽, (2.40)⃒⃒⃒

𝐺+
𝜉0
(𝜉, 𝜂; 𝜉0, 𝜂0)

⃒⃒⃒
≤ 𝐶𝐺

(𝜂 − 𝜉0)
−𝛽

2− 𝜉0 − 𝜂0
, (2.41)⃒⃒

𝐺+
𝜂0
(𝜉, 𝜂, 𝜉0, 𝜂0)

⃒⃒
≤ 𝐶𝐺

(𝜂0 − 𝜉0)
−𝛽

2− 𝜉0 − 𝜂0
(2.42)

65



2. The Protter problem for Keldysh-type equations

for 0 < 𝜉 < 𝜉0, 𝜉0 < 𝜂 < 𝜂0 and

|𝐺−(𝜉, 𝜂; 𝜉0, 𝜂0)| ≤ 𝐶𝐺(2− 𝜉0 − 𝜂0)
−𝑛, (2.43)⃒⃒⃒

𝐺−
𝜉0
(𝜉, 𝜂; 𝜉0, 𝜂0)

⃒⃒⃒
≤ 𝐶𝐺

(𝜉0 − 𝜂)−𝛽

(2− 𝜉0 − 𝜂0)𝑛+1
, (2.44)

⃒⃒
𝐺−

𝜂0
(𝜉, 𝜂, 𝜉0, 𝜂0)

⃒⃒
≤ 𝐶𝐺

(𝜂0 − 𝜂)−𝛽

(2− 𝜉0 − 𝜂0)𝑛+1
(2.45)

for 0 < 𝜉 < 𝜂 < 𝜉0.

Proof. First, let 0 < 𝜉 < 𝜉0, 𝜉0 < 𝜂 < 𝜂0.

According to (A.8), for 𝑖 = 1, . . . , 𝑛 we have

| 2𝐹1(𝛽, 1− 𝛽, 𝑖+ 1;𝑋)| ≤ const.

Applying this in the expression (2.31) for 𝐺+(𝜉, 𝜂; 𝜉0, 𝜂0), we see that the

estimate (2.40) holds.

Now with use of (A.10) we calculate the first derivatives of𝐺+(𝜉, 𝜂; 𝜉0, 𝜂0):

𝐺+
𝜉0
=

(︂
𝜂 − 𝜉

𝜂0 − 𝜉0

)︂𝛽
{︃

𝑛∑︁
𝑖=1

𝑐𝑖

[︂
𝛽 𝑌 𝑖

𝜂0 − 𝜉0
+ 𝑖 𝑌 𝑖−1𝑌𝜉0

]︂
2𝐹1(𝛽, 1− 𝛽, 𝑖+ 1;𝑋)

+ 𝛽(1− 𝛽)
𝑛∑︁

𝑖=1

𝑐𝑖
𝑖+ 1

𝑌 𝑖𝑋𝜉0 2𝐹1(𝛽 + 1, 2− 𝛽, 𝑖+ 2;𝑋)

}︃
,

𝐺+
𝜂0
=

(︂
𝜂 − 𝜉

𝜂0 − 𝜉0

)︂𝛽
{︃

𝑛∑︁
𝑖=1

𝑐𝑖

[︂
− 𝛽 𝑌 𝑖

𝜂0 − 𝜉0
+ 𝑖 𝑌 𝑖−1𝑌𝜂0

]︂
2𝐹1(𝛽, 1− 𝛽, 𝑖+ 1;𝑋)

+ 𝛽(1− 𝛽)
𝑛∑︁

𝑖=1

𝑐𝑖
𝑖+ 1

𝑌 𝑖𝑋𝜂0 2𝐹1(𝛽 + 1, 2− 𝛽, 𝑖+ 2;𝑋)

}︃
.

According to (A.8) and (A.6) for the hypergeometric functions in the
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expressions for 𝐺+
𝜉0

and 𝐺+
𝜂0

we have

| 2𝐹1(𝛽 + 1, 2− 𝛽, 3;𝑋)| ≤ 𝑐(𝛼)

(︂
𝜂0 − 𝜉0
𝜂 − 𝜉0

)︂𝛼

, 𝛼 > 0,

| 2𝐹1(1 + 𝛽, 2− 𝛽, 𝑖+ 2;𝑋)| ≤ const, 𝑖 = 2, 3, . . . , 𝑛.

Using this and taking 𝛼 = 𝛽 we obtain the estimates (2.41) and (2.42).

Next, let 0 < 𝜉 < 𝜂 < 𝜉0.

According to (A.8) for 𝑖 = 1, . . . , 𝑛 we have

| 2𝐹1(𝛽 − 𝑖, 𝛽, 2𝛽; 1/𝑋)| ≤ const.

Applying this into (2.32) leads to the estimate (2.43).

Let us calculate the first derivatives of 𝐺−(𝜉, 𝜂; 𝜉0, 𝜂0):

𝐺−
𝜉0
=

𝛾(𝜂 − 𝜉)2𝛽

(𝜉0 − 𝜉)𝛽(𝜂0 − 𝜂)𝛽

×

{︃
𝑛∑︁

𝑖=1

𝑑𝑖

[︂
− 𝛽𝑌 𝑖

𝜉0 − 𝜉
+ 𝑖 𝑌 𝑖−1𝑌𝜉0

]︂
2𝐹1

(︂
𝛽 − 𝑖, 𝛽, 2𝛽;

1

𝑋

)︂

+
1

2

𝑛∑︁
𝑖=1

(𝛽 − 𝑖)𝑑𝑖𝑌
𝑖

(︂
1

𝑋

)︂
𝜉0

2𝐹1

(︂
𝛽 − 𝑖+ 1, 𝛽 + 1, 2𝛽 + 1;

1

𝑋

)︂}︃
,

𝐺−
𝜂0
=

𝛾(𝜂 − 𝜉)2𝛽

(𝜉0 − 𝜉)𝛽(𝜂0 − 𝜂)𝛽

×

{︃
𝑛∑︁

𝑖=1

𝑑𝑖

[︂
− 𝛽𝑌 𝑖

𝜂0 − 𝜂
+ 𝑖 𝑌 𝑖−1𝑌𝜂0

]︂
2𝐹1

(︂
𝛽 − 𝑖, 𝛽, 2𝛽;

1

𝑋

)︂

+
1

2

𝑛∑︁
𝑖=1

(𝛽 − 𝑖)𝑑𝑖 𝑌
𝑖

(︂
1

𝑋

)︂
𝜂0

2𝐹1

(︂
𝛽 − 𝑖+ 1, 𝛽 + 1, 2𝛽 + 1;

1

𝑋

)︂}︃
.
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Now with (A.8) and (A.6) we estimate⃒⃒⃒⃒
2𝐹1

(︂
𝛽, 𝛽 + 1, 2𝛽 + 1;

1

𝑋

)︂⃒⃒⃒⃒
≤ 𝑐(𝛼)

(︂
𝜂0 − 𝜂

𝜉0 − 𝜂

)︂𝛼

, 𝛼 > 0,

| 2𝐹1

(︂
𝛽 − 𝑖+ 1, 1 + 𝛽, 1 + 2𝛽;

1

𝑋

)︂
| ≤ const, 𝑖 = 2, 3, . . . , 𝑛.

Using this and taking 𝛼 = 𝛽 we come the estimates (2.44) and (2.45). �

Now we are ready to estimate some integrals involving the Riemann-

Hadamard function and its first derivatives.

Lemma 2.5.3. Suppose that 0 < 𝛽 < 1 and (𝜉0, 𝜂0) ∈ 𝐷. Then

𝐼𝐻(𝜉0, 𝜂0) :=

∫︁ 𝜉0

0

∫︁ 𝜂0

𝜉

|𝐻𝜂0(𝜉, 𝜂; 𝜉0, 𝜂0)| 𝑑𝜂 𝑑𝜉 ≤ 𝑘 𝜉0(𝜂0 − 𝜉0)
−𝛽, (2.46)

where 𝑘 = const > 0.

Proof. Using the estimates (2.36) and (2.38) we have

𝐼𝐻 ≤ 𝐶𝐻

{︂∫︁ 𝜉0

0

∫︁ 𝜉0

𝜉

(𝜉0 − 𝜂)−𝛽

𝜂0 − 𝜂
𝑑𝜂 𝑑𝜉 +

∫︁ 𝜉0

0

∫︁ 𝜂0

𝜉0

(𝜂 − 𝜉0)
−𝛽

𝜂0 − 𝜉0
𝑑𝜂 𝑑𝜉

}︂
.

(2.47)

Making a substitution 𝜂 = 𝜉 + (𝜉0 − 𝜉)𝜎 and applying (A.5) we get

∫︁ 𝜉0

𝜉

(𝜉0 − 𝜂)−𝛽

𝜂0 − 𝜂
𝑑𝜂 =

(𝜉0 − 𝜉)1−𝛽

𝜂0 − 𝜉

∫︁ 1

0

(1− 𝜎)−𝛽

1− 𝜁𝜎
𝑑𝜎

=
(𝜉0 − 𝜉)1−𝛽

𝜂0 − 𝜉

Γ(1− 𝛽)

Γ(2− 𝛽)
2𝐹1(1, 1, 2− 𝛽; 𝜁) (2.48)
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with 𝜁 = (𝜉0 − 𝜉)/(𝜂0 − 𝜉). Now, according to (A.7), we have

| 2𝐹1(1, 1, 2− 𝛽; 𝜁)| ≤ const
(𝜂0 − 𝜉)𝛽

(𝜂0 − 𝜉0)𝛽
. (2.49)

Substituting (2.48) and (2.49) into (2.47) immediately leads to the

estimate (2.46). �

Theorem 2.5.1. Define the function

𝑈𝐻(𝜉0, 𝜂0) :=

∫︁ 𝜉0

0

∫︁ 𝜂0

𝜉

𝐹 (𝜉, 𝜂)𝐻(𝜉, 𝜂; 𝜉0, 𝜂0) 𝑑𝜂 𝑑𝜉 (2.50)

with 0 < 𝛽 < 1 and 𝐹 ∈ 𝐶1(𝐷̄). Then 𝑈𝐻 , 𝑈𝐻
𝜉0

+ 𝑈𝐻
𝜂0

∈ 𝐶(𝐷̄ ∖ (1, 1)),

𝑈𝐻
𝜂0

∈ 𝐶(𝐷̄ ∖ {𝜂0 = 𝜉0}) and for (𝜉0, 𝜂0) ∈ 𝐷 the following estimates hold :

|𝑈𝐻(𝜉0, 𝜂0)| ≤ 𝐾1𝑀𝐹 𝜉0, (2.51)

|𝑈𝐻
𝜉0
+ 𝑈𝐻

𝜂0
|(𝜉0, 𝜂0) ≤ 𝐾1𝑀𝐹 , (2.52)⃒⃒

𝑈𝐻
𝜂0
(𝜉0, 𝜂0)

⃒⃒
≤ 𝐾1𝑀𝐹 𝜉0(𝜂0 − 𝜉0)

−𝛽, (2.53)

where 𝐾1 > 0 is a constant, independent of 𝐹 and

𝑀𝐹 := max

{︂
max
𝐷̄

|𝐹 |,max
𝐷̄

|𝐹𝜉 + 𝐹𝜂|
}︂
. (2.54)

Proof. Using the estimates (2.35) and (2.37) immediately we obtain

|𝑈𝐻(𝜉0, 𝜂0)| ≤𝑀𝐹

∫︁ 𝜉0

0

∫︁ 𝜂0

𝜉

𝐻(𝜉, 𝜂; 𝜉0, 𝜂0) 𝑑𝜂 𝑑𝜉 ≤ 𝐾1𝑀𝐹 𝜉0,

which confirms (2.51).
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Next, differentiating (2.50) with respect to 𝜂0 gives

𝑈𝐻
𝜂0
(𝜉0, 𝜂0) =

∫︁ 𝜉0

0

∫︁ 𝜂0

𝜉

𝐹 (𝜉, 𝜂)𝐻𝜂0(𝜉, 𝜂; 𝜉0, 𝜂0) 𝑑𝜂 𝑑𝜉

+

∫︁ 𝜉0

0

𝐹 (𝜉, 𝜂0)
(𝜂0 − 𝜉)𝛽

(𝜂0 − 𝜉0)𝛽
𝑑𝜉.

With use of the estimate (2.46) from Lemma 2.5.3 we come to the estimate

(2.53).

Next, a direct calculation shows that the derivatives 𝐻+
𝜉0
, 𝐻−

𝜉0
have

singularities on the line {𝜂 = 𝜉0}, which are not integrable. S. Gellerstedt

[13] and E. Moiseev [26] suggested to differentiate (2.50) after appropriate

substitutions of variables. In this way one can find integral representations

for the first derivatives of the solution, which do not involve the first deriva-

tives of the function 𝐻(𝜉, 𝜂; 𝜉0, 𝜂0). In order to do this, following Moiseev

[26], introduce the new variables

𝜉 :=
𝜉0 − 𝜉

𝜂0 − 𝜉0
, 𝜂 :=

𝜂0 − 𝜂

𝜂0 − 𝜉0
. (2.55)

Defining

𝐻̃+(𝜉, 𝜂) := 𝐻+(𝜉, 𝜂; 𝜉0, 𝜂0), 𝐻̃−(𝜉, 𝜂) := 𝐻−(𝜉, 𝜂; 𝜉0, 𝜂0),
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we have

𝑈𝐻(𝜉0, 𝜂0) = (𝜂0 − 𝜉0)
2

×
∫︁ 𝜉0

𝜂0−𝜉0

0

∫︁ 1+𝜉

0

𝐹
(︀
𝜉0 − (𝜂0 − 𝜉0)𝜉, 𝜂0 − (𝜂0 − 𝜉0)𝜂

)︀
𝐻̃(𝜉, 𝜂) 𝑑𝜂 𝑑𝜉

and

(︀
𝑈𝐻
𝜉0
+ 𝑈𝐻

𝜂0

)︀
(𝜉0, 𝜂0) = (𝜂0 − 𝜉0)

2

×
∫︁ 𝜉0

𝜂0−𝜉0

0

∫︁ 1+𝜉

0

(𝐹𝜉 + 𝐹𝜂)
(︀
𝜉0 − (𝜂0 − 𝜉0)𝜉, 𝜂0 − (𝜂0 − 𝜉0)𝜂

)︀
𝐻̃(𝜉, 𝜂) 𝑑𝜂 𝑑𝜉

+ (𝜂0 − 𝜉0)

∫︁ 𝜂0
𝜂0−𝜉0

0

𝐹
(︀
0, 𝜂0 − (𝜂0 − 𝜉0)𝜂

)︀
𝐻̃

(︂
𝜉0

𝜂0 − 𝜉0
, 𝜂

)︂
𝑑𝜂.

Now the inverse transform of (2.55) gives

(︀
𝑈𝐻
𝜉0
+ 𝑈𝐻

𝜂0

)︀
(𝜉0, 𝜂0) =

∫︁ 𝜉0

0

∫︁ 𝜂0

𝜉

(𝐹𝜉 + 𝐹𝜂)(𝜉, 𝜂)𝐻(𝜉, 𝜂; 𝜉0, 𝜂0) 𝑑𝜂 𝑑𝜉

+

∫︁ 𝜂0

0

𝐹 (0, 𝜂)𝐻(0, 𝜂; 𝜉0, 𝜂0) 𝑑𝜂.

Finally, taking into account the estimates (2.35) and (2.37), we see that

(2.52) holds. �

Theorem 2.5.2. Define the function

𝑈𝐺(𝜉0, 𝜂0) :=

∫︁ 𝜉0

0

∫︁ 𝜂0

𝜉

𝐹 (𝜉, 𝜂)𝐺(𝜉, 𝜂; 𝜉0, 𝜂0) 𝑑𝜂 𝑑𝜉 (2.56)

with 0 < 𝛽 < 1 and 𝐹 ∈ 𝐶1(𝐷̄). Then 𝑈𝐺, 𝑈𝐺
𝜉0
, 𝑈𝐺

𝜂0
∈ 𝐶(𝐷̄ ∖ (1, 1)), and
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for (𝜉0, 𝜂0) ∈ 𝐷 the following estimates hold :

|𝑈𝐺(𝜉0, 𝜂0)| ≤ 𝐾2𝑀𝐹 𝜉0(2− 𝜉0 − 𝜂0)
−𝑛, (2.57)

⃒⃒
𝑈𝐺
𝜉0
(𝜉0, 𝜂0)

⃒⃒
≤ 𝐾2𝑀𝐹 𝜉0(2− 𝜉0 − 𝜂0)

−𝑛−1, (2.58)⃒⃒
𝑈𝐺
𝜂0
(𝜉0, 𝜂0)

⃒⃒
≤ 𝐾2𝑀𝐹 𝜉0(2− 𝜉0 − 𝜂0)

−𝑛−1, (2.59)

where 𝐾2 > 0 is a constant independent of 𝐹 and 𝑀𝐹 is the constant

defined by (2.54).

Proof. First, applying the estimates (2.40) and (2.43) into (2.56) we

obtain :

|𝑈𝐺(𝜉0, 𝜂0)| =

⃒⃒⃒⃒
⃒
∫︁ 𝜉0

0

∫︁ 𝜉0

𝜉

𝐹 (𝜉, 𝜂)𝐺−(𝜉, 𝜂; 𝜉0, 𝜂0) 𝑑𝜂 𝑑𝜉

+

∫︁ 𝜉0

0

∫︁ 𝜂0

𝜉0

𝐹 (𝜉, 𝜂)𝐺+(𝜉, 𝜂; 𝜉0, 𝜂0) 𝑑𝜂 𝑑𝜉

⃒⃒⃒⃒
⃒ ≤ 𝐾2𝑀𝐹 𝜉0(2− 𝜉0 − 𝜂0)

−𝑛,

which confirms the estimate (2.57).

Next, we calculate

𝑈𝐺
𝜉0
(𝜉0, 𝜂0) =

∫︁ 𝜉0

0

∫︁ 𝜂0

𝜉

𝐹 (𝜉, 𝜂)𝐺𝜉0(𝜉, 𝜂, 𝜉0, 𝜂0) 𝑑𝜂 𝑑𝜉.

Here we do not have integrals on the boundaries because 𝑌 = 0 on the line

{𝜉 = 𝜉0} and the function 𝐺(𝜉, 𝜂, 𝜉0, 𝜂0) has no jump on the line {𝜂 = 𝜉0}.
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Applying to this integral the estimates (2.41) and (2.44) gives:

⃒⃒
𝑈𝐺
𝜉0
(𝜉0, 𝜂0)

⃒⃒
≤ 𝑀𝐹𝐶𝐺

(2− 𝜉0 − 𝜂0)𝑛+1

∫︁ 𝜉0

0

∫︁ 𝜉0

𝜉

(𝜉0 − 𝜂)−𝛽 𝑑𝜂 𝑑𝜉

+
𝑀𝐹𝐶𝐺

2− 𝜉0 − 𝜂0

∫︁ 𝜉0

0

∫︁ 𝜂0

𝜉0

(𝜂 − 𝜉0)
−𝛽 𝑑𝜂 𝑑𝜉.

From here it easily follows the estimate (2.58).

Finally, we calculate:

𝑈𝐺
𝜂0
(𝜉0, 𝜂0) =

∫︁ 𝜉0

0

∫︁ 𝜂0

𝜉

𝐹 (𝜉, 𝜂)𝐺𝜂0(𝜉, 𝜂; 𝜉0, 𝜂0) 𝑑𝜂 𝑑𝜉,

where we used that 𝑌 = 0 on the line {𝜂 = 𝜂0}. Analogously, applying

to the last integral the estimates (2.42) and (2.45) for the derivative 𝐺𝜂0,

which are even better than (2.41) and (2.44), we obtain the estimate (2.59).

�

Corollary 2.5.1. Define the function

𝑈(𝜉0, 𝜂0) :=

∫︁ 𝜉0

0

∫︁ 𝜂0

𝜉

𝐹 (𝜉, 𝜂)Ψ(𝜉, 𝜂; 𝜉0, 𝜂0) 𝑑𝜂 𝑑𝜉 (2.60)

with 0 < 𝛽 < 1 and 𝐹 ∈ 𝐶1(𝐷̄). Then 𝑈, 𝑈𝜉 + 𝑈𝜂 ∈ 𝐶(𝐷̄ ∖ (1, 1)), 𝑈𝜂 ∈

𝐶(𝐷̄ ∖ {𝜂 = 𝜉}) and for (𝜉0, 𝜂0) ∈ 𝐷 the following estimates hold

|𝑈(𝜉, 𝜂)| ≤ 𝐾𝑀𝐹 𝜉(2− 𝜉 − 𝜂)−𝑛,

|(𝑈𝜉 + 𝑈𝜂)(𝜉, 𝜂)| ≤ 𝐾𝑀𝐹 (2− 𝜉 − 𝜂)−𝑛−1,

|𝑈𝜂(𝜉, 𝜂)| ≤ 𝐾𝑀𝐹 𝜉(𝜂 − 𝜉)−𝛽(2− 𝜉 − 𝜂)−𝑛−1,

(2.61)

where 𝐾 > 0 is a constant independent of 𝐹 and 𝑀𝐹 is the constant defined
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by (2.54).

This assertion is a direct consequence of Theorem 2.5.1 and Theorem

2.5.2, because 𝑈(𝜉, 𝜂) = 𝑈𝐻(𝜉, 𝜂) + 𝑈𝐺(𝜉, 𝜂).

2.6. Existence and uniqueness results

In this section we prove the existence and uniqueness of a generalized solu-

tion of Problem 𝑃𝑚2 at certain conditions.

Theorem 2.6.1. Let 0 < 𝛽 < 1 and 𝐹 ∈ 𝐶(𝐷̄). Then each generalized

solution of Problem 𝑃𝑚2 has the following integral representation in 𝐷:

𝑈(𝜉0, 𝜂0) =

∫︁ 𝜉0

0

∫︁ 𝜂0

𝜉

𝐹 (𝜉, 𝜂)Ψ(𝜉, 𝜂; 𝜉0, 𝜂0) 𝑑𝜂 𝑑𝜉. (2.62)

Proof. Let 𝑈(𝜉, 𝜂) be a generalized solution of Problem 𝑃𝑚2 in 𝐷. For

any arbitrary function 𝜓(𝜉, 𝜂) belonging to 𝑉 (2) from (2.20) we obtain the

identity∫︁
𝐷

(𝜂 − 𝜉)2𝛽
{︂
𝑈𝜉𝜂 +

𝛽

𝜂 − 𝜉
(𝑈𝜉 − 𝑈𝜂)−

𝑛(𝑛+ 1)

(2− 𝜉 − 𝜂)2
𝑈 − 𝐹

}︂
𝜓 𝑑𝜉 𝑑𝜂 = 0,

where 𝑈𝜉𝜂 is the weak derivative of 𝑈. Therefore

𝑈𝜉𝜂 = 𝐹 +
𝑛(𝑛+ 1)

(2− 𝜉 − 𝜂)2
𝑈 − 𝛽

𝜂 − 𝜉
(𝑈𝜉 − 𝑈𝜂) ∈ 𝐶(𝐷),

since 𝐹, 𝑈, 𝑈𝜉 − 𝑈𝜂 ∈ 𝐶(𝐷). From here it follows that 𝑈𝜉𝜂 is a classical

derivative of 𝑈 and 𝑈(𝜉, 𝜂) satisfies the differential equation (2.15) in 𝐷 in
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a classical sense.

Now, using the properties of the Riemann-Hadamard function, we ob-

tain the integral representation (2.62) for the generalized solution of Prob-

lem 𝑃𝑚2 integrating by parts the identity

𝐸𝛽[𝑈(𝜉, 𝜂)]Ψ(𝜉, 𝜂; 𝜉0, 𝜂0) = 𝐹 (𝜉, 𝜂)Ψ(𝜉, 𝜂; 𝜉0, 𝜂0)

over a triangle

𝑇𝛿 := {(𝜉, 𝜂) : 0 < 𝜉 < 𝜉0 − 2𝛿, 𝜉 + 𝛿 < 𝜂 < 𝜉0 − 𝛿}

and then over the rectangle

Π𝛿 := {(𝜉, 𝜂) : 0 < 𝜉 < 𝜉0 − 2𝛿, 𝜉0 + 𝛿 < 𝜂 < 𝜂0}

with 𝛿 > 0 small enough, and finally letting 𝛿 → 0. �

Actually, Theorem 2.6.1 claims the uniqueness of a generalized solution

of Problem 𝑃𝑚2.

Next, if additionally 𝐹 ∈ 𝐶1(𝐷̄), the function 𝑈(𝜉, 𝜂) defined by (2.62)

obviously coincides with the function (2.60) estimated in Corollary (2.5.1)

and we will prove that this function is a generalized solution of Problem

𝑃𝑚2 in 𝐷.

Theorem 2.6.2. Let 0 < 𝛽 < 1 and 𝐹 ∈ 𝐶1(𝐷̄). Then there exists one

and only one generalized solution of Problem 𝑃𝑚2 in 𝐷, which has integral

representation (2.60) and it satisfies the estimates (2.61).
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Proof. Let 𝑈(𝜉, 𝜂) be the function from Corollary 2.5.1. Then 𝑈, 𝑈𝜉+

𝑈𝜂 ∈ 𝐶(𝐷̄ ∖ (1, 1)), 𝑈𝜂 ∈ 𝐶(𝐷̄ ∖ {𝜂 = 𝜉}), i.e. 𝑈(𝜉, 𝜂) satisfies the prop-

erty (1) in Definition 2.3.1. From the estimates (2.61) it follows that the

condition 𝑈(0, 𝜂) = 0 in Definition 2.3.1 and the estimate (2.19) hold as

well.

Finally, we have to prove that 𝑈(𝜉, 𝜂) satisfies the identity (2.20). To

do this we need three steps.

Step 1. We prove that 𝑈(𝜉, 𝜂) satisfies the differential equation (2.15)

in a classical sense and (𝑈𝜉)𝜂 ∈ 𝐶(𝐷).

Following Smirnov [49], we find another representation formula for the

function 𝑈𝐻(𝜉, 𝜂) from Theorem 2.5.1. Introduce the function

𝑅0(𝜉, 𝜂; 𝜉0, 𝜂0) :=

⎧⎪⎨⎪⎩
𝑅+

0 (𝜉, 𝜂; 𝜉0, 𝜂0), 𝜂 > 𝜉0,

𝑅−
0 (𝜉, 𝜂; 𝜉0, 𝜂0), 𝜂 < 𝜉0,

where

𝑅+
0 (𝜉, 𝜂; 𝜉0, 𝜂0) :=

(︂
𝜂0 − 𝜂

𝜂0 − 𝜉0

)︂𝛽 (︂
𝜂0 − 𝜂

𝜂0 − 𝜉

)︂1−𝛽

× 𝐹1

(︂
1− 𝛽, 𝛽, 1− 𝛽, 2;

𝜂0 − 𝜂

𝜂0 − 𝜉0
,
𝜂0 − 𝜂

𝜂0 − 𝜉

)︂
,

𝑅−
0 (𝜉, 𝜂; 𝜉0, 𝜂0) := 𝜆

(︂
𝜂 − 𝜉

𝜉0 − 𝜉

)︂𝛽 (︂
𝜂 − 𝜉

𝜂0 − 𝜉

)︂𝛽

× 𝐹1

(︂
𝛽, 𝛽, 𝛽, 1 + 2𝛽;

𝜂 − 𝜉

𝜉0 − 𝜉
,
𝜂 − 𝜉

𝜂0 − 𝜉

)︂
.
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Here

𝜆 =
−Γ(𝛽)

Γ(1− 𝛽)Γ(1 + 2𝛽)

and 𝐹1(𝑎, 𝑏1, 𝑏2, 𝑐;𝑥, 𝑦) is the hypergeometric function (A.20) of two vari-

ables. This series converges absolutely for |𝑥| < 1, |𝑦| < 1. For more

properties of 𝐹1 see [5], pp. 219 - 223.

From [49] it is known that for 0 < 𝛽 < 1/2 the function 𝑅0(𝜉, 𝜂; 𝜉0, 𝜂0)

solves

𝜕𝑅0

𝜕𝜂
= −(𝜂 − 𝜉)−1𝐻(𝜉, 𝜂; 𝜉0, 𝜂0) for 0 < 𝜉 < 𝜉0, 𝜉 < 𝜂 < 𝜂0, 𝜂 ̸= 𝜉0,

𝑅0|𝜂=𝜂0 = 0, 𝑅0|𝜂=𝜉 = 0,

(2.63)

where (𝜉0, 𝜂0) ∈ 𝐷. Here we verify that in the more general case 0 < 𝛽 < 1

this is still valid.

Further, it is known that the jump of 𝑅0(𝜉, 𝜂; 𝜉0, 𝜂0) on the line

{𝜂 = 𝜉0} is

[[𝑅0]] = −1

𝛽
. (2.64)

Using (2.63) and (2.64), after integration by parts we come to the

following integral representation:

𝑈𝐻(𝜉0, 𝜂0) :=

∫︁ 𝜉0

0

∫︁ 𝜂0

𝜉

𝜕

𝜕𝜂
[(𝜂 − 𝜉)𝐹 (𝜉, 𝜂)]𝑅0(𝜉, 𝜂; 𝜉0, 𝜂0) 𝑑𝜂 𝑑𝜉

+
1

𝛽

∫︁ 𝜉0

0

(𝜉0 − 𝜉)𝐹 (𝜉, 𝜉0) 𝑑 𝜉.

(2.65)

Differentiating (2.65) we obtain that 𝑈𝐻 satisfies the differential equa-
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tion (︀
𝑈𝐻
𝜉0

)︀
𝜂0
+

𝛽

𝜂0 − 𝜉0

(︀
𝑈𝐻
𝜉0
− 𝑈𝐻

𝜂0

)︀
= 𝐹 (𝜉0, 𝜂0), (2.66)

where all derivatives are in a classical sense and they are continuous in 𝐷.

Since 𝐻(𝜉, 𝜂; 𝜉0, 𝜂0) satisfies the differential equation (2.25) with 𝑛 = 0

and Ψ = 𝐻 +𝐺 satisfies (2.25) with 𝑛 ≥ 0, for the difference 𝐺 = Ψ−𝐻

we obtain

𝐺𝜉0𝜂0 +
𝛽

𝜂0 − 𝜉0
(𝐺𝜉0 −𝐺𝜂0)−

𝑛(𝑛+ 1)

(2− 𝜉0 − 𝜂0)2
𝐺 =

𝑛(𝑛+ 1)

(2− 𝜉0 − 𝜂0)2
𝐻.

Now, for the function 𝑈𝐺(𝜉0, 𝜂0) from Theorem 2.5.2 we calculate:

(︀
𝑈𝐺
𝜉0

)︀
𝜂0
+

𝛽

𝜂0 − 𝜉0

(︀
𝑈𝐺
𝜉0
− 𝑈𝐺

𝜂0

)︀
− 𝑛(𝑛+ 1)

(2− 𝜉0 − 𝜂0)2
𝑈𝐺

=

∫︁ 𝜉0

0

∫︁ 𝜂0

𝜉

𝐹 (𝜉, 𝜂)

[︂
𝐺𝜉0𝜂0 +

𝛽

𝜂0 − 𝜉0
(𝐺𝜉0 −𝐺𝜂0)

− 𝑛(𝑛+ 1)

(2− 𝜉0 − 𝜂0)2
𝐺

]︂
(𝜉, 𝜂; 𝜉0, 𝜂0) 𝑑𝜂 𝑑𝜉

=
𝑛(𝑛+ 1)

(2− 𝜉0 − 𝜂0)2

∫︁ 𝜉0

0

∫︁ 𝜂0

𝜉

𝐹 (𝜉, 𝜂)𝐻(𝜉, 𝜂; 𝜉0, 𝜂0) 𝑑𝜂 𝑑𝜉

=
𝑛(𝑛+ 1)

(2− 𝜉0 − 𝜂0)2
𝑈𝐻 , (2.67)

where all derivatives are in a classical sense and they are continuous in 𝐷.

Since 𝑈 = 𝑈𝐻 + 𝑈𝐺, from (2.66) and (2.67) we find that 𝑈(𝜉0, 𝜂0)

satisfies the differential equation

(𝑈𝜉0)𝜂0 +
𝛽

𝜂0 − 𝜉0
(𝑈𝜉0 − 𝑈𝜂0)−

𝑛(𝑛+ 1)

(2− 𝜉0 − 𝜂0)2
𝑈 = 𝐹 (𝜉0, 𝜂0) (2.68)
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in a classical sense. But, since 𝐹, 𝑈, 𝑈𝜉0 − 𝑈𝜂0 ∈ 𝐶(𝐷), it follows that

(𝑈𝜉0)𝜂0 ∈ 𝐶(𝐷).

Step 2. We will prove that identity (2.20) holds for all 𝑉 (𝜉, 𝜂) ∈ 𝑉 (2),

which, in addition, are equivalent to zero in a neighborhood of {𝜂 = 𝜉}.

Define

𝐼𝑉 :=

∫︁
𝐷

(𝜂 − 𝜉)2𝛽
{︂
𝑈𝜉𝑉𝜂 + 𝑈𝜂𝑉𝜉 +

2𝑛(𝑛+ 1)

(2− 𝜉 − 𝜂)2
𝑈𝑉 + 2𝐹𝑉

}︂
𝑑𝜉 𝑑𝜂.

(2.69)

Using that the derivatives 𝑈𝜉, 𝑈𝜂 and (𝑈𝜉)𝜂 are continuous in 𝐷, we

integrate by parts in 𝐼𝑉 in the following way:∫︁
𝐷

(𝜂−𝜉)2𝛽𝑈𝜉𝑉𝜂 𝑑𝜉 𝑑𝜂 = −
∫︁
𝐷

(𝜂−𝜉)2𝛽
[︂
(𝑈𝜉)𝜂 +

2𝛽

𝜂 − 𝜉
𝑈𝜉

]︂
𝑉 𝑑𝜉 𝑑𝜂 (2.70)

and∫︁
𝐷

(𝜂 − 𝜉)2𝛽𝑈𝜂𝑉𝜉 𝑑𝜉 𝑑𝜂 = −
∫︁
𝐷

(𝜂 − 𝜉)2𝛽
[︂
(𝑉𝜉)𝜂 +

2𝛽

𝜂 − 𝜉
𝑉𝜉

]︂
𝑈 𝑑𝜉 𝑑𝜂.

There are not integrals on the boundary of 𝐷, because 𝑉 (𝜉, 𝜂) ≡ 0 in a

neighborhood of {𝜂 = 𝜉} and 𝑉 (𝜉, 1) = 0, 𝑉𝜉(𝜉, 1) = 0.

Further, since 𝑉 ∈ 𝐶2(𝐷̄), we have (𝑉𝜉)𝜂 = (𝑉𝜂)𝜉 . Then

∫︁
𝐷

(𝜂 − 𝜉)2𝛽𝑈𝜂𝑉𝜉 𝑑𝜉 𝑑𝜂 = −
∫︁
𝐷

(𝜂 − 𝜉)2𝛽
[︂
(𝑉𝜂)𝜉 +

2𝛽

𝜂 − 𝜉
𝑉𝜉

]︂
𝑈 𝑑𝜉 𝑑𝜂

=

∫︁
𝐷

(𝜂 − 𝜉)2𝛽
[︂
𝑈𝜉𝑉𝜂 −

2𝛽

𝜂 − 𝜉
(𝑉𝜉 + 𝑉𝜂)𝑈

]︂
𝑑𝜉 𝑑𝜂

= −
∫︁
𝐷

(𝜂 − 𝜉)2𝛽
[︂
(𝑈𝜉)𝜂 −

2𝛽

𝜂 − 𝜉
𝑈𝜂

]︂
𝑉 𝑑𝜉 𝑑𝜂. (2.71)
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Again there are not integrals on the boundary of 𝐷 in view of the boundary

condition 𝑈(0, 𝜂) = 0 and the properties of the function 𝑉 (𝜉, 𝜂).

Now, putting (2.70) and (2.71) into (2.69) we obtain

𝐼𝑉 = −2

∫︁
𝐷

(𝜂 − 𝜉)2𝛽
{︂
(𝑈𝜉)𝜂 +

𝛽

𝜂 − 𝜉
(𝑈𝜉 − 𝑈𝜂)

− 𝑛(𝑛+ 1)

(2− 𝜉 − 𝜂)2
𝑈 − 𝐹

}︂
𝑉 𝑑𝜉 𝑑𝜂 = 0.

Step 3. Finally, we will prove that identity (2.20) holds for all 𝑉 (𝜉, 𝜂) ∈

𝑉 (2).

Let 𝜒(𝑠) be a function having the properties 𝜒(𝑠) ∈ 𝐶∞(R1), 𝜒(𝑠) = 1

for 𝑠 ≥ 2, 𝜒(𝑠) = 0 for 𝑠 ≤ 1 and let 𝑉 (𝜉, 𝜂) be an arbitrary function

belonging to 𝑉 (2).

If 𝑘 ∈ N, then the functions

𝑉𝑘(𝜉, 𝜂) := 𝑉 (𝜉, 𝜂)𝜒 (𝑘 [𝜂 − 𝜉])

belong to 𝑉 (2) and 𝑉𝑘(𝜉, 𝜂) ≡ 0 in a neighborhood of {𝜂 = 𝜉}. Therefore

the identity (2.20) holds with 𝑉 (𝜉, 𝜂) replaced by 𝑉𝑘(𝜉, 𝜂). More precisely,

we may write:

∫︁
𝐷

(𝜂−𝜉)2𝛽
{︂
𝑈𝜉𝑉𝜂 + 𝑈𝜂𝑉𝜉 +

2𝑛(𝑛+ 1)

(2− 𝜉 − 𝜂)2
𝑈𝑉 + 2𝐹𝑉

}︂
𝜒 (𝑘 [𝜂 − 𝜉]) 𝑑𝜉 𝑑𝜂

+

∫︁
𝐷

𝑘(𝜂 − 𝜉)2𝛽 {𝑈𝜉 − 𝑈𝜂}𝜒′ (𝑘 [𝜂 − 𝜉])𝑉 𝑑𝜉𝑑𝜂 =: 𝐼1,𝑘 + 𝐼2,𝑘 = 0. (2.72)

Obviously 𝐼1,𝑘 → 𝐼𝑉 as 𝑘 → ∞.
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Further, supp𝜒′(𝑘[𝜂 − 𝜉]) is contained in {1 ≤ 𝑘[𝜂 − 𝜉] ≤ 2}, so on

supp𝜒′(𝑘[𝜂 − 𝜉]) the functions

𝑊𝑘(𝜉, 𝜂) := 𝑘(𝜂 − 𝜉)2𝛽 {𝑈𝜉 − 𝑈𝜂}𝜒′ (𝑘 [𝜂 − 𝜉])𝑉 (𝜉, 𝜂)

satisfy the estimate

|𝑊𝑘(𝜉, 𝜂)| ≤ const (𝜂 − 𝜉)𝛽−1,

where we take into account that the estimates (2.61) hold and that 𝑉 ≡

0 in a neighborhood of (1, 1) by definition. Then the sequence 𝑊𝑘(𝜉, 𝜂)

converges pointwise almost everywhere to zero and it is dominated by a

Lebesgue integrable function in 𝐷 for 0 < 𝛽 < 1. Consequently, according

to the Lebesgue dominated convergence theorem, 𝐼2,𝑘 → 0 as 𝑘 → ∞.

Now, letting 𝑘 → ∞ in (2.72) we obtain that the identity (2.20) holds

for all 𝑉 ∈ 𝑉 (2). Consequently, the function 𝑈(𝜉, 𝜂) is a generalized solution

of Problem 𝑃𝑚2. �

From the existence and uniqueness of a generalized solution of Problem

𝑃𝑚2 it follows the existence and uniqueness of a generalized solution of

Problem 𝑃𝑚, stated in Theorems 2.2.1-2.2.2.

Proof of Theorem 2.2.1. Let 𝑢1(𝑥, 𝑡) and 𝑢2(𝑥, 𝑡) be two different

generalized solutions of Problem 𝑃𝑚, which means that

𝑢(𝑥, 𝑡) := 𝑢1(𝑥, 𝑡)− 𝑢2(𝑥, 𝑡)
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is a generalized solution of the homogeneous Problem 𝑃𝑚. Then we claim

that 𝑢(𝑥, 𝑡) ≡ 0 in Ω𝑚, i.e. all the coefficients 𝑢𝑠𝑛(|𝑥|, 𝑡) in the Fourier

expansion

𝑢(𝑥, 𝑡) =
∞∑︁
𝑛=0

2𝑛+1∑︁
𝑠=1

𝑢𝑠𝑛(|𝑥|, 𝑡)𝑌 𝑠
𝑛 (𝑥) (2.73)

are equivalent to zero in Ω𝑚.

Indeed, the identity (2.10) with 𝑓 ≡ 0 holds for all test functions

𝑣 ∈ 𝑉𝑚 of the form

𝑣(𝑥, 𝑡) = 𝑤(|𝑥|, 𝑡)𝑌 𝑠
𝑛 (𝑥). (2.74)

Now substitute (2.73) and (2.74) into (2.10) with 𝑓 ≡ 0. Passing to the

spherical coordinates, using the orthogonality of the spherical functions and

the differential equation (2.6) that they satisfy, we find that the functions

𝑈 𝑠
𝑛(𝜉, 𝜂) := 𝑟(𝜉, 𝜂)𝑢𝑠𝑛

(︀
𝑟(𝜉, 𝜂), 𝑡(𝜉, 𝜂)

)︀
, 𝑛 = 0, 1, 2 . . . , 𝑠 = 1, . . . , 2𝑛+ 1

with

𝜉 = 1− 𝑟 − 2

2−𝑚
𝑡
2−𝑚
2 , 𝜂 = 1− 𝑟 +

2

2−𝑚
𝑡
2−𝑚
2

should be generalized solutions of the homogeneous Problem 𝑃𝑚2. Accord-

ing to Theorem 2.6.1, the homogeneous Problem 𝑃𝑚2 has only the trivial

solution, which confirms our assertion. �

Proof of Theorem 2.2.2. Let

𝑓(𝑥, 𝑡) =
𝑙∑︁

𝑛=0

2𝑛+1∑︁
𝑠=1

𝑓 𝑠𝑛(|𝑥|, 𝑡)𝑌 𝑠
𝑛 (𝑥) ∈ 𝐶1(Ω̄𝑚).
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Define

𝑢(𝑥, 𝑡) :=
𝑙∑︁

𝑛=0

2𝑛+1∑︁
𝑠=1

𝑢𝑠𝑛(|𝑥|, 𝑡)𝑌 𝑠
𝑛 (𝑥),

where 𝑢𝑠𝑛(𝑟, 𝑡) are such that the functions

𝑈 𝑠
𝑛(𝜉, 𝜂) := 𝑟(𝜉, 𝜂)𝑢𝑠𝑛

(︀
𝑟(𝜉, 𝜂), 𝑡(𝜉, 𝜂)

)︀
, 𝑛 = 0, . . . , 𝑙, 𝑠 = 1, . . . , 2𝑛+ 1

are the generalized solutions of Problem 𝑃𝑚2 with right-hand side functions

𝐹 𝑠
𝑛(𝜉, 𝜂) :=

1

4
𝑟(𝜉, 𝜂) 𝑓 𝑠𝑛

(︀
𝑟(𝜉, 𝜂), 𝑡(𝜉, 𝜂)

)︀
.

Then we check that 𝑢(𝑥, 𝑡) satisfies the properties (1)-(3) of Definition 2.2.1

and satisfy the identity (2.10) for the test functions 𝑣 ∈ 𝑉𝑚 of the form

(2.74). But these functions are dense in 𝑉𝑚 and therefore 𝑢(𝑥, 𝑡) satisfies

the property (4) of Definition 2.2.1 at all. Hence 𝑢(𝑥, 𝑡) is a generalized

solution of Problem 𝑃𝑚 with a right-hand side function 𝑓(𝑥, 𝑡). �

2.7. Decomposition of the function Ψ−(𝜉, 𝜂; 𝜉0,1)

Next, according to the estimates (2.61), the generalized solution 𝑈(𝜉, 𝜂) of

Problem 𝑃𝑚2 is allowed to have a singularity of order no greater than 𝑛 at

the point (1, 1). But it is still not clear if such a singularity really exists and

how it depends on the right-hand side of the equation. From here we begin

to study the asymptotic behavior of the function 𝑈(𝜉, 𝜂) near the singular

point (1, 1).

Firstly, we find an asymptotic expansion of the restriction 𝑈(𝜉, 1) on
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the segment 0 ≤ 𝜉 < 1. To do this, we derive a special decomposition of

the Riemann-Hadamard function on the line {𝜂0 = 1}. We start with some

auxiliary lemmas.

Lemma 2.7.1. Let 𝑎 > 0 and 𝑘 ∈ N ∪ {0}. Then

2𝐹1(𝑎,−𝑁, 2𝑎; 2) =

⎧⎪⎪⎨⎪⎪⎩
0, 𝑁 = 2𝑘 + 1,

(1/2)𝑘
(1/2 + 𝑎)𝑘

, 𝑁 = 2𝑘.
(2.75)

Proof. According to the integral representation (A.5) we have

2𝐹1(𝑎,−𝑁, 2𝑎; 2) =
Γ(2𝑎)

Γ(𝑎)Γ(𝑎)

∫︁ 1

0

𝑡𝑎−1(1− 𝑡)𝑎−1(1− 2𝑡)𝑁 𝑑𝑡. (2.76)

Then for 𝑘 ∈ N ∪ {0} we have

2𝐹1(𝑎,−2𝑘 − 1, 2𝑎; 2) = 0,

because the function ℎ(𝑡) := 𝑡𝑎−1(1− 𝑡)𝑎−1(1− 2𝑡)2𝑘+1 is antisymmetric in

respect to the point 𝑡 = 1/2, i.e. ℎ(1/2− 𝑡) = −ℎ(1/2 + 𝑡).

In the case when 𝑁 is an even number we proceed by the induction

method. For 𝑘 = 0 (resp. 𝑁 = 0) (2.75) holds obviously.

84



2. The Protter problem for Keldysh-type equations

For 𝑁 = 2, 4, 6, . . . from (2.76) we get

Γ(𝑎)Γ(𝑎)

Γ(2𝑎)
2𝐹1(𝑎,−𝑁, 2𝑎; 2) =

1

𝑎

∫︁ 1

0

(1− 2𝑡)𝑁−1 𝑑(𝑡− 𝑡2)𝑎

=
2(𝑁 − 1)

𝑎

∫︁ 1

0

𝑡𝑎(1− 𝑡)𝑎(1− 2𝑡)𝑁−2 𝑑𝑡

=
2(𝑁 − 1)Γ(𝑎+ 1)Γ(𝑎+ 1)

𝑎Γ(2𝑎+ 2)
2𝐹1(𝑎+ 1, 2−𝑁, 2𝑎+ 2; 2),

or more simply

2𝐹1(𝑎,−𝑁, 2𝑎; 2) =
(𝑁 − 1)

(2𝑎+ 1)
2𝐹1(𝑎+ 1, 2−𝑁, 2(𝑎+ 1); 2). (2.77)

Our induction hypothesis is that for some 𝑘 ∈ N ∪ {0} the equality

2𝐹1(𝑎,−2𝑘, 2𝑎; 2) =
(1/2)𝑘

(𝑎+ 1/2)𝑘

holds. But then for 𝑘 + 1 this equality will also hold, because according to

(2.77) we have

2𝐹1(𝑎,−2𝑘 − 2, 2𝑎; 2) =
(2𝑘 + 1)(1/2)𝑘

(2𝑎+ 1)(𝑎+ 3/2)𝑘
=

(1/2)𝑘+1

(𝑎+ 1/2)𝑘+1
.

The proof is complete. �

Lemma 2.7.2. Let 𝑛, 𝑝 ∈ N ∪ {0}, 𝑝 ≤ 𝑛, 0 < 𝛽 < 1 and

𝑄𝑛,𝑝(𝑧) :=

𝑛−𝑝∑︁
𝑗=0

𝑎𝑗 𝑏𝑗 𝑧
𝑗
2𝐹1

(︂
𝑛+ 𝑝+ 𝑗 + 1, 𝑝− 𝑛+ 𝑗, 𝑝+ 𝑗 + 1;

1− 𝑧

2

)︂
,

(2.78)
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where

𝑎𝑗 :=
(𝛽)𝑗

(2𝛽)𝑗 𝑗!
, 𝑏𝑗 :=

(𝑛+ 𝑝+ 1)𝑗(𝑝− 𝑛)𝑗
(𝑝+ 1)𝑗

.

Then

𝑄𝑛,𝑝(𝑧) =

⎧⎪⎨⎪⎩
0, 𝑛− 𝑝 odd,

𝑐𝑛,𝑝 2𝐹1

(︂
𝑛+ 𝑝+ 1

2
,
𝑝− 𝑛

2
,
1

2
+ 𝛽; 𝑧2

)︂
, 𝑛− 𝑝 even,

(2.79)

where

𝑐𝑛,𝑝 :=
Γ(1/2) Γ(𝑝+ 1)

Γ
(︀
𝑛+𝑝+2

2

)︀
Γ
(︀
𝑝−𝑛+1

2

)︀ . (2.80)

Proof. First, we expand the function 2𝐹1 from (2.78) in Taylor series

in powers of 𝑧:

2𝐹1

(︂
𝑛+ 𝑝+ 𝑗 + 1, 𝑝− 𝑛+ 𝑗, 𝑝+ 𝑗 + 1;

1− 𝑧

2

)︂
=

𝑛−𝑝−𝑗∑︁
𝑠=0

(𝑛+ 𝑝+ 𝑗 + 1)𝑠(𝑝− 𝑛+ 𝑗)𝑠
(𝑝+ 𝑗 + 1)𝑠 𝑠!

(︂
−𝑧
2

)︂𝑠

× 2𝐹1

(︂
𝑛+ 𝑝+ 𝑗 + 𝑠+ 1, 𝑝− 𝑛+ 𝑠+ 𝑗, 𝑝+ 𝑗 + 𝑠+ 1;

1

2

)︂
,

where we use (A.10) to compute the corresponding derivatives in the series.

By (A.17)-(A.19) we have that

2𝐹1

(︂
𝑛+ 𝑝+𝑁 + 1, 𝑝− 𝑛+𝑁, 𝑝+𝑁 + 1;

1

2

)︂

= 𝐴𝑁 :=

⎧⎪⎪⎨⎪⎪⎩
Γ(1/2) Γ(𝑝+𝑁 + 1)

Γ(𝑛+𝑝+𝑁+2
2 )Γ(𝑝−𝑛+𝑁+1

2 )
, 𝑝− 𝑛+𝑁 ̸= −1,−3, . . . ,

0, 𝑝− 𝑛+𝑁 = −1,−3, . . . .

(2.81)
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Then 𝑄𝑛,𝑝(𝑧), using also (A.1), becomes

𝑄𝑛,𝑝(𝑧) =

𝑛−𝑝∑︁
𝑗=0

𝑛−𝑝−𝑗∑︁
𝑠=0

𝑎𝑗 𝑏𝑗+𝑠𝐴𝑗+𝑠
(−1)𝑠

2𝑠 𝑠!
𝑧𝑗+𝑠.

Now set 𝑁 = 𝑗 + 𝑠 :

𝑄𝑛,𝑝(𝑧) =

𝑛−𝑝∑︁
𝑁=0

𝑏𝑁 𝐴𝑁 𝑧
𝑁

𝑁∑︁
𝑗=0

𝑎𝑗
(−1)𝑁−𝑗

2𝑁−𝑗 (𝑁 − 𝑗)!
.

Since (𝑁 − 𝑗)! = (−1)𝑗 𝑁 !/(−𝑁)𝑗, for 𝑄𝑛,𝑝(𝑧) we obtain:

𝑄𝑛,𝑝(𝑧) =

𝑛−𝑝∑︁
𝑁=0

2𝐹1(𝛽,−𝑁, 2𝛽; 2) 𝑏𝑁 𝐴𝑁
(−𝑧)𝑁

2𝑁 𝑁 !
. (2.82)

There are two different cases:

A. Let 𝑛− 𝑝 be an odd number. In this case (2.82) becomes

𝑄𝑛,𝑝(𝑧) ≡ 0,

because:

a) for even indexes 𝑁 according to (2.81) we have 𝐴𝑁 = 0;

b) for odd indexes𝑁 Lemma 2.7.1 with 𝑎 = 𝛽 gives 2𝐹1(𝛽,−𝑁, 2𝛽; 2) =

0.

B. Let 𝑛− 𝑝 be an even number. In this case, according to (2.81), we

have nonzero coefficients 𝐴𝑁 in (2.82) only for even indexes 𝑁 . Then we
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set 𝑁 = 2𝑘 and by Lemma 2.7.1 we have

2𝐹1(𝛽,−2𝑘, 2𝛽; 2) =
(1/2)𝑘

(1/2 + 𝛽)𝑘
. (2.83)

Now with (A.3) we calculate:

(𝑛+ 𝑝+ 1)2𝑘 = 22𝑘
(︂
𝑛+ 𝑝+ 1

2

)︂
𝑘

(︂
𝑛+ 𝑝+ 2

2

)︂
𝑘

, (2.84)

(𝑝− 𝑛)2𝑘 = 22𝑘
(︂
𝑝− 𝑛

2

)︂
𝑘

(︂
𝑝− 𝑛+ 1

2

)︂
𝑘

, (2.85)

(2𝑘)! = 22𝑘
(︂
1

2

)︂
𝑘

𝑘!. (2.86)

Applying the equalities (2.83)-(2.86) into (2.82) with 𝑁 = 2𝑘 and

simplifying the derived expression we obtain:

𝑄𝑛,𝑝(𝑧) =

(𝑛−𝑝)/2∑︁
𝑘=0

(1/2)𝑘
(1/2 + 𝛽)𝑘

𝑏2𝑘 𝐴2𝑘

22𝑘 (2𝑘)!
𝑧2𝑘

= Γ(1/2)Γ(𝑝+ 1)

(𝑛−𝑝)/2∑︁
𝑘=0

(1/2)𝑘
(1/2 + 𝛽)𝑘

(𝑛+ 𝑝+ 1)2𝑘(𝑝− 𝑛)2𝑘

Γ(𝑛+𝑝+2𝑘+2
2 )Γ(𝑝−𝑛+2𝑘+1

2 )

𝑧2𝑘

22𝑘 (2𝑘)!

= 𝑐𝑛,𝑝 2𝐹1

(︂
𝑛+ 𝑝+ 1

2
,
𝑝− 𝑛

2
,
1

2
+ 𝛽; 𝑧2

)︂
.

The proof is complete. �

Lemma 2.7.3. Define the function

𝜓1(𝜉, 𝜂; 𝜉0) :=
𝑛∑︁

𝑖=0

𝑖∑︁
𝑗=0

𝑑𝑖 𝑏𝑖,𝑗𝑃𝑖,𝑗(𝜉, 𝜉0)

(︂
(1− 𝜉)(1− 𝜂)

1− 𝜉0

)︂𝑖−𝑗
(−1)𝑖 (𝜂 − 𝜉)𝑗

(2− 𝜉 − 𝜂)𝑖
,

(2.87)
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where

𝑃𝑖,𝑗(𝜉, 𝜉0) :=
∞∑︁

𝑞=𝑖−𝑗+1

(𝑗 − 𝑖+ 𝛽)𝑞
𝑞!

(︂
1− 𝜉0
1− 𝜉

)︂𝑞

, (2.88)

𝑏𝑖,𝑗 :=
(𝛽 − 𝑖)𝑗(𝛽)𝑗
(2𝛽)𝑗 𝑗!

(2.89)

and 𝑑𝑖 are the constants from (2.33). Then the following estimate holds :

|𝜓1(𝜉, 𝜂; 𝜉0)| ≤ 𝑘1
1− 𝜉0

(𝜉0 − 𝜉)𝛽(1− 𝜉)1−𝛽
(2.90)

for (𝜉, 𝜂) ∈ 𝐷 ∩ {𝜂 < 𝜉0}, where 𝑘1 = const > 0.

Proof. In 𝑃𝑖,𝑗(𝜉, 𝜉0) we set the new index 𝑁 = 𝑞 + 𝑗 − 𝑖 − 1 instead

of 𝑞 to obtain:

𝑃𝑖,𝑗(𝜉, 𝜉0) = (−1)𝑖−𝑗+1(−𝛽)𝑖−𝑗+1

∞∑︁
𝑁=0

(1 + 𝛽)𝑁
(1 +𝑁)𝑖−𝑗+1𝑁 !

(︂
1− 𝜉0
1− 𝜉

)︂𝑁+𝑖−𝑗+1

= (−1)𝑖−𝑗(1− 𝛽)𝑖−𝑗

∞∑︁
𝑁=0

(𝛽 +𝑁)(𝛽)𝑁
(1 +𝑁)𝑖−𝑗+1𝑁 !

(︂
1− 𝜉0
1− 𝜉

)︂𝑁+𝑖−𝑗+1

,

where we used (A.1) and (A.4). Since

𝛽 +𝑁

(1 +𝑁)𝑖−𝑗+1
< 1, 0 < 𝛽 < 1, 𝑗 = 0, 1, . . . , 𝑖,

for the function 𝑃𝑖,𝑗(𝜉, 𝜉0) it follows the estimate

|𝑃𝑖,𝑗(𝜉, 𝜉0)| ≤ (1− 𝛽)𝑖−𝑗

(︂
1− 𝜉0
1− 𝜉

)︂𝑖−𝑗+1 ∞∑︁
𝑁=0

(𝛽)𝑁
𝑁 !

(︂
1− 𝜉0
1− 𝜉

)︂𝑁

= (1− 𝛽)𝑖−𝑗
(1− 𝜉0)

𝑖−𝑗+1

(1− 𝜉)𝑖−𝑗+1−𝛽(𝜉0 − 𝜉)𝛽

(2.91)
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for (𝜉, 𝜂) ∈ 𝐷 ∩ {𝜂 < 𝜉0}. For the last equality we used (A.11).

Applying this estimate into (2.87) gives the final result (2.90). �

Lemma 2.7.4. Define the function

𝜓2(𝜉, 𝜂; 𝜉0) :=

(︂
1− 𝜉

𝜉0 − 𝜉

)︂𝛽 𝑛∑︁
𝑖=0

𝑑𝑖 𝑌
𝑖(𝜉, 𝜂; 𝜉0, 1)𝑄𝑖(𝜉, 𝜂; 𝜉0), (2.92)

with

𝑄𝑖(𝜉, 𝜂; 𝜉0) :=
∞∑︁

𝑗=𝑖+1

𝑏𝑖,𝑗𝑋
−𝑗(𝜉, 𝜂; 𝜉0, 1), (2.93)

where 𝑋(𝜉, 𝜂; 𝜉0, 𝜂0) and 𝑌 (𝜉, 𝜂; 𝜉0, 𝜂0) are given by (2.23) and (2.24) re-

spectively, 𝑏𝑖,𝑗 are the constants (2.89) and 𝑑𝑖 are the constants from (2.33).

Then the following estimate holds :

|𝜓2(𝜉, 𝜂; 𝜉0)| ≤ 𝑘2
1− 𝜉0

(1− 𝜂)1−𝛽(𝜉0 − 𝜂)𝛽
(2.94)

for (𝜉, 𝜂) ∈ 𝐷 ∩ {𝜂 < 𝜉0}, where 𝑘2 = const > 0.

Proof. Setting 𝑗 = 𝑁 + 𝑖+1, with use of (A.1) and (A.4) we compute

𝑄𝑖(𝜉, 𝜂; 𝜉0) =(−1)𝑖(1− 𝛽)𝑖

×
∞∑︁

𝑁=0

(𝛽 +𝑁)(𝛽)𝑁(𝛽)𝑁(𝛽 +𝑁)𝑖+1

(2𝛽)𝑁(2𝛽 +𝑁)𝑖+1(1 +𝑁)𝑖+1𝑁 !
𝑋−𝑁−𝑖−1(𝜉, 𝜂; 𝜉0, 1).

(2.95)

Since

(𝛽 +𝑁)(𝛽 +𝑁)𝑖+1

(2𝛽 +𝑁)𝑖+1(1 +𝑁)𝑖+1
< 1, 𝑖 = 0, . . . , 𝑛, 0 < 𝛽 < 1,
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from here it follows the estimate

|𝑄𝑖| ≤ (1− 𝛽)𝑖𝑋
−𝑖−1(𝜉, 𝜂; 𝜉0, 1) 2𝐹1

(︂
𝛽, 𝛽, 2𝛽;

1

𝑋(𝜉, 𝜂; 𝜉0, 1)

)︂
(2.96)

for (𝜉, 𝜂) ∈ 𝐷 ∩ {𝜂 < 𝜉0}. By (A.6) with 𝛼 = 𝛽 we have⃒⃒⃒⃒
2𝐹1

(︂
𝛽, 𝛽, 2𝛽;

1

𝑋(𝜉, 𝜂; 𝜉0, 1)

)︂⃒⃒⃒⃒
≤ 𝑐(𝛽)

(𝜉0 − 𝜉)𝛽(1− 𝜂)𝛽

(1− 𝜉)𝛽(𝜉0 − 𝜂)𝛽
. (2.97)

Applying (2.96)-(2.97) into (2.92) and taking into account that⃒⃒⃒⃒
𝑌

𝑋

⃒⃒⃒⃒
≤ 1,

1

𝑋
≤ 1− 𝜉0

1− 𝜂
, 0 < 𝜉 < 𝜂 < 𝜉0, (2.98)

we come to the estimate (2.94). �

Now we are ready to prove the special decomposition of the function

Ψ−(𝜉, 𝜂; 𝜉0, 1).

Theorem 2.7.1. The trace of the function Ψ−(𝜉, 𝜂; 𝜉0, 1) on the line

{𝜂0 = 1} can be decomposed in the following way :

Ψ−(𝜉, 𝜂; 𝜉0, 1) = Ψ−
1 (𝜉, 𝜂; 𝜉0) + Ψ−

2 (𝜉, 𝜂; 𝜉0) (2.99)

with

Ψ−
1 (𝜉, 𝜂; 𝜉0) := (𝜂 − 𝜉)2𝛽

[𝑛/2]∑︁
𝑘=0

𝜆𝑛𝑘(1− 𝜉0)
2𝑘−𝑛𝐸𝑛,𝛽

𝑘 (𝜉, 𝜂) (2.100)
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and

Ψ−
2 (𝜉, 𝜂; 𝜉0) :=

𝛾 (𝜂 − 𝜉)2𝛽

(1− 𝜉)𝛽(1− 𝜂)𝛽
{︀
𝜓1(𝜉, 𝜂; 𝜉0) + 𝜓2(𝜉, 𝜂; 𝜉0)

}︀
, (2.101)

where 𝜓1(𝜉, 𝜂; 𝜉0) and 𝜓2(𝜉, 𝜂; 𝜉0) are the functions (2.87) and (2.92) from

Lemma 2.7.3 and Lemma 2.7.4 respectively, 𝐸𝑛,𝛽
𝑘 (𝜉, 𝜂) are the functions

defined by (2.18) and 𝜆𝑛𝑘 = const ̸= 0. The function Ψ−
2 (𝜉, 𝜂; 𝜉0) satisfies

for (𝜉, 𝜂) ∈ 𝐷 ∩ {𝜂 < 𝜉0} the following estimate

|Ψ−
2 (𝜉, 𝜂; 𝜉0)| ≤ 𝑘

1− 𝜉0
(𝜉0 − 𝜂)𝛽(1− 𝜂)

, 𝑘 = const > 0. (2.102)

Proof. For Ψ−(𝜉, 𝜂; 𝜉0, 1) from (2.27)-(2.34) we obtain

Ψ−|𝜂0=1 =
𝛾 (𝜂 − 𝜉)2𝛽

(𝜉0 − 𝜉)𝛽(1− 𝜂)𝛽

𝑛∑︁
𝑖=0

∞∑︁
𝑗=0

𝑑𝑖 𝑏𝑖,𝑗

(︂
𝑌 𝑖

𝑋𝑗

)︂
(𝜉, 𝜂; 𝜉0, 1),

where 𝑏𝑖,𝑗 are the constants (2.89).

For 0 < 𝜉 < 𝜉0 < 1, using (A.11), we have(︂
𝜉0 − 𝜉

1− 𝜉

)︂𝑖−𝑗−𝛽

=
∞∑︁
𝑞=0

(𝑗 − 𝑖+ 𝛽)𝑞
𝑞!

(︂
1− 𝜉0
1− 𝜉

)︂𝑞

and according to this we find that

Ψ−(𝜉, 𝜂; 𝜉0, 1) =
𝛾 (𝜂 − 𝜉)2𝛽

(1− 𝜉)𝛽(1− 𝜂)𝛽
{︀
𝜓(𝜉, 𝜂; 𝜉0)+𝜓1(𝜉, 𝜂; 𝜉0)+𝜓2(𝜉, 𝜂; 𝜉0)

}︀
=

𝛾 (𝜂 − 𝜉)2𝛽

(1− 𝜉)𝛽(1− 𝜂)𝛽
𝜓(𝜉, 𝜂; 𝜉0) + Ψ−

2 (𝜉, 𝜂; 𝜉0), (2.103)
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where

𝜓(𝜉, 𝜂; 𝜉0) :=

𝑛∑︁
𝑖=0

𝑖∑︁
𝑗=0

𝑖−𝑗∑︁
𝑞=0

𝑑𝑖 𝑏𝑖,𝑗
(𝑗 − 𝑖+ 𝛽)𝑞

𝑞!

(−1)𝑖(1− 𝜉)𝑖−𝑗−𝑞(1− 𝜂)𝑖−𝑗(𝜂 − 𝜉)𝑗

(2− 𝜉 − 𝜂)𝑖(1− 𝜉0)𝑖−𝑗−𝑞
. (2.104)

Next, we aim to extract in 𝜓(𝜉, 𝜂; 𝜉0) the negative powers of 1− 𝜉0. To

do this, we introduce the new index 𝑝 = 𝑖− 𝑗 − 𝑞 instead of 𝑖:

𝜓(𝜉, 𝜂; 𝜉0) =
𝑛∑︁

𝑝=0

(︂
(1− 𝜉)(1− 𝜂)

(2− 𝜉 − 𝜂)(1− 𝜉0)

)︂𝑝

×
𝑛−𝑝∑︁
𝑗=0

𝑛−𝑝−𝑗∑︁
𝑞=0

𝑑𝑝+𝑗+𝑞 𝑏𝑝+𝑗+𝑞,𝑗
(𝛽 − 𝑝− 𝑞)𝑞
(−1)𝑝+𝑗+𝑞𝑞!

(︂
𝜂 − 𝜉

2− 𝜉 − 𝜂

)︂𝑗 (︂
1− 𝜂

2− 𝜉 − 𝜂

)︂𝑞

.

Using (A.1) and (A.4) we simplify

(𝛽 − 𝑝− 𝑗 − 𝑞)𝑗(𝛽 − 𝑝− 𝑞)𝑞
(1− 𝛽)𝑝+𝑗+𝑞

=
(−1)𝑗+𝑞

(1− 𝛽)𝑝

and we derive:

𝜓(𝜉, 𝜂; 𝜉0) =
𝑛∑︁

𝑝=0

(−1)𝑝 𝑑𝑝

(︂
(1− 𝜉)(1− 𝜂)

(2− 𝜉 − 𝜂)(1− 𝜉0)

)︂𝑝

×
𝑛−𝑝∑︁
𝑗=0

(𝑝− 𝑛)𝑗(𝑛+ 𝑝+ 1)𝑗
(𝑝+ 1)𝑗

(𝛽)𝑗
(2𝛽)𝑗 𝑗!

(︂
𝜂 − 𝜉

2− 𝜉 − 𝜂

)︂𝑗

×
𝑛−𝑝−𝑗∑︁
𝑞=0

(𝑝− 𝑛+ 𝑗)𝑞(𝑛+ 𝑝+ 𝑗 + 1)𝑞
(𝑝+ 𝑗 + 1)𝑞 𝑞!

(︂
1− 𝜂

2− 𝜉 − 𝜂

)︂𝑞

,
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which actually gives

𝜓(𝜉, 𝜂; 𝜉0) =
𝑛∑︁

𝑝=0

(−1)𝑝 𝑑𝑝

(︂
(1− 𝜉)(1− 𝜂)

(2− 𝜉 − 𝜂)(1− 𝜉0)

)︂𝑝

𝑄𝑛,𝑝

(︂
𝜂 − 𝜉

2− 𝜉 − 𝜂

)︂
,

where 𝑄𝑛,𝑝(𝑧) is the function (2.78) from Lemma 2.7.2.

Now, according to (2.79) we have non-zero terms in the sum only for

indexes 𝑝 of the same parity as 𝑛. For this reason we introduce the new

index 𝑘 = (𝑛− 𝑝)/2 and by Lemma 2.7.2 we obtain:

𝜓(𝜉, 𝜂; 𝜉0) =

[𝑛/2]∑︁
𝑘=0

(−1)𝑛 𝑑𝑛−2𝑘

(︂
(1− 𝜉)(1− 𝜂)

(2− 𝜉 − 𝜂)(1− 𝜉0)

)︂𝑛−2𝑘

× 𝑐𝑛,𝑛−2𝑘 2𝐹1

(︃
𝑛− 𝑘 +

1

2
,−𝑘, 1

2
+ 𝛽;

(︂
𝜂 − 𝜉

2− 𝜉 − 𝜂

)︂2
)︃

= (1− 𝜉)𝛽(1− 𝜂)𝛽
[𝑛/2]∑︁
𝑘=0

(−1)𝑛 𝑑𝑛−2𝑘𝑐𝑛,𝑛−2𝑘 𝐸
𝑛,𝛽
𝑘 (𝜉, 𝜂).

Putting this into (2.103), we conclude that (2.99)-(2.101) hold with

𝜆𝑛𝑘 := 𝛾 (−1)𝑛𝑐𝑛,𝑛−2𝑘 𝑑𝑛−2𝑘 ̸= 0. (2.105)

Finally, the estimate (2.102) follows directly from the estimates (2.90)

and (2.94). �
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2.8. Asymptotic expansion of the restriction U(𝜉,1)

at the point 𝜉 = 1

Now, introduce the scalar products

𝜇𝑛,𝛽𝑘 :=

∫︁
𝐷

(𝜂 − 𝜉)2𝛽𝐸𝑛,𝛽
𝑘 (𝜉, 𝜂)𝐹 (𝜉, 𝜂) 𝑑𝜉𝑑𝜂. (2.106)

Theorem 2.8.1. Suppose that 𝐹 ∈ 𝐶1(𝐷̄). Then the restriction 𝑈(𝜉, 1) of

the generalized solution of Problem 𝑃𝑚2 has the following expansion on the

segment {0 ≤ 𝜉 < 1}:

𝑈(𝜉, 1) =

[𝑛/2]∑︁
𝑘=0

𝜆𝑛𝑘𝜇
𝑛,𝛽
𝑘 (1−𝜉)2𝑘−𝑛−

[𝑛/2]∑︁
𝑘=0

𝜆𝑛𝑘𝐽
𝑛,𝛽
𝑘 (𝜉)(1−𝜉)2𝑘−𝑛+𝑔(𝜉), (2.107)

where

𝐽𝑛,𝛽
𝑘 (𝜉) :=

∫︁ 1

𝜉

∫︁ 𝜂1

0

(𝜂1 − 𝜉1)
2𝛽𝐸𝑛,𝛽

𝑘 (𝜉1, 𝜂1)𝐹 (𝜉1, 𝜂1) 𝑑𝜉1𝑑𝜂1, (2.108)

𝜆𝑛𝑘 = const ̸= 0 (see (2.105)), 𝑔(𝜉) ∈ 𝐶1([0, 1)) and

|𝑔(𝜉)| ≤ 𝐶‖𝐹‖𝐶(𝐷)𝜉(1− 𝜉)1−𝛽, (2.109)

with a constant 𝐶 > 0 independent of 𝐹 .

Proof. According to Theorem 2.6.2 the condition 𝐹 ∈ 𝐶1(𝐷̄) assures

that there exists an unique generalized solution 𝑈(𝜉, 𝜂) of Problem 𝑃𝑚2

and according to Definition 2.3.1 we see that the restriction 𝑈(𝜉, 1) should

belong to 𝐶1([0, 1)).
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Next, according to Theorem 2.6.2 the generalized solution at each point

(𝜉0, 𝜂0) ∈ 𝐷 has the representation (2.62), but we find that by continuity

for 𝜂0 = 1, 0 < 𝜉0 < 1 this equality still holds, i.e.

𝑈(𝜉0, 1) =

∫︁ 𝜉0

0

∫︁ 1

𝜉

𝐹 (𝜉, 𝜂)Ψ(𝜉, 𝜂; 𝜉0, 1) 𝑑𝜂𝑑𝜉.

Using the decomposition of Ψ−(𝜉, 𝜂; 𝜉0, 1) given in Theorem 2.7.1 we

obtain

𝑈(𝜉0, 1) =

∫︁ 𝜉0

0

∫︁ 𝜉0

𝜉

𝐹 (𝜉, 𝜂)Ψ−
1 (𝜉, 𝜂; 𝜉0) 𝑑𝜂𝑑𝜉

+

∫︁ 𝜉0

0

∫︁ 𝜉0

𝜉

𝐹 (𝜉, 𝜂)Ψ−
2 (𝜉, 𝜂; 𝜉0) 𝑑𝜂𝑑𝜉 +

∫︁ 𝜉0

0

∫︁ 1

𝜉0

𝐹 (𝜉, 𝜂)Ψ+(𝜉, 𝜂; 𝜉0, 1) 𝑑𝜂𝑑𝜉

=: 𝐽1(𝜉0) + 𝐽2(𝜉0) + 𝐽3(𝜉0).

According to (2.100) we have

𝐽1(𝜉0) =

[𝑛/2]∑︁
𝑘=0

𝜆𝑛𝑘(1− 𝜉0)
2𝑘−𝑛

∫︁ 𝜉0

0

∫︁ 𝜉0

𝜉

(𝜂 − 𝜉)2𝛽𝐹 (𝜉, 𝜂)𝐸𝑛,𝛽
𝑘 (𝜉, 𝜂) 𝑑𝜂𝑑𝜉

=

[𝑛/2]∑︁
𝑘=0

𝜆𝑛𝑘
(︀
𝜇𝑛,𝛽𝑘 − 𝐽𝑛,𝛽

𝑘 (𝜉0)
)︀
(1− 𝜉0)

2𝑘−𝑛.

From here it is easy to check that 𝐽1(𝜉) ∈ 𝐶1([0, 1)).

For 𝐽2(𝜉0), using the estimate (2.102) from Theorem 2.7.1, we obtain

|𝐽2(𝜉0)| ≤ 𝑘‖𝐹‖𝐶(𝐷)(1− 𝜉0)

∫︁ 𝜉0

0

∫︁ 𝜉0

𝜉

(𝜉0 − 𝜂)−𝛽(1− 𝜂)−1 𝑑𝜂𝑑𝜉. (2.110)
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Using the calculations (2.48)-(2.49) with 𝜂0 = 1, we have⃒⃒⃒⃒∫︁ 𝜉0

𝜉

(𝜉0 − 𝜂)−𝛽(1− 𝜂)−1 𝑑𝜂

⃒⃒⃒⃒
≤ const (1− 𝜉0)

−𝛽. (2.111)

Consequently, applying this into (2.110) we obtain

|𝐽2(𝜉0)| ≤ const ‖𝐹‖𝐶(𝐷)𝜉0(1− 𝜉0)
1−𝛽. (2.112)

According to the estimates (2.35) and (2.40), we have an estimate

|Ψ+(𝜉, 𝜂; 𝜉0, 1)| ≤ const (𝜂 − 𝜉0)
−𝛽.

From here for 𝐽3(𝜉0) we have

|𝐽3(𝜉0)| ≤ const ‖𝐹‖𝐶(𝐷)𝜉0(1− 𝜉0)
1−𝛽. (2.113)

Finally, defining

𝑔(𝜉0) := 𝐽2(𝜉0) + 𝐽3(𝜉0)

=

∫︁ 𝜉0

0

∫︁ 𝜉0

𝜉

𝐹 (𝜉, 𝜂)Ψ−
2 (𝜉, 𝜂; 𝜉0) 𝑑𝜂𝑑𝜉+

∫︁ 𝜉0

0

∫︁ 1

𝜉0

𝐹 (𝜉, 𝜂)Ψ+(𝜉, 𝜂; 𝜉0, 1) 𝑑𝜂𝑑𝜉,

(2.114)

we see that the expansion (2.107) holds, where (2.109) follows from the

estimates (2.112), (2.113) and, obviously, 𝑔(𝜉) ∈ 𝐶1([0, 1)), because

𝑔(𝜉) = 𝑈(𝜉, 1)− 𝐽1(𝜉).
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The proof is complete. �

Remark 2.8.1. For 𝑘 = 0, . . . , [𝑛/2] the functions 𝐽𝑛,𝛽
𝑘 (𝜉)(1 − 𝜉)2𝑘−𝑛 are

bounded on the segment 0 ≤ 𝜉 < 1 and satisfy the estimate

|𝐽𝑛,𝛽
𝑘 (𝜉)(1− 𝜉)2𝑘−𝑛| ≤ 𝐶‖𝐹‖𝐶(𝐷)(1− 𝜉)1−𝛽 (2.115)

with 𝐶 = const > 0 independent of 𝐹 . This means that the coefficients 𝜇𝑛,𝛽𝑘

in the expansion (2.107) control entirely the singular part of the function

𝑈(𝜉, 1).

Indeed, the functions 𝐸𝑛,𝛽
𝑘 (𝜉, 𝜂), given by (2.18), can be estimated in

𝐷 in the following way:

|𝐸𝑛,𝛽
𝑘 (𝜉, 𝜂)| ≤ const (1− 𝜉)−𝛽(1− 𝜂)𝑛−2𝑘−𝛽, (2.116)

because the hypergeometric function in (2.18) is bounded. Then we have

|𝐽𝑛,𝛽
𝑘 (𝜉0)| ≤ 𝐶1‖𝐹‖𝐶(𝐷)

∫︁ 1

𝜉0

∫︁ 𝜂

0

(𝜂 − 𝜉)2𝛽(1− 𝜉)−𝛽(1− 𝜂)𝑛−2𝑘−𝛽 𝑑𝜉𝑑𝜂

≤ 𝐶‖𝐹‖𝐶(𝐷)(1− 𝜉0)
𝑛−2𝑘+1−𝛽, 𝐶1 = const > 0.

From here it follows the estimate (2.115).

2.9. The derivative U𝜉(𝜉,1)

For our further considerations in this section we study the derivative 𝑈𝜉(𝜉, 1).
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Lemma 2.9.1. Let 𝜓1(𝜉, 𝜂; 𝜉0) be the function (2.87) from Lemma 2.7.3.

Then the following estimate holds for (𝜉, 𝜂) ∈ 𝐷 ∩ {𝜂 < 𝜉0}:⃒⃒⃒⃒
𝜕𝜓1

𝜕𝜉0
(𝜉, 𝜂; 𝜉0)

⃒⃒⃒⃒
≤ 𝐶

(1− 𝜉)𝛽

(𝜉0 − 𝜉)1+𝛽
, 𝐶 = const > 0. (2.117)

Proof. For the function 𝑃𝑖,𝑗(𝜉, 𝜉0) (see (2.88)), with use of (A.1) and

(A.4), we calculate

𝜕𝑃𝑖,𝑗

𝜕𝜉0
(𝜉, 𝜉0) =

−1

1− 𝜉

∞∑︁
𝑞=𝑖−𝑗+1

(𝑗 − 𝑖+ 𝛽)𝑞
(𝑞 − 1)!

(︂
1− 𝜉0
1− 𝜉

)︂𝑞−1

=
(−1)𝑖−𝑗(−𝛽)𝑖−𝑗+1

1− 𝜉

∞∑︁
𝑁=0

(1 + 𝛽)𝑁
(1 +𝑁)𝑖−𝑗 𝑁 !

(︂
1− 𝜉0
1− 𝜉

)︂𝑁+𝑖−𝑗

.

Taking into account (A.11), we see that for 𝑗 = 0, . . . , 𝑖 it is fulfilled

0 <
∞∑︁

𝑁=0

(1 + 𝛽)𝑁
(1 +𝑁)𝑖−𝑗 𝑁 !

(︂
1− 𝜉0
1− 𝜉

)︂𝑁

≤
∞∑︁

𝑁=0

(1 + 𝛽)𝑁
𝑁 !

(︂
1− 𝜉0
1− 𝜉

)︂𝑁

=

(︂
1− 𝜉

𝜉0 − 𝜉

)︂1+𝛽

,

where 0 < 𝛽 < 1, 0 < 𝜉 < 𝜉0 < 1. Then we have the estimate⃒⃒⃒⃒
𝜕𝑃𝑖,𝑗

𝜕𝜉0
(𝜉, 𝜉0)

⃒⃒⃒⃒
≤ 𝐶1

(︂
1− 𝜉0
1− 𝜉

)︂𝑖−𝑗
(1− 𝜉)𝛽

(𝜉0 − 𝜉)1+𝛽
, 𝐶1 = const > 0 (2.118)

for 0 < 𝛽 < 1, 0 < 𝜉 < 𝜉0 < 1.
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Next, we calculate:

𝜕𝜓1

𝜕𝜉0
(𝜉, 𝜂; 𝜉0) =

𝑛∑︁
𝑖=0

𝑖∑︁
𝑗=0

𝑑𝑖 𝑏𝑖,𝑗𝑃𝑖,𝑗(𝜉, 𝜉0)
𝑖− 𝑗

1− 𝜉0

(︂
(1− 𝜉)(1− 𝜂)

1− 𝜉0

)︂𝑖−𝑗
(−1)𝑖 (𝜂 − 𝜉)𝑗

(2− 𝜉 − 𝜂)𝑖

+
𝑛∑︁

𝑖=0

𝑖∑︁
𝑗=0

𝑑𝑖 𝑏𝑖,𝑗
𝜕𝑃𝑖,𝑗

𝜕𝜉0
(𝜉, 𝜉0)

(︂
(1− 𝜉)(1− 𝜂)

1− 𝜉0

)︂𝑖−𝑗
(−1)𝑖 (𝜂 − 𝜉)𝑗

(2− 𝜉 − 𝜂)𝑖
.

Applying here the estimates (2.91) and (2.118) we obtain the final result

(2.117). �

Lemma 2.9.2. Define the function

𝜓3(𝜉, 𝜂; 𝜉0) := 𝜓2(𝜉, 𝜂; 𝜉0)−
(︂
1− 𝜉

𝜉0 − 𝜉

)︂𝛽

𝑄0(𝜉, 𝜂; 𝜉0)

=

(︂
1− 𝜉

𝜉0 − 𝜉

)︂𝛽 𝑛∑︁
𝑖=1

𝑑𝑖 𝑌
𝑖(𝜉, 𝜂; 𝜉0, 1)𝑄𝑖(𝜉, 𝜂; 𝜉0), (2.119)

where 𝜓2(𝜉, 𝜂; 𝜉0) and 𝑄𝑖(𝜉, 𝜂; 𝜉0) are the functions (2.92) and (2.93) re-

spectively from Lemma 2.7.4. Then the following estimates hold for (𝜉, 𝜂) ∈

𝐷 ∩ {𝜂 < 𝜉0}:

|𝜓3(𝜉, 𝜂; 𝜉0)| ≤ 𝐶
(1− 𝜉0)(1− 𝜉)𝛽

(1− 𝜂)(𝜉0 − 𝜉)𝛽
(2.120)⃒⃒⃒⃒

𝜕𝜓3

𝜕𝜉0
(𝜉, 𝜂; 𝜉0)

⃒⃒⃒⃒
≤ 𝐶 (1− 𝜉)

(1− 𝜂)1−𝛽(𝜉0 − 𝜉)(𝜉0 − 𝜂)𝛽
(2.121)

with 𝐶 = const > 0.

Proof. In the proof of Lemma 2.7.4 we have obtained an estimate for

the function 𝑄𝑖(𝜉, 𝜂; 𝜉0) with 𝑖 = 0, . . . , 𝑛 (see (2.96)), but if exclude 𝑖 = 0,
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we can improve this estimate. Actually, substituting in (2.95) the relation

(2𝛽)𝑁(2𝛽 +𝑁)𝑖+1 = 2𝛽(2𝛽 + 1)𝑁(2𝛽 + 1 +𝑁)𝑖,

we obtain

𝑄𝑖(𝜉, 𝜂; 𝜉0) =
(−1)𝑖(1− 𝛽)𝑖

2𝛽

×
∞∑︁

𝑁=0

(𝛽 +𝑁)(𝛽)𝑁(𝛽)𝑁(𝛽 +𝑁)𝑖+1

(2𝛽 + 1)𝑁(2𝛽 + 1 +𝑁)𝑖(1 +𝑁)𝑖+1𝑁 !
𝑋−𝑁−𝑖−1(𝜉, 𝜂; 𝜉0, 1).

(2.122)

Now we have

(𝛽 +𝑁)(𝛽 +𝑁)𝑖+1

(2𝛽 + 1 +𝑁)𝑖(1 +𝑁)𝑖+1
< 1, 𝑖 = 1, . . . , 𝑛, 0 < 𝛽 < 1,

and respectively

|𝑄𝑖| ≤
(1− 𝛽)𝑖

2𝛽
𝑋−𝑖−1(𝜉, 𝜂; 𝜉0, 1) 2𝐹1

(︂
𝛽, 𝛽, 2𝛽 + 1;

1

𝑋(𝜉, 𝜂; 𝜉0, 1)

)︂
≤ 𝐶1𝑋

−𝑖−1(𝜉, 𝜂; 𝜉0, 1), 𝐶1 = const > 0 (2.123)

for (𝜉, 𝜂) ∈ 𝐷 ∩ {𝜂 < 𝜉0}, because the hypergeometric function here is

bounded according to (A.8). Applying (2.123) into (2.119) and recalling

the estimates (2.98), we find that (2.120) holds.

Next, we calculate

𝜕𝜓3

𝜕𝜉0
(𝜉, 𝜂; 𝜉0) = 𝜓3,1(𝜉, 𝜂; 𝜉0) + 𝜓3,2(𝜉, 𝜂; 𝜉0) + 𝜓3,3(𝜉, 𝜂; 𝜉0)
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with

𝜓3,1(𝜉, 𝜂; 𝜉0) :=
−𝛽 𝜓3(𝜉, 𝜂; 𝜉0)

𝜉0 − 𝜉
,

𝜓3,2(𝜉, 𝜂; 𝜉0) :=

(︂
1− 𝜉

𝜉0 − 𝜉

)︂𝛽 𝑛∑︁
𝑖=1

𝑖 𝑑𝑖 (𝑌
𝑖−1𝑌𝜉0)(𝜉, 𝜂; 𝜉0, 1)𝑄𝑖(𝜉, 𝜂; 𝜉0),

𝜓3,3(𝜉, 𝜂; 𝜉0) :=

(︂
1− 𝜉

𝜉0 − 𝜉

)︂𝛽 𝑛∑︁
𝑖=1

𝑑𝑖 𝑌
𝑖(𝜉, 𝜂; 𝜉0, 1)

𝜕𝑄𝑖

𝜕𝜉0
(𝜉, 𝜂; 𝜉0). (2.124)

A. Estimation of the function 𝜓3,1(𝜉, 𝜂; 𝜉0). Using the estimate (2.120),

we immediately obtain:

|𝜓3,1(𝜉, 𝜂; 𝜉0)| ≤ 𝐶2
(1− 𝜉0)(1− 𝜉)𝛽

(1− 𝜂)(𝜉0 − 𝜉)1+𝛽
≤ 𝐶2 (1− 𝜉)

(1− 𝜂)1−𝛽(𝜉0 − 𝜉)(𝜉0 − 𝜂)𝛽
,

(2.125)

where 𝐶2 = const > 0, (𝜉, 𝜂) ∈ 𝐷 ∩ {𝜂 < 𝜉0}.

B. Estimation of the function 𝜓3,2(𝜉, 𝜂; 𝜉0). Using the estimates (2.98),

(2.123) and

|𝑌𝜉0(𝜉, 𝜂; 𝜉0, 1)| =
(1− 𝜉)(1− 𝜂)

(2− 𝜉 − 𝜂)(1− 𝜉0)2
≤ 1− 𝜂

(1− 𝜉0)2

in 𝐷 ∩ {𝜂 < 𝜉0}, we obtain

|𝜓3,2(𝜉, 𝜂; 𝜉0)| ≤ 𝐶3
(1− 𝜉)𝛽

(1− 𝜂)(𝜉0 − 𝜉)𝛽
≤ 𝐶3 (1− 𝜉)

(1− 𝜂)1−𝛽(𝜉0 − 𝜉)(𝜉0 − 𝜂)𝛽
,

(2.126)

where 𝐶3 = const > 0, (𝜉, 𝜂) ∈ 𝐷 ∩ {𝜂 < 𝜉0}.

C. Estimation of the function 𝜓3,3(𝜉, 𝜂; 𝜉0). First, from (2.122) we
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calculate:

𝜕𝑄𝑖

𝜕𝜉0
(𝜉, 𝜂; 𝜉0) =

(−1)𝑖(1− 𝛽)𝑖
2𝛽

×
∞∑︁

𝑁=0

(𝛽 +𝑁)(𝛽)𝑁(𝛽)𝑁(𝛽 +𝑁)𝑖+1

(2𝛽 + 1)𝑁(2𝛽 + 1 +𝑁)𝑖(1 +𝑁)𝑖𝑁 !
𝑋−𝑁−𝑖(1/𝑋)𝜉0(𝜉, 𝜂; 𝜉0, 1)

=
1

2
(−1)𝑖(1− 𝛽)𝑖

∞∑︁
𝑁=0

(𝛽 + 1)𝑁(𝛽)𝑁
(2𝛽 + 1)𝑁 𝑁 !

(𝛽 +𝑁 + 1)𝑖(𝛽 +𝑁)

(2𝛽 + 1 +𝑁)𝑖(1 +𝑁)𝑖

×𝑋−𝑁−𝑖(1/𝑋)𝜉0(𝜉, 𝜂; 𝜉0, 1).

From here it follows

⃒⃒⃒⃒
𝜕𝑄𝑖

𝜕𝜉0
(𝜉, 𝜂; 𝜉0)

⃒⃒⃒⃒
≤ 1

2
(1− 𝛽)𝑖

⃒⃒
𝑋−𝑖(1/𝑋)𝜉0(𝜉, 𝜂; 𝜉0, 1)

⃒⃒
× 2𝐹1

(︂
𝛽 + 1, 𝛽, 2𝛽 + 1;

1

𝑋(𝜉, 𝜂; 𝜉0, 1)

)︂
(2.127)

for 0 < 𝛽 < 1, 𝑖 = 1, . . . , 𝑛 and (𝜉, 𝜂) ∈ 𝐷 ∩ {𝜂 < 𝜉0}. By (A.6) with

𝛼 = 𝛽 we have⃒⃒⃒⃒
2𝐹1

(︂
𝛽 + 1, 𝛽, 2𝛽 + 1;

1

𝑋(𝜉, 𝜂; 𝜉0, 1)

)︂⃒⃒⃒⃒
≤ 𝑐(𝛽)

(𝜉0 − 𝜉)𝛽(1− 𝜂)𝛽

(1− 𝜉)𝛽(𝜉0 − 𝜂)𝛽
.

(2.128)

Now, applying (2.127)-(2.128) into (2.124) and taking into account that

⃒⃒
(1/𝑋)𝜉0(𝜉, 𝜂; 𝜉0, 1)

⃒⃒
=

(1− 𝜉)(𝜂 − 𝜉)

(1− 𝜂)(𝜉0 − 𝜉)2
≤ 1− 𝜉

(1− 𝜂)(𝜉0 − 𝜉)
,

we obtain the following estimate

|𝜓3,3(𝜉, 𝜂; 𝜉0)| ≤
𝐶4 (1− 𝜉)

(1− 𝜂)1−𝛽(𝜉0 − 𝜉)(𝜉0 − 𝜂)𝛽
, (2.129)
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where 𝐶4 = const > 0, (𝜉, 𝜂) ∈ 𝐷 ∩ {𝜂 < 𝜉0}.

Finally, (2.121) follows directly from the estimates (2.125), (2.126) and

(2.129). �

Theorem 2.9.1. Suppose that 𝐹 ∈ 𝐶1(𝐷̄). Then the derivative 𝑈𝜉(𝜉, 1)

of the generalized solution of Problem 𝑃𝑚2 has the following representation

on the segment {0 ≤ 𝜉 < 1}:

𝑈𝜉(𝜉, 1) =

[(𝑛−1)/2]∑︁
𝑘=0

(𝑛− 2𝑘)𝜆𝑛𝑘
(︀
𝜇𝑛,𝛽𝑘 − 𝐽𝑛,𝛽

𝑘 (𝜉)
)︀
(1− 𝜉)2𝑘−𝑛−1

+

[𝑛/2]∑︁
𝑘=0

𝜆𝑛𝑘(1− 𝜉)2𝑘−𝑛

∫︁ 𝜉

0

(𝜉 − 𝜉1)
2𝛽𝐸𝑛,𝛽

𝑘 (𝜉1, 𝜉)𝐹 (𝜉1, 𝜉) 𝑑𝜉1 + 𝑔′(𝜉), (2.130)

where 𝜆𝑛𝑘 ̸= 0 are the constants and 𝑔(𝜉) is the function from Theorem

2.8.1. The derivative 𝑔′(𝜉) satisfies the estimate

|𝑔′(𝜉)| ≤ 𝐶‖𝐹‖𝐶(𝐷)(1− 𝜉)−𝛽, (2.131)

with a constant 𝐶 > 0 independent of 𝐹 .

Proof. Obviously, formula (2.130) is obtained by a straightforward

differentiation of (2.107) and we only have to prove the estimate (2.131).

Recall that an explicit form of the function 𝑔(𝜉) is given by (2.114).
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Now, by (2.101) we have that

Ψ2(𝜉, 𝜂; 𝜉0) =
𝛾 (𝜂 − 𝜉)2𝛽

(1− 𝜉)𝛽(1− 𝜂)𝛽
{︀
𝜓1(𝜉, 𝜂; 𝜉0) + 𝜓2(𝜉, 𝜂; 𝜉0)

}︀
=

𝛾 (𝜂 − 𝜉)2𝛽

(1− 𝜉)𝛽(1− 𝜂)𝛽

{︂
𝜓1(𝜉, 𝜂; 𝜉0) + 𝜓3(𝜉, 𝜂; 𝜉0)−

(1− 𝜉)𝛽

(𝜉0 − 𝜉)𝛽

}︂
+𝐻−(𝜉, 𝜂; 𝜉0, 1),

where the functions 𝜓1(𝜉, 𝜂; 𝜉0), 𝜓1(𝜉, 𝜂; 𝜉0) and 𝜓3(𝜉, 𝜂; 𝜉0) are defined in

Lemmas 2.7.3, 2.7.4 and 2.9.2 respectively and 𝐻−(𝜉, 𝜂; 𝜉0, 𝜂0) is given by

(2.29). Applying this equality into (2.114) we obtain:

𝑔(𝜉0) = 𝑔1(𝜉0) + 𝑔2(𝜉0) + 𝑔3(𝜉0)

with

𝑔1(𝜉0) :=

∫︁ 𝜉0

0

∫︁ 𝜉0

𝜉

𝛾 (𝜂 − 𝜉)2𝛽

(1− 𝜉)𝛽(1− 𝜂)𝛽
𝜓1(𝜉, 𝜂; 𝜉0)𝐹 (𝜉, 𝜂) 𝑑𝜂𝑑𝜉,

𝑔2(𝜉0) :=

∫︁ 𝜉0

0

∫︁ 𝜉0

𝜉

𝛾 (𝜂 − 𝜉)2𝛽

(1− 𝜉)𝛽(1− 𝜂)𝛽

(︂
𝜓3(𝜉, 𝜂; 𝜉0)−

(1− 𝜉)𝛽

(𝜉0 − 𝜉)𝛽

)︂
𝐹 (𝜉, 𝜂) 𝑑𝜂𝑑𝜉,

𝑔3(𝜉0) :=

∫︁ 𝜉0

0

∫︁ 𝜉0

𝜉

𝐹 (𝜉, 𝜂)𝐻−(𝜉, 𝜂; 𝜉0, 1) 𝑑𝜂𝑑𝜉

+

∫︁ 𝜉0

0

∫︁ 1

𝜉0

𝐹 (𝜉, 𝜂)Ψ+(𝜉, 𝜂; 𝜉0, 1) 𝑑𝜂𝑑𝜉.
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A. Estimation of the function 𝑔′1(𝜉0). First, we calculate

𝑔′1(𝜉0) =

∫︁ 𝜉0

0

∫︁ 𝜉0

𝜉

𝛾 (𝜂 − 𝜉)2𝛽

(1− 𝜉)𝛽(1− 𝜂)𝛽
𝜕𝜓1

𝜕𝜉0
(𝜉, 𝜂; 𝜉0)𝐹 (𝜉, 𝜂) 𝑑𝜂𝑑𝜉

+

∫︁ 𝜉0

0

𝛾 (𝜉0 − 𝜉)2𝛽

(1− 𝜉)𝛽(1− 𝜉0)𝛽
𝜓1(𝜉, 𝜉0; 𝜉0)𝐹 (𝜉, 𝜉0) 𝑑𝜉.

Now, with use of the estimates (2.90) and (2.117) we get:

|𝑔′1(𝜉0)| ≤ 𝐶1‖𝐹‖𝐶(𝐷)

{︂∫︁ 𝜉0

0

∫︁ 𝜉0

𝜉

(𝜂 − 𝜉)2𝛽

(1− 𝜂)𝛽(𝜉0 − 𝜉)1+𝛽
𝑑𝜂𝑑𝜉

+

∫︁ 𝜉0

0

(𝜉0 − 𝜉)𝛽

(1− 𝜉0)𝛽
𝑑𝜉

}︂
≤ 𝐶2‖𝐹‖𝐶(𝐷)(1− 𝜉0)

−𝛽,

where 𝐶1, 𝐶2 = const > 0 are independent of 𝐹 .

B. Estimation of the function 𝑔′2(𝜉0). Next, we compute

𝑔′2(𝜉0) =∫︁ 𝜉0

0

∫︁ 𝜉0

𝜉

𝛾 (𝜂 − 𝜉)2𝛽

(1− 𝜉)𝛽(1− 𝜂)𝛽

(︂
𝜕𝜓3

𝜕𝜉0
(𝜉, 𝜂; 𝜉0) +

𝛽 (1− 𝜉)𝛽

(𝜉0 − 𝜉)1+𝛽

)︂
𝐹 (𝜉, 𝜂) 𝑑𝜂𝑑𝜉

+

∫︁ 𝜉0

0

𝛾 (𝜉0 − 𝜉)2𝛽

(1− 𝜉)𝛽(1− 𝜉0)𝛽

(︂
𝜓3(𝜉, 𝜉0; 𝜉0)−

(1− 𝜉)𝛽

(𝜉0 − 𝜉)𝛽

)︂
𝐹 (𝜉, 𝜉0) 𝑑𝜉.

From the estimate (2.120) in Lemma 2.9.2 we conclude that by continuity

we have

|𝜓3(𝜉, 𝜉0; 𝜉0)| ≤ 𝐶
(1− 𝜉)𝛽

(𝜉0 − 𝜉)𝛽
, 0 < 𝜉 < 𝜉0.
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Using this together with the estimate (2.121) from Lemma 2.9.2, we obtain

|𝑔′2(𝜉0)| ≤ 𝐶3‖𝐹‖𝐶(𝐷)

{︂∫︁ 𝜉0

0

∫︁ 𝜉0

𝜉

(𝜂 − 𝜉)2𝛽(1− 𝜉)1−𝛽

(1− 𝜂)(𝜉0 − 𝜉)(𝜉0 − 𝜂)𝛽
𝑑𝜂𝑑𝜉

+

∫︁ 𝜉0

0

(𝜉0 − 𝜉)𝛽

(1− 𝜉0)𝛽
𝑑𝜉

}︂
with 𝐶3 = const > 0 independent of 𝐹 .

Taking into account that

(𝜂 − 𝜉)2𝛽

𝜉0 − 𝜉
≤ (𝜉0 − 𝜉)2𝛽−1, 0 < 𝜉 < 𝜂 < 𝜉0

and using the inequality (2.111), we come to the estimate

|𝑔′2(𝜉0)| ≤ 𝐶4‖𝐹‖𝐶(𝐷)(1− 𝜉0)
−𝛽

with 𝐶4 = const > 0 independent of 𝐹 .

C. Estimation of the function 𝑔′3(𝜉0). We may rewrite the function

𝑔3(𝜉0) in the following way:

𝑔3(𝜉0) =

∫︁ 𝜉0

0

∫︁ 𝜉0

𝜉

𝐹 (𝜉, 𝜂)𝐻−(𝜉, 𝜂; 𝜉0, 1) 𝑑𝜂𝑑𝜉

+

∫︁ 𝜉0

0

∫︁ 1

𝜉0

𝐹 (𝜉, 𝜂)𝐻+(𝜉, 𝜂; 𝜉0, 1) 𝑑𝜂𝑑𝜉 +

∫︁ 𝜉0

0

∫︁ 1

𝜉0

𝐹 (𝜉, 𝜂)𝐺+(𝜉, 𝜂; 𝜉0, 1) 𝑑𝜂𝑑𝜉

= 𝑈𝐻(𝜉0, 1) +

∫︁ 𝜉0

0

∫︁ 1

𝜉0

𝐹 (𝜉, 𝜂)𝐺+(𝜉, 𝜂; 𝜉0, 1) 𝑑𝜂𝑑𝜉.
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Then we have

𝑔′3(𝜉0) = 𝑈𝐻
𝜉0
(𝜉0, 1) +

∫︁ 𝜉0

0

∫︁ 1

𝜉0

𝐹 (𝜉, 𝜂)𝐺+
𝜉0
(𝜉, 𝜂; 𝜉0, 1) 𝑑𝜂𝑑𝜉

−
∫︁ 𝜉0

0

𝐹 (𝜉, 𝜉0)𝐺
+(𝜉, 𝜉0; 𝜉0, 1) 𝑑𝜉.

Applying here the estimates (2.40)-(2.41) and (2.52)-(2.53), we conclude

that

|𝑔′3(𝜉0)| ≤ 𝐶5‖𝐹‖𝐶(𝐷)(1− 𝜉0)
−𝛽

with 𝐶5 = const > 0 independent of 𝐹 .

The proof is complete. �

Remark 2.9.1. For the terms

𝑑

𝑑𝜉

[︀
𝜆𝑛𝑘𝐽

𝑛,𝛽
𝑘 (𝜉)(1− 𝜉)2𝑘−𝑛

]︀
= (𝑛− 2𝑘)𝜆𝑛𝑘𝐽

𝑛,𝛽
𝑘 (𝜉)(1− 𝜉)2𝑘−𝑛−1

− 𝜆𝑛𝑘(1− 𝜉)2𝑘−𝑛

∫︁ 𝜉

0

(𝜉 − 𝜉1)
2𝛽𝐸𝑛,𝛽

𝑘 (𝜉1, 𝜉)𝐹 (𝜉1, 𝜉) 𝑑𝜉1

in the expansion (2.130) we have the following estimate on the segment

0 ≤ 𝜉 < 1: ⃒⃒⃒⃒
𝑑

𝑑𝜉

[︀
𝜆𝑛𝑘𝐽

𝑛,𝛽
𝑘 (𝜉)(1− 𝜉)2𝑘−𝑛

]︀⃒⃒⃒⃒
≤ 𝐶‖𝐹‖𝐶(𝐷)(1− 𝜉)−𝛽

with 𝐶 = const > 0 independent of 𝐹 . This easily follows from the estimate

(2.115) and from (2.116) which implies the estimate⃒⃒⃒⃒
𝑑

𝑑𝜉
𝐽𝑛,𝛽
𝑘 (𝜉)

⃒⃒⃒⃒
≤ 𝐶‖𝐹‖𝐶(𝐷)(1− 𝜉)𝑛−2𝑘−𝛽. (2.132)
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2.10. Asymptotic expansion of the function U(𝜉, 𝜂)

From here, using the data which we obtained for the generalized solution

on the boundary segment 𝜂 = 1, 0 ≤ 𝜉 < 1, we will study the behavior of

𝑈(𝜉, 𝜂) in the region 𝐷. Actually, the generalized solution of Problem 𝑃𝑚2

can be obtained by solving the following Goursat problem:

Problem PG
m2. Given a point (𝜉0, 𝜂0) ∈ 𝐷, find a solution of the

equation

𝐸𝛽[𝑈 ] = 𝐹 (𝜉, 𝜂)

in the region

Π := {(𝜉, 𝜂) : 0 < 𝜉 < 𝜉0, 𝜂0 < 𝜂 < 1},

satisfying the following boundary conditions :

𝑈(0, 𝜂) = 0,

𝑈(𝜉, 1) =

[𝑛/2]∑︁
𝑘=0

𝜆𝑛𝑘
(︀
𝜇𝑛,𝛽𝑘 − 𝐽𝑛,𝛽

𝑘 (𝜉)
)︀
(1− 𝜉)2𝑘−𝑛 + 𝑔(𝜉).

(The function 𝑈(𝜉, 1) is the one which we found in Theorem 2.8.1).

The solution of this problem obtained by the Riemann method is the

following one:

𝑈(𝜉0, 𝜂0) =

∫︁ 𝜉0

0

(︂
𝑈𝜉(𝜉, 1)−

𝛽

1− 𝜉
𝑈(𝜉, 1)

)︂
ℛ(𝜉, 1; 𝜉0, 𝜂0) 𝑑𝜉

−
∫︁ 1

𝜂0

∫︁ 𝜉0

0

𝐹 (𝜉, 𝜂)ℛ(𝜉, 𝜂; 𝜉0, 𝜂0) 𝑑𝜉𝑑𝜂, (2.133)
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where ℛ(𝜉, 𝜂; 𝜉0, 𝜂0) is the Riemann function for equation (2.15).

At the points (𝜉, 𝜂) ∈ Π, where |𝑋(𝜉, 𝜂; 𝜉0, 𝜂0)| < 1, the Riemann

function coincides with the function Ψ+(𝜉, 𝜂; 𝜉0, 𝜂0) (see (2.22)), which may

be written as

Ψ+(𝜉, 𝜂; 𝜉0, 𝜂0) =

(︂
𝜂 − 𝜉

𝜂0 − 𝜉0

)︂𝛽 𝑛∑︁
𝑖=0

𝑐𝑖𝑌
𝑖
2𝐹1(𝛽, 1− 𝛽, 𝑖+ 1;𝑋). (2.134)

If (𝜉0, 𝜂0) belongs to the region

𝒯 :=

{︂
(𝜉, 𝜂) : 0 < 𝜉 < 1,

1

2
(1 + 𝜉) < 𝜂 < 1

}︂
⊂ 𝐷, (2.135)

then at all the points (𝜉, 𝜂) ∈ Π we have |𝑋| < 1 and, respectively,

Ψ+(𝜉, 𝜂; 𝜉0, 𝜂0) is well defined. Otherwise, if (𝜉0, 𝜂0) /∈ 𝒯 , in a part of the

region Π we may have 𝑋 < −1. In this case, applying (A.14) into (2.134),

the series Ψ+(𝜉, 𝜂; 𝜉0, 𝜂0) can be analytically continued in the whole region

Π as

Ψ+
𝐴(𝜉, 𝜂; 𝜉0, 𝜂0) :=

(𝜂 − 𝜉)2𝛽

(𝜂0 − 𝜉)𝛽(𝜂 − 𝜉0)𝛽

𝑛∑︁
𝑖=0

𝑐𝑖𝑌
𝑖
2𝐹1(𝛽, 𝛽 + 𝑖, 𝑖+ 1;𝑍)

(2.136)

or

Ψ+
𝐵(𝜉, 𝜂; 𝜉0, 𝜂0) :=

(𝜂 − 𝜉)(𝜂0 − 𝜉0)
1−2𝛽

(𝜂0 − 𝜉)1−𝛽(𝜂 − 𝜉0)1−𝛽

×
𝑛∑︁

𝑖=0

𝑐𝑖𝑌
𝑖
2𝐹1(1− 𝛽, 1− 𝛽 + 𝑖, 𝑖+ 1;𝑍) (2.137)
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with

𝑍 =
𝑋

𝑋 − 1
=

(𝜂 − 𝜂0)(𝜉0 − 𝜉)

(𝜂0 − 𝜉)(𝜂 − 𝜉0)
.

Further, in dependence of the value of the parameter 𝛽 the Riemann

function can be estimated in a different way in the region Π:

A. The case 0 < 𝛽 < 1/2. In this case for the Riemann function it

is convenient to use the representation form Ψ+
𝐴. Note that according to

(A.8) the hypergeometric function in (2.136) is bounded for 0 < 𝛽 < 1/2.

Respectively we have

|Ψ+
𝐴(𝜉, 𝜂; 𝜉0, 𝜂0)| ≤ const

(𝜂 − 𝜉)2𝛽

(𝜂0 − 𝜉)𝛽(𝜂 − 𝜉0)𝛽
, (𝜉, 𝜂) ∈ Π. (2.138)

B. The case 1/2 < 𝛽 < 1. In this case, according to (A.8), the

hypergeometric function in (2.137) is bounded and, respectively, for the

function Ψ+
𝐵 we have

|Ψ+
𝐵(𝜉, 𝜂; 𝜉0, 𝜂0)| ≤ const

(𝜂 − 𝜉)(𝜂0 − 𝜉0)
1−2𝛽

(𝜂0 − 𝜉)1−𝛽(𝜂 − 𝜉0)1−𝛽
, (𝜉, 𝜂) ∈ Π. (2.139)

C. The case 𝛽 = 1/2. Note that in this case the expressions (2.136)

and (2.137) coincide and the hypergeometric function in (2.136) (or (2.137))

becomes unbounded as 𝑍 → 1. According to (A.6), for each 𝛼 > 0 there

exists a constant 𝑐(𝛼) > 0 such that

|Ψ+
𝐴(𝜉, 𝜂; 𝜉0, 𝜂0)| = |Ψ+

𝐵(𝜉, 𝜂; 𝜉0, 𝜂0)| ≤ 𝑐(𝛼)
(𝜂 − 𝜉)1−𝛼(𝜂0 − 𝜉0)

−𝛼

(𝜂0 − 𝜉)1/2−𝛼(𝜂 − 𝜉0)1/2−𝛼

(2.140)

for (𝜉, 𝜂) ∈ Π.
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For the solution of Problem 𝑃𝐺
𝑚2 (i.e. for the generalized solution of

𝑃𝑚2) we obtain the following main result, which we will prove in the next

section:

Theorem 2.10.1. Let 0 < 𝛽 < 1 and 𝐹 ∈ 𝐶1(𝐷̄). Then the unique gener-

alized solution of Problem 𝑃𝑚2 has the following asymptotic representation

at the singular point (1, 1):

𝑈(𝜉, 𝜂) =

[𝑛/2]∑︁
𝑘=0

𝜇𝑛,𝛽𝑘 𝑎𝑛,𝛽𝑘 𝐺𝑛,𝛽
𝑘 (𝜉, 𝜂)(2− 𝜉 − 𝜂)2𝑘−𝑛 +𝐺(𝛽)(𝜉, 𝜂), (𝜉, 𝜂) ∈ 𝐷,

where 𝑎𝑛,𝛽𝑘 = const ̸= 0,

𝐺𝑛,𝛽
𝑘 (𝜉, 𝜂) := 2𝐹1

(︂
𝑛− 𝑘 +

1

2
,−𝑘, 1

2
+ 𝛽;

(𝜂 − 𝜉)2

(2− 𝜉 − 𝜂)2

)︂
and the function 𝐺(𝛽)(𝜉, 𝜂) ∈ 𝐶(𝐷̄) is such that 𝐺(𝛽)(1, 1) = 0. For 0 <

𝛽 < 1/2 𝐺(𝛽)(𝜉, 𝜂) satisfies the following estimate in 𝐷:

|𝐺(𝛽)(𝜉, 𝜂)| ≤ 𝐾‖𝐹‖𝐶(𝐷)(1− 𝜉)1−𝛽(1 + | ln(1− 𝜉)|)

with a constant 𝐾 > 0 independent of 𝐹 . For 1/2 ≤ 𝛽 < 1 such an

estimate holds at least in 𝒯 ⊂ 𝐷.

Remark 2.10.1. Note that the functions 𝐺𝑛,𝛽
𝑘 (𝜉, 𝜂) are connected with

(2.18) by the following relation:

𝐸𝑛,𝛽
𝑘 (𝜉, 𝜂) =

(1− 𝜉)𝑛−2𝑘−𝛽(1− 𝜂)𝑛−2𝑘−𝛽

(2− 𝜉 − 𝜂)𝑛−2𝑘
𝐺𝑛,𝛽

𝑘 (𝜉, 𝜂)

in 𝐷̄∖(1, 1).
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2.11. Proof of Theorem 2.10.1

Since the proof of this theorem is too long, we start here with some auxiliary

lemmas.

Lemma 2.11.1. For 𝑝 = 1, 2, . . . , 𝑖 = 0, 1, 2, . . . and 𝛼 > −1 define the

integrals :

𝐼𝛼𝑝,𝑖 :=

∫︁ 1

0

(𝑡− 𝜔𝑡2)𝑝−1(1− 2𝜔𝑡)2𝑖+1(1− 𝑡)𝛼(1− 𝜎𝑡)𝛼 𝑑𝑡,

where

𝜎 =
𝜔

1− 𝜔
, 0 < 𝜔 <

1

2
. (2.141)

Then

𝐼𝛼𝑝,𝑖 =
Γ(𝑝) 𝑖! (1− 𝜔)𝑝

(1 + 𝛼)𝑖+𝑝

𝑖∑︁
𝑠=0

(1 + 𝛼)𝑖−𝑠

(𝑖− 𝑠)!

(𝑝)𝑠
𝑠!

(1− 2𝜔)2𝑠. (2.142)

Proof. First, by (2.141) we have

1− 2𝜔𝑡 = (1− 𝜔)
{︀
𝜎(1− 𝑡) + (1− 𝜎𝑡)

}︀
.

Then 𝐼𝛼𝑝,𝑖 may be written as

𝐼𝛼𝑝,𝑖 = (1− 𝜔)𝜎

∫︁ 1

0

(𝑡− 𝜔𝑡2)𝑝−1(1− 2𝜔𝑡)2𝑖(1− 𝑡)𝛼+1(1− 𝜎𝑡)𝛼 𝑑𝑡

− 1− 𝜔

𝛼 + 1

∫︁ 1

0

(𝑡− 𝜔𝑡2)𝑝−1(1− 2𝜔𝑡)2𝑖
𝑑

𝑑𝑡

{︀
(1− 𝑡)𝛼+1

}︀
(1− 𝜎𝑡)𝛼+1 𝑑𝑡.

Next, integrating by parts in the second integral, for 𝐼𝛼𝑝,𝑖 we obtain four
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different cases in dependence of the parameters 𝑝 and 𝑖.

A. The case 𝑝 = 1, 𝑖 = 0. In this case we have:

𝐼𝛼1,0 = −1− 𝜔

𝛼 + 1
(1− 𝑡)𝛼+1(1− 𝜎𝑡)𝛼+1

⃒⃒⃒⃒𝑡=1

0

=
1− 𝜔

1 + 𝛼
. (2.143)

B. The case 𝑝 = 1, 𝑖 = 1, 2, . . . In this case we obtain:

𝐼𝛼1,𝑖 = −1− 𝜔

𝛼 + 1
(1− 2𝜔𝑡)2𝑖(1− 𝑡)𝛼+1(1− 𝜎𝑡)𝛼+1

⃒⃒⃒⃒𝑡=1

0

− 4𝑖𝜔(1− 𝜔)

𝛼 + 1

∫︁ 1

0

(1− 2𝜔𝑡)2𝑖−1(1− 𝑡)𝛼+1(1− 𝜎𝑡)𝛼+1 𝑑𝑡,

which actually gives the recurrence relation:

𝐼𝛼1,𝑖 =
1− 𝜔

𝛼 + 1
− 4𝑖𝜔(1− 𝜔)

𝛼 + 1
𝐼𝛼+1
1,𝑖−1 =

1− 𝜔

𝛼 + 1
− 𝑖

{︀
1− (1− 2𝜔)2

}︀
𝛼 + 1

𝐼𝛼+1
1,𝑖−1.

From here, taking into account (2.143), we find that

𝐼𝛼1,𝑖 =
𝑖! (1− 𝜔)

(1 + 𝛼)𝑖+1

𝑖∑︁
𝑠=0

(1 + 𝛼)𝑖−𝑠

(𝑖− 𝑠)!
(1− 2𝜔)2𝑠.

C. The case 𝑖 = 0, 𝑝 = 2, 3, . . . For 𝐼𝛼𝑝,0 we get

𝐼𝛼𝑝,0 =
(𝑝− 1)(1− 𝜔)

𝛼 + 1

∫︁ 1

0

(𝑡− 𝜔𝑡2)𝑝−2(1− 2𝜔𝑡)(1− 𝑡)𝛼+1(1− 𝜎𝑡)𝛼+1 𝑑𝑡,

or

𝐼𝛼𝑝,0 =
(𝑝− 1)(1− 𝜔)

𝛼 + 1
𝐼𝛼+1
𝑝−1,0.
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From this recurrence relation, starting from 𝐼𝛼𝑝,0, we find that

𝐼𝛼𝑝,0 =
Γ(𝑝)(1− 𝜔)𝑝

(1 + 𝛼)𝑝
.

D. The case 𝑝 = 2, 3, . . . , 𝑖 = 1, 2, . . . For this case we have:

𝐼𝛼𝑝,𝑖 =
(𝑝− 1)(1− 𝜔)

𝛼 + 1

∫︁ 1

0

(𝑡−𝜔𝑡2)𝑝−2(1− 2𝜔𝑡)2𝑖+1(1− 𝑡)𝛼+1(1− 𝜎𝑡)𝛼+1 𝑑𝑡

− 4𝑖𝜔(1− 𝜔)

𝛼 + 1

∫︁ 1

0

(𝑡− 𝜔𝑡2)𝑝−1(1− 2𝜔𝑡)2𝑖−1(1− 𝑡)𝛼+1(1− 𝜎𝑡)𝛼+1 𝑑𝑡.

This gives the following relation:

𝐼𝛼𝑝,𝑖 =
(𝑝− 1)(1− 𝜔)

𝛼 + 1
𝐼𝛼+1
𝑝−1,𝑖 − 𝑖

{︀
1− (1− 2𝜔)2

}︀
𝛼 + 1

𝐼𝛼+1
𝑝,𝑖−1. (2.144)

Now we try to find a representation of 𝐼𝛼𝑝,𝑖 of the form:

𝐼𝛼𝑝,𝑖 =
Γ(𝑝) 𝑖! (1− 𝜔)𝑝

(1 + 𝛼)𝑖+𝑝

𝑖∑︁
𝑠=0

(1 + 𝛼)𝑖−𝑠

(𝑖− 𝑠)!
𝐶𝑝,𝑠(1− 2𝜔)2𝑠, (2.145)

where we suppose that 𝐶𝑝,𝑠 do not depend on 𝑖 and 𝐶1,𝑠 = 1. Putting this

expression into (2.144) and simplifying, we find that the coefficients 𝐶𝑝,𝑠

must satisfy the relations:

𝐶𝑝,𝑠 = 𝐶𝑝−1,𝑠 + 𝐶𝑝,𝑠−1, 𝐶𝑝,0 = 𝐶1,𝑠 = 1.

From here we obtain

𝐶𝑝,𝑠 =
(𝑠+ 𝑝− 1)!

𝑠!(𝑝− 1)!
=

(𝑝)𝑠
𝑠!
.
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Substituting this into (2.145) gives the final result (2.142).

The proof is complete. �

Lemma 2.11.2. For 0 < 𝛽 < 1 and 𝑝 ∈ N ∪ 0 define the series

𝑆0(𝜉0, 𝜂0) :=
∞∑︁
𝑗=1

(𝛽)𝑗(1− 𝛽)𝑗
𝑗! (𝑗 − 1)!

(𝜂0 − 1)𝑗

(𝜂0 − 𝜉0)𝑗

×
∫︁ 𝜉0

0

𝜑(𝜉)

1− 𝜉
2𝐹1

(︂
𝑝− 𝛽 + 1, 1− 𝑗, 𝑝− 𝛽 + 2;

1− 𝜉0
1− 𝜉

)︂
𝑑𝜉,

where 𝜑(𝜉) is an integrable function, bounded on the interval [0, 1]. Then

this series converges for (𝜉0, 𝜂0) ∈ 𝒯 ⊂ 𝐷 and the following estimate holds :

|𝑆0(𝜉0, 𝜂0)| ≤ 𝐶𝑀𝜑
1− 𝜂0
1− 𝜉0

(︀
1 + | ln(1− 𝜉0)|

)︀
, (𝜉0, 𝜂0) ∈ 𝒯 ,

where 𝐶 = const > 0 and

𝑀𝜑 := max
[0,1]

|𝜑(𝜉)|.

Further, 𝑆0(𝜉0, 𝜂0) can be analytically continued in the whole region 𝐷,

where:

(i) if 0 < 𝛽 < 1/2, then

|𝑆0(𝜉0, 𝜂0)| ≤ 𝐶𝑀𝜑
(1− 𝜂0)(𝜂0 − 𝜉0)

𝛽

(1− 𝜉0)1+𝛽

(︀
1 + | ln(1− 𝜉0)|

)︀
;

(ii) if 1/2 ≤ 𝛽 < 1, then

|𝑆0(𝜉0, 𝜂0)| ≤ 𝐶𝑀𝜑
(1− 𝜂0)(𝜂0 − 𝜉0)

𝛽−𝜀

(1− 𝜉0)1+𝛽−𝜀

(︀
1 + | ln(1− 𝜉0)|

)︀
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with some 𝜀 ∈ (0, 𝛽).

Proof. First, using (A.5), we have

𝑆0(𝜉0, 𝜂0) = 𝐾1
𝜂0 − 1

𝜂0 − 𝜉0

∞∑︁
𝑘=0

(1 + 𝛽)𝑘(2− 𝛽)𝑘
(2)𝑘 𝑘!

(𝜂0 − 1)𝑘

(𝜂0 − 𝜉0)𝑘

×
∫︁ 𝜉0

0

𝜑(𝜉)

1− 𝜉

{︃∫︁ 1

0

𝑡𝑝−𝛽

(︂
1− 1− 𝜉0

1− 𝜉
𝑡

)︂𝑘

𝑑𝑡

}︃
𝑑𝜉

= 𝐾1
𝜂0 − 1

𝜂0 − 𝜉0

∫︁ 𝜉0

0

𝜑(𝜉)

1− 𝜉

{︂∫︁ 1

0

𝑡𝑝−𝛽
2𝐹1(1 + 𝛽, 2− 𝛽, 2; 𝑧) 𝑑𝑡

}︂
𝑑𝜉 (2.146)

with 𝐾1 = const = 𝛽(1− 𝛽)(𝑝− 𝛽 + 1) and

𝑧 =

(︂
𝜂0 − 1

𝜂0 − 𝜉0

)︂(︂
1− 1− 𝜉0

1− 𝜉
𝑡

)︂
. (2.147)

For (𝜉0, 𝜂0) ∈ 𝒯 we have 0 < 1−𝜂0 < 𝜂0−𝜉0 (see (2.135)), which implies

|𝑧| < 1. Then the series 2𝐹1(1 + 𝛽, 2− 𝛽, 2; 𝑧) is absolutely convergent.

Next, to estimate the integrals involved in (2.146), with use of (A.13)

we obtain:

𝑆0(𝜉0, 𝜂0) = −𝐾1
1− 𝜂0
1− 𝜉0

∫︁ 𝜉0

0

𝜑(𝜉)

×
{︂∫︁ 1

0

𝑡𝑝−𝛽

(1− 𝜉)− (1− 𝜂0) 𝑡
2𝐹1(1− 𝛽, 𝛽, 2; 𝑧) 𝑑𝑡

}︂
𝑑𝜉. (2.148)

Now, according to (A.5), (A.6) and (A.8), we have

| 2𝐹1(1− 𝛽, 𝛽, 2; 𝑧)| ≤ const (2.149)
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and

0 < (𝑝− 𝛽 + 1)

∫︁ 1

0

𝑡𝑝−𝛽 𝑑𝑡

(1− 𝜉)− (1− 𝜂0) 𝑡

=
1

1− 𝜉
2𝐹1

(︂
𝑝− 𝛽 + 1, 1, 𝑝− 𝛽 + 2;

1− 𝜂0
1− 𝜉

)︂
≤ 𝑐(𝛼)

(1− 𝜉)𝛼−1

(𝜂0 − 𝜉)𝛼
, (2.150)

where we choose 𝛼 ∈ (0, 1). Next, making a substitution 𝜉 = 𝜉0𝑡 and using

once again (A.5), we get

0 <

∫︁ 𝜉0

0

(1− 𝜉)𝛼−1

(𝜂0 − 𝜉)𝛼
𝑑𝜉 ≤

∫︁ 𝜉0

0

(1− 𝜉)𝛼−1

(𝜉0 − 𝜉)𝛼
𝑑𝜉

=
𝜉1−𝛼
0

1− 𝛼
2𝐹1(1, 1− 𝛼, 2− 𝛼; 𝜉0). (2.151)

From the one hand, taking into account (A.12), we can estimate

2𝐹1(1, 1− 𝛼, 2− 𝛼; 𝜉0) < 2𝐹1(1, 1, 2; 𝜉0) =
1

𝜉0
| ln(1− 𝜉0)|,

since
(1− 𝛼)𝑗
(2− 𝛼)𝑗

<
(1)𝑗
(2)𝑗

, 𝑗 = 1, 2, . . . , 0 < 𝛼 < 1

and from the other hand by (A.6) we have

2𝐹1(1, 1− 𝛼, 2− 𝛼; 𝜉0) ≤ 𝑐(𝛿)(1− 𝜉0)
−𝛿

with 𝛿 > 0, hence

2𝐹1(1, 1− 𝛼, 2− 𝛼; 𝜉0) ≤ const
(︀
1 + | ln(1− 𝜉0)|

)︀
. (2.152)
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Applying the estimates (2.149)-(2.152) into (2.148), we see that:

|𝑆0(𝜉0, 𝜂0)| ≤ 𝐶𝑀𝜑
1− 𝜂0
1− 𝜉0

(︀
1 + | ln(1− 𝜉0)|

)︀
, (𝜉0, 𝜂0) ∈ 𝒯 .

Now, using (A.14) we may prolong the series 𝑆0(𝜉0, 𝜂0) in the whole

region 𝐷:

𝑆0(𝜉0, 𝜂0) = −𝐾1
(1− 𝜂0)(𝜂0 − 𝜉0)

𝛽

(1− 𝜉0)1+𝛽

∫︁ 𝜉0

0

𝜑(𝜉)(1− 𝜉)𝛽

×

{︃∫︁ 1

0

𝑡𝑝−𝛽{︀
(1− 𝜉)− (1− 𝜂0) 𝑡

}︀1+𝛽 2𝐹1

(︂
1 + 𝛽, 𝛽, 2;

𝑧

𝑧 − 1

)︂
𝑑𝑡

}︃
𝑑𝜉.

The hypergeometric series here is well defined in 𝐷, since for each point

(𝜉0, 𝜂0) ∈ 𝐷 we have 𝑧 < 0, which implies 0 < 𝑧/(𝑧 − 1) < 1.

A. The case 0 < 𝛽 < 1/2. In this case the series 2𝐹1(1 + 𝛽, 𝛽, 2; 𝜁)

is bounded as 𝜁 → 1. Then working in the same manner in which we

estimated (2.148), we obtain

|𝑆0(𝜉0, 𝜂0)| ≤ 𝐶𝑀𝜑
(1− 𝜂0)(𝜂0 − 𝜉0)

𝛽

(1− 𝜉0)1+𝛽

(︀
1 + | ln(1− 𝜉0)|

)︀
, (𝜉0, 𝜂0) ∈ 𝐷.

B. The case 1/2 ≤ 𝛽 < 1. Taking into account that

| 2𝐹1(3/2, 1/2, 2; 𝜁)| ≤ const
(1− 𝜉0)

𝛿

(𝜂0 − 𝜉0)𝛿

(︂
1− 1− 𝜂0

1− 𝜉
𝑡

)︂𝛿

for some 𝛿 ∈ (0, 1/2) and

| 2𝐹1(1 + 𝛽, 𝛽, 2; 𝜁)| ≤ const
(1− 𝜉0)

2𝛽−1

(𝜂0 − 𝜉0)2𝛽−1

(︂
1− 1− 𝜂0

1− 𝜉
𝑡

)︂2𝛽−1

, 𝛽 > 1/2,
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which follows from (A.7)-(A.6), with similar calculations we come to

|𝑆0(𝜉0, 𝜂0)| ≤ 𝐶𝑀𝜑
(1− 𝜂0)(𝜂0 − 𝜉0)

𝛽−𝜀

(1− 𝜉0)1+𝛽−𝜀

(︀
1+| ln(1−𝜉0)|

)︀
, (𝜉0, 𝜂0) ∈ 𝐷,

where

𝜀 =

⎧⎪⎨⎪⎩
𝛿, 𝛽 = 1/2,

2𝛽 − 1, 1/2 < 𝛽 < 1.

The proof is complete. �

Lemma 2.11.3. For 0 < 𝛽 < 1, 𝑖 ∈ N and 𝑝 ∈ N ∪ 0 define the series

𝑆𝑖(𝜉0, 𝜂0) :=
∞∑︁
𝑗=0

(𝛽)𝑗(1− 𝛽)𝑗
𝑗! (𝑖+ 𝑗 − 1)!

(𝜂0 − 1)𝑗

(𝜂0 − 𝜉0)𝑗

×
∫︁ 𝜉0

0

𝜑(𝜉)

1− 𝜉
2𝐹1

(︂
𝑝− 𝛽 + 1, 1− 𝑖− 𝑗, 𝑝− 𝛽 + 2;

1− 𝜉0
1− 𝜉

)︂
𝑑𝜉,

where 𝜑(𝜉) is an integrable function, bounded on the interval [0, 1] with

|𝜑(𝜉)| ≤𝑀𝜑 = const > 0. Then this series converges for (𝜉0, 𝜂0) ∈ 𝒯 ⊂ 𝐷

and the following estimate holds :

|𝑆𝑖(𝜉0, 𝜂0)| ≤ 𝐶𝑀𝜑

(︀
1 + | ln(1− 𝜉0)|

)︀
, (𝜉0, 𝜂0) ∈ 𝒯 , (2.153)

where 𝐶 = const > 0.

Further, 𝑆𝑖(𝜉0, 𝜂0) can be analytically continued in the whole region 𝐷,

where:
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(i) if 0 < 𝛽 < 1/2, then

|𝑆𝑖(𝜉0, 𝜂0)| ≤ 𝐶𝑀𝜑
(𝜂0 − 𝜉0)

𝛽

(1− 𝜉0)𝛽
(︀
1 + | ln(1− 𝜉0)|

)︀
; (2.154)

(ii) if 1/2 ≤ 𝛽 < 1, then

|𝑆𝑖(𝜉0, 𝜂0)| ≤ 𝐶𝑀𝜑
(𝜂0 − 𝜉0)

𝛽−𝜀

(1− 𝜉0)𝛽−𝜀

(︀
1 + | ln(1− 𝜉0)|

)︀
(2.155)

with some 𝜀 ∈ (0, 𝛽).

Proof. The proof is very similar to the proof of the previous lemma.

First, in analogous way we come to

𝑆𝑖(𝜉0, 𝜂0) = 𝐾2

∫︁ 𝜉0

0

𝜑(𝜉)

1− 𝜉

{︂∫︁ 1

0

𝑡𝑝−𝛽ℎ(𝜉, 𝜉0, 𝑡) 2𝐹1(𝛽, 1− 𝛽, 𝑖; 𝑧) 𝑑𝑡

}︂
𝑑𝜉

with

𝐾2 = const =
𝑝− 𝛽 + 1

(𝑖− 1)!
, ℎ(𝜉, 𝜉0, 𝑡) =

(︂
1− 1− 𝜉0

1− 𝜉
𝑡

)︂𝑖−1

and 𝑧 defined by (2.147). Clearly, for 0 < 𝜉 < 𝜉0 < 1 and 0 < 𝑡 < 1 we

have |ℎ(𝜉, 𝜉0, 𝑡)| < 1 and working in a similar manner as in Lemma 2.11.2

we come to the estimate (2.153).

Next, with use of (A.14), we continue the series 𝑆𝑖(𝜉0, 𝜂0) in the whole

region 𝐷 and, in a similar manner as in Lemma 2.11.2, we get the estimates

(2.154) and (2.155) in 𝐷. �

Lemma 2.11.4. Let (𝜉0, 𝜂0) ∈ 𝐷, 0 < 𝛽 < 1, 𝑝 ∈ N, 𝑝 ≤ 𝑛 and 𝑝 be of
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the same parity as 𝑛. Then

ℐ𝑝,𝑛(𝜉0, 𝜂0) := (𝑝− 𝛽)

∫︁ 𝜉0

0

(1− 𝜉)−𝑝−1ℛ(𝜉, 1; 𝜉0, 𝜂0) 𝑑𝜉

=
𝐾𝑝,𝑛

(2− 𝜉0 − 𝜂0)𝑝
2𝐹1

(︂
𝑝+ 𝑛+ 1

2
,
𝑝− 𝑛

2
, 𝛽 +

1

2
;

(𝜂0 − 𝜉0)
2

(2− 𝜉0 − 𝜂0)2

)︂
−𝐻𝑝,𝑛(𝜉0, 𝜂0), (2.156)

where 𝐾𝑝,𝑛 = const ̸= 0 and 𝐻𝑝,𝑛(𝜉0, 𝜂0) is a function with the following

series representation in 𝒯 ⊂ 𝐷:

𝐻𝑝,𝑛(𝜉0, 𝜂0) :=
𝑛∑︁

𝑖=0

∞∑︁
𝑗=0

(−𝑛)𝑖(𝑛+ 1)𝑖(𝛽)𝑗(1− 𝛽)𝑗
𝑖! 𝑗! (𝑖+ 𝑗)! (−1)𝑗

× (1− 𝜂0)
𝑖+𝑗

(2− 𝜉0 − 𝜂0)𝑖(𝜂0 − 𝜉0)𝑗+𝛽 2𝐹1(𝑝− 𝛽,−𝑖− 𝑗, 𝑝+ 1− 𝛽; 1− 𝜉0).

(2.157)

Proof. First, suppose that (𝜉0, 𝜂0) ∈ 𝒯 . Then we may represent the

function ℛ(𝜉, 𝜂; 𝜉0, 𝜂0) by Ψ+(𝜉, 𝜂; 𝜉0, 𝜂0) and according to (2.134) we have

ℐ𝑝,𝑛(𝜉0, 𝜂0) = (𝑝− 𝛽)
𝑛∑︁

𝑖=0

∞∑︁
𝑗=0

(−𝑛)𝑖(𝑛+ 1)𝑖(𝛽)𝑗(1− 𝛽)𝑗
𝑖! 𝑗! (𝑖+ 𝑗)! (−1)𝑗

×
∫︁ 𝜉0

0

(𝜉0 − 𝜉)𝑖+𝑗(1− 𝜂0)
𝑖+𝑗

(2− 𝜉0 − 𝜂0)𝑖(1− 𝜉)𝑖+𝑗+𝑝+1−𝛽(𝜂0 − 𝜉0)𝑗+𝛽
𝑑𝜉.

For fixed indexes 𝑖, 𝑗 consider a single term with

𝑆𝑖,𝑗(𝜉0) :=

∫︁ 𝜉0

0

(1− 𝜉)−𝑖−𝑗−𝑝−1+𝛽(𝜉0 − 𝜉)𝑖+𝑗 𝑑𝜉.
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Making a substitution 𝜉 = 𝑡 𝜉0, with use of (A.5) we obtain:

𝑆𝑖,𝑗(𝜉0) = 𝜉𝑖+𝑗+1
0

∫︁ 1

0

(1− 𝑡)𝑖+𝑗(1− 𝜉0𝑡)
−𝑝−𝑖−𝑗−1+𝛽 𝑑𝑡

= 𝜉𝑖+𝑗+1
0

Γ(𝑖+ 𝑗 + 1)

Γ(𝑖+ 𝑗 + 2)
2𝐹1(1, 𝑝+ 𝑖+ 𝑗 + 1− 𝛽, 𝑖+ 𝑗 + 2; 𝜉0).

Next, we transform the hypergeometric function in the above expres-

sion by (A.15):

𝑆𝑖,𝑗(𝜉0) = 𝜉𝑖+𝑗+1
0

×
{︂

Γ(𝛽 − 𝑝)

Γ(1 + 𝛽 − 𝑝)
2𝐹1(1, 𝑝+ 𝑖+ 𝑗 + 1− 𝛽, 𝑝+ 1− 𝛽; 1− 𝜉0)

+
Γ(𝑖+ 𝑗 + 1)Γ(𝑝− 𝛽)

Γ(𝑝+ 𝑖+ 𝑗 + 1− 𝛽)
(1− 𝜉0)

−𝑝+𝛽

× 2𝐹1(𝑖+ 𝑗 + 1, 1− 𝑝+ 𝛽, 1− 𝑝+ 𝛽; 1− 𝜉0)

}︂
:= 𝑆

(1)
𝑖,𝑗 (𝜉0) + 𝑆

(2)
𝑖,𝑗 (𝜉0).

For 𝑆(1)
𝑖,𝑗 (𝜉0) by (A.13) we have

𝑆
(1)
𝑖,𝑗 (𝜉0) =

1

𝛽 − 𝑝
2𝐹1(𝑝− 𝛽,−𝑖− 𝑗, 𝑝+ 1− 𝛽; 1− 𝜉0)

and for 𝑆(2)
𝑖,𝑗 (𝜉0) by (A.11) we have

𝑆
(2)
𝑖,𝑗 (𝜉0) =

Γ(𝑖+ 𝑗 + 1)Γ(𝑝− 𝛽)

Γ(𝑝+ 𝑖+ 𝑗 + 1− 𝛽)
(1− 𝜉0)

−𝑝+𝛽.

Returning back to ℐ𝑝,𝑛(𝜉0, 𝜂0) we obtain that

ℐ𝑝,𝑛(𝜉0, 𝜂0) = 𝒥𝑝,𝑛(𝜉0, 𝜂0)−𝐻𝑝,𝑛(𝜉0, 𝜂0), (2.158)
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where 𝐻𝑝,𝑛(𝜉0, 𝜂0) is the series (2.157) and

𝒥𝑝,𝑛(𝜉0, 𝜂0) :=
(𝑝− 𝛽)

(1− 𝜉0)𝑝−𝛽

𝑛∑︁
𝑖=0

∞∑︁
𝑗=0

Γ(𝑖+ 𝑗 + 1)Γ(𝑝− 𝛽)

Γ(𝑝+ 𝑖+ 𝑗 + 1− 𝛽)

× (−𝑛)𝑖(𝑛+ 1)𝑖(𝛽)𝑗(1− 𝛽)𝑗
𝑖! 𝑗! (𝑖+ 𝑗)! (−1)𝑗

(1− 𝜂0)
𝑖+𝑗

(𝜂0 − 𝜉0)𝑗+𝛽(2− 𝜉0 − 𝜂0)𝑖
. (2.159)

The series (2.157) converges in 𝒯 , because it is a superposition of the con-

vergent series 𝒥𝑝,𝑛(𝜉0, 𝜂0) and −ℐ𝑝,𝑛(𝜉0, 𝜂0).

Simplifying the coefficients in the series (2.159), 𝒥𝑝,𝑛(𝜉0, 𝜂0) becomes

𝒥𝑝,𝑛(𝜉0, 𝜂0) = (1− 𝜉0)
−𝑝+𝛽

𝑛∑︁
𝑖=0

∞∑︁
𝑗=0

(−𝑛)𝑖(𝑛+ 1)𝑖(𝛽)𝑗(1− 𝛽)𝑗
(𝑝+ 1− 𝛽)𝑖+𝑗 𝑖! 𝑗! (−1)𝑗

× (1− 𝜂0)
𝑖+𝑗

(𝜂0 − 𝜉0)𝑗+𝛽(2− 𝜉0 − 𝜂0)𝑖

(2.160)

or

𝒥𝑝,𝑛(𝜉0, 𝜂0) =
(1− 𝜉0)

−𝑝+𝛽

(𝜂0 − 𝜉0)𝛽

𝑛∑︁
𝑖=0

(−𝑛)𝑖(𝑛+ 1)𝑖
(𝑝+ 1− 𝛽)𝑖 𝑖!

(1− 𝜂0)
𝑖

(2− 𝜉0 − 𝜂0)𝑖

× 2𝐹1

(︂
𝛽, 1− 𝛽, 𝑝+ 𝑖+ 1− 𝛽;

𝜂0 − 1

𝜂0 − 𝜉0

)︂
.

Now, applying (A.14), we derive

𝒥𝑝,𝑛(𝜉0, 𝜂0) = (1− 𝜉0)
−𝑝

𝑛∑︁
𝑖=0

(−𝑛)𝑖(𝑛+ 1)𝑖
(𝑝+ 1− 𝛽)𝑖 𝑖!

(1− 𝜂0)
𝑖

(2− 𝜉0 − 𝜂0)𝑖

× 2𝐹1

(︂
𝛽, 𝑝+ 𝑖, 𝑝+ 𝑖+ 1− 𝛽;

1− 𝜂0
1− 𝜉0

)︂
, (2.161)
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which actually analytically continues the function 𝒥𝑝,𝑛(𝜉0, 𝜂0) at the points

(𝜉0, 𝜂0) ∈ 𝐷∖𝒯 .

Denoting for shortness

𝜔 :=
1− 𝜂0

2− 𝜉0 − 𝜂0
, 𝜎 :=

1− 𝜂0
1− 𝜉0

(2.162)

and applying (A.5), we have:

𝒥𝑝,𝑛(𝜉0, 𝜂0) =
(1− 𝛽)𝑝(1− 𝜉0)

−𝑝

Γ(𝑝)

×
𝑛∑︁

𝑖=0

(−𝑛)𝑖(𝑛+ 1)𝑖
(𝑝)𝑖 𝑖!

𝜔𝑖

∫︁ 1

0

𝑡𝑝+𝑖−1(1− 𝑡)−𝛽(1− 𝜎𝑡)−𝛽 𝑑𝑡 (2.163)

and, consequently,

𝒥𝑝,𝑛(𝜉0, 𝜂0) =
(1− 𝛽)𝑝(1− 𝜉0)

−𝑝

Γ(𝑝)

×
∫︁ 1

0
2𝐹1(𝑛+ 1,−𝑛, 𝑝;𝜔𝑡) 𝑡𝑝−1(1− 𝑡)−𝛽(1− 𝜎𝑡)−𝛽 𝑑𝑡.

Applying the auto transformation formula (A.13), we obtain

𝒥𝑝,𝑛(𝜉0, 𝜂0) =
(1− 𝛽)𝑝(1− 𝜉0)

−𝑝

Γ(𝑝)

×
∫︁ 1

0
2𝐹1(𝑝− 𝑛− 1, 𝑝+ 𝑛, 𝑝;𝜔𝑡) (𝑡− 𝜔𝑡2)𝑝−1(1− 𝑡)−𝛽(1− 𝜎𝑡)−𝛽 𝑑𝑡.

This makes possible to use the quadratic transformation (A.17)-(A.19) to
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derive

𝒥𝑝,𝑛(𝜉0, 𝜂0) =
ℎ2(1− 𝛽)𝑝

Γ(𝑝)(1− 𝜉0)𝑝

(𝑛−𝑝)/2∑︁
𝑖=0

(𝑝+𝑛+1
2 )𝑖(

𝑝−𝑛
2 )𝑖

(3/2)𝑖 𝑖!

×
∫︁ 1

0

(𝑡− 𝜔𝑡2)𝑝−1(1− 2𝜔𝑡)2𝑖+1(1− 𝑡)−𝛽(1− 𝜎𝑡)−𝛽 𝑑𝑡

with

ℎ2 :=
Γ(−1/2)Γ(𝑝)

Γ(𝑝−𝑛−1
2 )Γ(𝑝+𝑛

2 )
,

where we took into account that 𝑛− 𝑝 is an even number.

Note that 𝜎 and 𝜔 defined by (2.162) are connected by the relation

𝜎 =
𝜔

1− 𝜔

and, also, 0 < 𝜔 < 1/2. Therefore we may apply Lemma 2.11.1 with

𝛼 = −𝛽 to obtain

𝒥𝑝,𝑛(𝜉0, 𝜂0) =
ℎ2(1− 𝛽)𝑝
(1− 𝜉0)𝑝

(𝑛−𝑝)/2∑︁
𝑖=0

(𝑝+𝑛+1
2 )𝑖(

𝑝−𝑛
2 )𝑖

(3/2)𝑖

× (1− 𝜔)𝑝

(1− 𝛽)𝑖+𝑝

𝑖∑︁
𝑠=0

(1− 𝛽)𝑖−𝑠

(𝑖− 𝑠)!

(𝑝)𝑠
𝑠!

(1− 2𝜔)2𝑠.

Noting that
1− 𝜔

1− 𝜉0
=

1

2− 𝜉0 − 𝜂0
,
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we come to

𝒥𝑝,𝑛(𝜉0, 𝜂0) =
ℎ2

(2− 𝜉0 − 𝜂0)𝑝

(𝑛−𝑝)/2∑︁
𝑠=0

(𝑝)𝑠
𝑠!

(1− 2𝜔)2𝑠

×
(𝑛−𝑝)/2∑︁

𝑖=𝑠

(1− 𝛽)𝑖−𝑠

(𝑖− 𝑠)!

(𝑝+𝑛+1
2 )𝑖(

𝑝−𝑛
2 )𝑖

(3/2)𝑖(1− 𝛽 + 𝑝)𝑖
. (2.164)

Next, using (A.1), we have:

(𝑛−𝑝)/2∑︁
𝑖=𝑠

(1− 𝛽)𝑖−𝑠

(𝑖− 𝑠)!

(𝑝+𝑛+1
2 )𝑖(

𝑝−𝑛
2 )𝑖

(3/2)𝑖(1− 𝛽 + 𝑝)𝑖

=
(𝑝+𝑛+1

2 )𝑠(
𝑝−𝑛
2 )𝑠

(3/2)𝑠(1− 𝛽 + 𝑝)𝑠

𝑛−𝑝−2𝑠
2∑︁

𝑗=0

(1− 𝛽)𝑗
(𝑗)!

(2𝑠+𝑝+𝑛+1
2 )𝑗(

2𝑠+𝑝−𝑛
2 )𝑗

(𝑠+ 3/2)𝑗(𝑠+ 1− 𝛽 + 𝑝)𝑗
. (2.165)

For the generalized hypergeometric series

𝑛−𝑝−2𝑠
2∑︁

𝑗=0

(1− 𝛽)𝑗
(𝑗)!

(2𝑠+𝑝+𝑛+1
2 )𝑗(

2𝑠+𝑝−𝑛
2 )𝑗

(𝑠+ 3/2)𝑗(𝑠+ 1− 𝛽 + 𝑝)𝑗

= 3𝐹2

(︂
1− 𝛽,

2𝑠+ 𝑝+ 𝑛+ 1

2
,
2𝑠+ 𝑝− 𝑛

2
; 𝑠+ 1− 𝛽 + 𝑝, 𝑠+

3

2
; 1

)︂
(2.166)

we can apply the Saalschutz’s Theorem A.0.1 (see page 146) to obtain

3𝐹2

(︂
1− 𝛽,

2𝑠+ 𝑝+ 𝑛+ 1

2
,
2𝑠+ 𝑝− 𝑛

2
; 𝑠+ 1− 𝛽 + 𝑝, 𝑠+

3

2
; 1

)︂
=

Γ(1− 𝛽 + 𝑝+ 𝑠)Γ(12 − 𝛽 − 𝑠)Γ(𝑝−𝑛−1
2 )Γ(𝑝+𝑛

2 )

Γ(1− 𝛽 + 𝑝+𝑛
2 )Γ(12 − 𝛽 + 𝑝−𝑛

2 )Γ(−𝑠− 1
2)Γ(𝑝+ 𝑠)

. (2.167)
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Substituting (2.165)-(2.167) into (2.164) and simplifying, we come to

𝒥𝑝,𝑛(𝜉0, 𝜂0) =
𝐾𝑝,𝑛

(2− 𝜉0 − 𝜂0)𝑝

(𝑛−𝑝)/2∑︁
𝑠=0

(𝑝+𝑛+1
2 )𝑠(

𝑝−𝑛
2 )𝑠

(𝛽 + 1/2)𝑠 𝑠!
(1− 2𝜔)2𝑠

=
𝐾𝑝,𝑛

(2− 𝜉0 − 𝜂0)𝑝
2𝐹1

(︂
𝑝+ 𝑛+ 1

2
,
𝑝− 𝑛

2
, 𝛽 +

1

2
;

(𝜂0 − 𝜉0)
2

(2− 𝜉0 − 𝜂0)2

)︂
(2.168)

with

𝐾𝑝,𝑛 =
Γ(1− 𝛽 + 𝑝)Γ(12 − 𝛽)

Γ(1− 𝛽 + 𝑝+𝑛
2 )Γ(12 − 𝛽 + 𝑝−𝑛

2 )
̸= 0. (2.169)

Finally, substituting (2.168) into (2.158), we complete the proof. �

Lemma 2.11.5. Let (𝜉0, 𝜂0) ∈ 𝐷, 0 < 𝛽 < 1, 𝑝 = 0 and 𝑛 be an even

number. Then formula (2.156) is still valid, i.e.

ℐ0,𝑛(𝜉0, 𝜂0) = −𝛽
∫︁ 𝜉0

0

(1− 𝜉)−1ℛ(𝜉, 1; 𝜉0, 𝜂0) 𝑑𝜉

= 𝐾0,𝑛 2𝐹1

(︂
𝑛+ 1

2
,
−𝑛
2
, 𝛽 +

1

2
;

(𝜂0 − 𝜉0)
2

(2− 𝜉0 − 𝜂0)2

)︂
−𝐻0,𝑛(𝜉0, 𝜂0), (2.170)

where 𝐻𝑝,𝑛(𝜉0, 𝜂0) is the function from Lemma 2.11.4 and 𝐾𝑝,𝑛 are the

coefficients (2.169).

Proof. We can repeat the calculations in the proof of Lemma 2.11.4

with 𝑝 = 0 up to formula (2.161). Formula (2.163), obviously, is not well

defined for 𝑝 = 0. The repeated calculations with 𝑝 = 0 up to formula

(2.161) give

ℐ0,𝑛(𝜉0, 𝜂0) = ϒ𝑛(𝜉0, 𝜂0)−𝐻0,𝑛(𝜉0, 𝜂0),
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where

ϒ𝑛(𝜉0, 𝜂0) :=
𝑛∑︁

𝑖=0

(−𝑛)𝑖(𝑛+ 1)𝑖
(1− 𝛽)𝑖 𝑖!

(1− 𝜂0)
𝑖

(2− 𝜉0 − 𝜂0)𝑖
2𝐹1

(︂
𝛽, 𝑖, 𝑖+ 1− 𝛽;

1− 𝜂0
1− 𝜉0

)︂
.

We have to prove that ϒ𝑛(𝜉0, 𝜂0) = 𝒥0,𝑛(𝜉0, 𝜂0), where 𝒥𝑝,𝑛(𝜉0, 𝜂0) is the

function (2.168).

For 𝑛 = 0 we have obviously that ϒ0(𝜉0, 𝜂0) = 𝒥0,0(𝜉0, 𝜂0) ≡ 1. For

𝑛 = 2, 4, . . ., using (A.5), we may write:

ϒ𝑛(𝜉0, 𝜂0) = 1− 𝑛(𝑛+ 1)𝜔

×
𝑛−1∑︁
𝑖=0

(−𝑛+ 1)𝑖(𝑛+ 2)𝑖
(2)𝑖 𝑖!

∫︁ 1

0

𝜔𝑖𝑡𝑖(1− 𝑡)−𝛽(1− 𝜎𝑡)−𝛽 𝑑𝑡

= 1− 𝑛(𝑛+ 1)𝜔

∫︁ 1

0
2𝐹1(−𝑛+ 1, 𝑛+ 2, 2;𝜔𝑡) (1− 𝑡)−𝛽(1− 𝜎𝑡)−𝛽 𝑑𝑡,

where 𝜎 and 𝜔 are given by (2.162). Next, we use the quadratic transfor-

mation (A.17)-(A.19) to obtain:

ϒ𝑛(𝜉0, 𝜂0) = 1− ℎ(2)𝑛(𝑛+ 1)𝜔

×
(𝑛−2)/2∑︁

𝑖=0

(𝑛+3
2 )𝑖(

2−𝑛
2 )𝑖

(3/2)𝑖 𝑖!

∫︁ 1

0

(1− 2𝜔𝑡)2𝑖+1(1− 𝑡)−𝛽(1− 𝜎𝑡)−𝛽 𝑑𝑡

with

ℎ(2) :=
Γ(−1/2)

Γ(1−𝑛
2 )Γ(𝑛+2

2 )
.
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Now we apply Lemma 2.11.1 with 𝛼 = −𝛽 and 𝑝 = 1:

ϒ𝑛(𝜉0, 𝜂0) = 1− ℎ(2)𝑛(𝑛+ 1)𝜔(1− 𝜔)

×
(𝑛−2)/2∑︁

𝑖=0

(𝑛+3
2 )𝑖(

2−𝑛
2 )𝑖

(3/2)𝑖(1− 𝛽)𝑖+1

𝑖∑︁
𝑠=0

(1− 𝛽)𝑖−𝑠

(𝑖− 𝑠)!
(1− 2𝜔)2𝑠

= 1− ℎ(2)
𝑛(𝑛+ 1)

4

{︂
1− (1− 2𝜔)2

}︂
×

(𝑛−2)/2∑︁
𝑖=0

(𝑛+3
2 )𝑖(

2−𝑛
2 )𝑖

(3/2)𝑖(1− 𝛽)𝑖+1

𝑖∑︁
𝑠=0

(1− 𝛽)𝑖−𝑠

(𝑖− 𝑠)!
(1− 2𝜔)2𝑠.

Next, rearranging the above expression, we find that

ϒ𝑛(𝜉0, 𝜂0) =

𝑛/2∑︁
𝑠=0

𝑎𝑠(1− 2𝜔)2𝑠 (2.171)

with

𝑎0 := 1− ℎ(2)
𝑛(𝑛+ 1)

4

(𝑛−2)/2∑︁
𝑖=0

(𝑛+3
2 )𝑖(

2−𝑛
2 )𝑖

(3/2)𝑖(1− 𝛽)𝑖+1

(1− 𝛽)𝑖
𝑖!

,

𝑎𝑛/2 := ℎ(2)
𝑛(𝑛+ 1)

4

(𝑛+3
2 )(𝑛−2)/2(

2−𝑛
2 )(𝑛−2)/2

(3/2)(𝑛−2)/2(1− 𝛽)𝑛/2
(2.172)

and

𝑎𝑠 := −ℎ(2)𝑛(𝑛+ 1)

4

⎧⎨⎩
(𝑛−2)/2∑︁

𝑖=𝑠

(𝑛+3
2 )𝑖(

2−𝑛
2 )𝑖

(3/2)𝑖(1− 𝛽)𝑖+1

×
(︂
(1− 𝛽)𝑖−𝑠

(𝑖− 𝑠)!
− (1− 𝛽)𝑖−𝑠+1

(𝑖− 𝑠+ 1)!

)︂
−

(𝑛+3
2 )𝑠−1(

2−𝑛
2 )𝑠−1

(3/2)𝑠−1(1− 𝛽)𝑠

⎫⎬⎭
for 𝑠 = 1, . . . , (𝑛− 2)/2.
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Taking into account that

(1− 𝛽)𝑖−𝑠

(𝑖− 𝑠)!
− (1− 𝛽)𝑖−𝑠+1

(𝑖− 𝑠+ 1)!
= 𝛽

(1− 𝛽)𝑖−𝑠

(𝑖− 𝑠+ 1)!
, (2.173)

for 𝑠 = 1, . . . , (𝑛− 2)/2 we derive

𝑎𝑠 = ℎ(2)
𝑛(𝑛+ 1)

4

(𝑛+3
2 )𝑠−1(

2−𝑛
2 )𝑠−1

(3/2)𝑠−1(1− 𝛽)𝑠

× 3𝐹2

(︂
−𝛽, 2𝑠+ 𝑛+ 1

2
,
2𝑠− 𝑛

2
; 𝑠+ 1− 𝛽, 𝑠+

1

2
; 1

)︂
.

Applying here the Saalschutz’s Theorem A.0.1 and simplifying, we obtain:

𝑎𝑠 =
Γ(1− 𝛽)Γ(12 − 𝛽)

Γ(12 − 𝛽 − 𝑛
2 )Γ(1− 𝛽 + 𝑛

2 )

(𝑛+1
2 )𝑠(−𝑛

2 )𝑠

(12 + 𝛽)𝑠 𝑠!
. (2.174)

Next, using (2.173) with 𝑠 = 0 we have

𝑎0 = 1−ℎ(2)
𝑛(𝑛+ 1)

4

(𝑛−2)/2∑︁
𝑖=0

(𝑛+3
2 )𝑖(

2−𝑛
2 )𝑖

(3/2)𝑖(1− 𝛽)𝑖+1

(︂
(1− 𝛽)𝑖+1

(𝑖+ 1)!
+ 𝛽

(1− 𝛽)𝑖
(𝑖+ 1)!

)︂
= 1 +

ℎ(2)

2

[︂
2𝐹1

(︂
𝑛+ 1

2
,−𝑛

2
,
1

2
; 1

)︂
− 1

]︂
− ℎ(2)

2

[︂
3𝐹2

(︂
−𝛽, 𝑛+ 1

2
,−𝑛

2
; 1− 𝛽

1

2
; 1

)︂
− 1

]︂
.

For 𝜀 ∈ (0, 1) with use of (A.9) we calculate

2𝐹1

(︂
𝑛+ 1

2
,−𝑛

2
,
1

2
+ 𝜀; 1

)︂
=

(𝜀− 𝑛
2 )𝑛/2

(𝜀+ 1
2)𝑛/2
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and letting 𝜀→ +0 we find that

2𝐹1

(︂
𝑛+ 1

2
,−𝑛

2
,
1

2
; 1

)︂
=

−2

ℎ(2)
.

Then, using once again the Saalschutz’s Theorem and simplifying, for 𝑎0 we

obtain the following value:

𝑎0 =
Γ(1− 𝛽)Γ(12 − 𝛽)

Γ(12 − 𝛽 − 𝑛
2 )Γ(1− 𝛽 + 𝑛

2 )
. (2.175)

For the coefficient 𝑎𝑛/2 from (2.172) we get:

𝑎𝑛/2 =
Γ(1− 𝛽)Γ(12 − 𝛽)

Γ(12 − 𝛽 − 𝑛
2 )Γ(1− 𝛽 + 𝑛

2 )

(𝑛+1
2 )𝑛/2(−𝑛

2 )𝑛/2

(12 + 𝛽)𝑛/2 (
𝑛
2 )!

. (2.176)

Finally, putting (2.174), (2.175) and (2.176) into (2.171), we see that

ϒ𝑛(𝜉0, 𝜂0) =
Γ(1− 𝛽)Γ(12 − 𝛽)

Γ(12 − 𝛽 − 𝑛
2 )Γ(1− 𝛽 + 𝑛

2 )

× 2𝐹1

(︂
𝑛+ 1

2
,−𝑛

2
,
1

2
+ 𝛽;

(𝜂0 − 𝜉0)
2

(2− 𝜉0 − 𝜂0)2

)︂
= 𝒥0,𝑛(𝜉0, 𝜂0),

which completes the proof. �

Lemma 2.11.6. Let (𝜉0, 𝜂0) ∈ 𝐷, 0 < 𝛽 < 1, 𝑝 ∈ N∪{0}, 𝑝 ≤ 𝑛 and 𝑝 be

of the same parity as 𝑛. Next, define the function

𝐼0𝑝,𝑛(𝜉0, 𝜂0) := (𝑝− 𝛽)

∫︁ 𝜉0

0

𝜙𝑝(𝜉)(1− 𝜉)−𝑝−1ℛ(𝜉, 1; 𝜉0, 𝜂0) 𝑑𝜉

+

∫︁ 𝜉0

0

𝜙′
𝑝(𝜉)(1− 𝜉)−𝑝ℛ(𝜉, 1; 𝜉0, 𝜂0) 𝑑𝜉,

132



2. The Protter problem for Keldysh-type equations

where 𝜙𝑝 ∈ 𝐶1([0, 1)) and for 𝜉 ∈ [0, 1)

|𝜙𝑝(𝜉)| ≤𝑀𝜙(1− 𝜉)𝑝+1−𝛽, |𝜙′
𝑝(𝜉)| ≤𝑀𝜙(1− 𝜉)𝑝−𝛽 (2.177)

with a positive constant 𝑀𝜙. Then

𝐼0𝑝,𝑛(𝜉0, 𝜂0) = 𝐽0
𝑝,𝑛(𝜉0, 𝜂0)− 𝜙𝑝(0)𝐻𝑝,𝑛(𝜉0, 𝜂0)

where 𝐻𝑝,𝑛(𝜉0, 𝜂0) is the function from Lemmas 2.11.4-2.11.5 and 𝐽0
𝑝,𝑛(𝜉0, 𝜂0)

satisfies the following estimate:

|𝐽0
𝑝,𝑛(𝜉0, 𝜂0)| ≤ 𝐶𝑀𝜙 (1−𝜉0)1−𝛽

(︀
1+| ln(1−𝜉0)|

)︀
, (𝜉0, 𝜂0) ∈ 𝒯 , (2.178)

with a positive constant 𝐶. Further :

(i) if 0 < 𝛽 < 1/2, then

|𝐽0
𝑝,𝑛(𝜉0, 𝜂0)| ≤ 𝐶𝑀𝜙 (1−𝜉0)1−𝛽

(︀
1+| ln(1−𝜉0)|

)︀
, (𝜉0, 𝜂0) ∈ 𝐷; (2.179)

(ii) if 1/2 ≤ 𝛽 < 1, then

|𝐽0
𝑝,𝑛(𝜉0, 𝜂0)| ≤ 𝐶𝑀𝜙

(1− 𝜉0)
1−𝛽+𝜀

(𝜂0 − 𝜉0)𝜀
(︀
1 + | ln(1− 𝜉0)|

)︀
, (𝜉0, 𝜂0) ∈ 𝐷

(2.180)

with some 𝜀 ∈ (0, 𝛽).

Additionally, this result holds for 𝑝 = 0 also in the case when 𝑛 is an

odd number.
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Proof. First, consider the integral

𝑆0
𝑖,𝑗(𝜉0) :=

∫︁ 𝜉0

0

𝜙𝑝(𝜉)(1− 𝜉)−𝑖−𝑗−𝑝−1+𝛽(𝜉0 − 𝜉)𝑖+𝑗 𝑑𝜉.

According to (A.11) we have

(𝜉0 − 𝜉)𝑖+𝑗 = (1− 𝜉)𝑖+𝑗

𝑖+𝑗∑︁
𝑠=0

(−𝑖− 𝑗)𝑠
𝑠!

(1− 𝜉0)
𝑠

(1− 𝜉)𝑠
(2.181)

and hence we may write:

𝑆0
𝑖,𝑗(𝜉0) =

𝑖+𝑗∑︁
𝑠=0

(−𝑖− 𝑗)𝑠
𝑠!

(1− 𝜉0)
𝑠

𝑝+ 𝑠− 𝛽

∫︁ 𝜉0

0

𝜙𝑝(𝜉)
𝑑

𝑑𝜉
(1− 𝜉)−𝑝−𝑠+𝛽 𝑑𝜉.

An integration by parts gives:

𝑆0
𝑖,𝑗(𝜉0) = −

𝑖+𝑗∑︁
𝑠=0

(−𝑖− 𝑗)𝑠
𝑠!

(1− 𝜉0)
𝑠

𝑝+ 𝑠− 𝛽

∫︁ 𝜉0

0

𝜙′
𝑝(𝜉)(1− 𝜉)−𝑝−𝑠+𝛽 𝑑𝜉

+ 𝜙𝑝(𝜉0)

𝑖+𝑗∑︁
𝑠=0

(−𝑖− 𝑗)𝑠
𝑠!

(1− 𝜉0)
−𝑝+𝛽

𝑝+ 𝑠− 𝛽
− 𝜙𝑝(0)

𝑖+𝑗∑︁
𝑠=0

(−𝑖− 𝑗)𝑠
𝑠!

(1− 𝜉0)
𝑠

𝑝+ 𝑠− 𝛽
.

Taking into account that (𝑝 − 𝛽 + 𝑠)(𝑝 − 𝛽)𝑠 = (𝑝 − 𝛽)(𝑝 − 𝛽 + 1)𝑠
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and using (A.9) we come to

𝑆0
𝑖,𝑗(𝜉0) =

−1

𝑝− 𝛽

{︃∫︁ 𝜉0

0

𝜙′
𝑝(𝜉)(1− 𝜉)−𝑝+𝛽

× 2𝐹1

(︂
𝑝− 𝛽,−𝑖− 𝑗, 𝑝− 𝛽 + 1;

1− 𝜉0
1− 𝜉

)︂
𝑑𝜉

− 𝜙𝑝(𝜉0)(1− 𝜉0)
−𝑝+𝛽 (𝑖+ 𝑗)!

(𝑝− 𝛽 + 1)𝑖+𝑗

+ 𝜙𝑝(0) 2𝐹1 (𝑝− 𝛽,−𝑖− 𝑗, 𝑝− 𝛽 + 1; 1− 𝜉0)

}︃
. (2.182)

Now, suppose that (𝜉0, 𝜂0) ∈ 𝒯 . Then, representing the function

ℛ(𝜉, 𝜂; 𝜉0, 𝜂0) as Ψ+(𝜉, 𝜂; 𝜉0, 𝜂0), according to (2.134) we write

𝐼0𝑝,𝑛(𝜉0, 𝜂0) =
𝑛∑︁

𝑖=0

∞∑︁
𝑗=0

(−𝑛)𝑖(𝑛+ 1)𝑖(𝛽)𝑗(1− 𝛽)𝑗
𝑖! 𝑗! (𝑖+ 𝑗)! (−1)𝑗

(1− 𝜂0)
𝑖+𝑗

(2− 𝜉0 − 𝜂0)𝑖(𝜂0 − 𝜉0)𝑗+𝛽

×
{︂
(𝑝− 𝛽)𝑆0

𝑖,𝑗(𝜉0) +

∫︁ 𝜉0

0

𝜙′
𝑝(𝜉)(1− 𝜉)−𝑖−𝑗−𝑝+𝛽(𝜉0 − 𝜉)𝑖+𝑗 𝑑𝜉

}︂
.

Substituting here (2.182) and using once again (2.181) we derive:

𝐼0𝑝,𝑛(𝜉0, 𝜂0) = 𝑄0
𝑝,𝑛(𝜉0, 𝜂0) +𝜙𝑝(𝜉0)𝒥𝑝,𝑛(𝜉0, 𝜂0)−𝜙𝑝(0)𝐻𝑝,𝑛(𝜉0, 𝜂0), (2.183)
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where 𝒥𝑝,𝑛(𝜉0, 𝜂0) is the series given by (2.160) and

𝑄0
𝑝,𝑛(𝜉0, 𝜂0) :=

𝑛∑︁
𝑖=0

∞∑︁
𝑗=0

(−𝑛)𝑖(𝑛+ 1)𝑖(𝛽)𝑗(1− 𝛽)𝑗
𝑖! 𝑗! (𝑖+ 𝑗)! (−1)𝑗

(1− 𝜂0)
𝑖+𝑗

(2− 𝜉0 − 𝜂0)𝑖(𝜂0 − 𝜉0)𝑗+𝛽

×
∫︁ 𝜉0

0

𝜙′
𝑝(𝜉)(1− 𝜉)−𝑝+𝛽

[︂
2𝐹1

(︂
𝑝− 𝛽 + 1,−𝑖− 𝑗, 𝑝− 𝛽 + 1;

1− 𝜉0
1− 𝜉

)︂
− 2𝐹1

(︂
𝑝− 𝛽,−𝑖− 𝑗, 𝑝− 𝛽 + 1;

1− 𝜉0
1− 𝜉

)︂]︂
𝑑𝜉.

(a) In the case when 𝑝 is of the same parity as 𝑛, according to Lemmas

2.11.4-2.11.5 the function 𝒥𝑝,𝑛(𝜉0, 𝜂0) has the representation (2.168) in 𝐷

and obviously it satisfies the estimate

⃒⃒
𝒥𝑝,𝑛(𝜉0, 𝜂0)

⃒⃒
≤ const (2− 𝜉0 − 𝜂0)

−𝑝, (𝜉0, 𝜂0) ∈ 𝐷.

Then, in view of (2.177), we have

⃒⃒
𝜙𝑝(𝜉0)𝒥𝑝,𝑛(𝜉0, 𝜂0)

⃒⃒
≤ 𝐶𝑀𝜙 (1− 𝜉0)

1−𝛽, (𝜉0, 𝜂0) ∈ 𝐷

and, clearly, 𝜙𝑝(𝜉0)𝒥𝑝,𝑛(𝜉0, 𝜂0) satisfies the same estimates (2.178)-(2.180)

as the function 𝐽0
𝑝,𝑛(𝜉0, 𝜂0) should satisfy.

(b) In the case when 𝑝 = 0 and 𝑛 is an odd number we transform

the series 𝒥𝑝,𝑛(𝜉0, 𝜂0) into (2.161) and with use of (A.6)-(A.8) we conclude

that 𝜙0(𝜉0)𝒥0,𝑛(𝜉0, 𝜂0) satisfies the same estimates (2.178)-(2.180) as the

function 𝐽0
𝑝,𝑛(𝜉0, 𝜂0) should satisfy.
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Next, to estimate 𝑄0
𝑝,𝑛(𝜉0, 𝜂0), subtracting term by term we derive:

2𝐹1 (𝑝− 𝛽 + 1,−𝑖− 𝑗, 𝑝− 𝛽 + 1; 𝑧)− 2𝐹1 (𝑝− 𝛽,−𝑖− 𝑗, 𝑝− 𝛽 + 1; 𝑧)

=
(𝑖+ 𝑗) 𝑧

𝛽 − 𝑝− 1
2𝐹1 (𝑝− 𝛽 + 1, 1− 𝑖− 𝑗, 𝑝− 𝛽 + 2; 𝑧)

and therefore 𝑄0
𝑝,𝑛(𝜉0, 𝜂0) becomes

𝑄0
𝑝,𝑛(𝜉0, 𝜂0) =

1− 𝜉0
(𝜂0 − 𝜉0)𝛽

×

(︃
𝑆0(𝜉0, 𝜂0) +

𝑛∑︁
𝑖=1

(−𝑛)𝑖(𝑛+ 1)𝑖
𝑖!

(1− 𝜂0)
𝑖

(2− 𝜉0 − 𝜂0)𝑖
𝑆𝑖(𝜉0, 𝜂0)

)︃
,

where 𝑆0(𝜉0, 𝜂0) and 𝑆𝑖(𝜉0, 𝜂0) are the series from Lemmas 2.11.2-2.11.3 with

𝜑(𝜉) :=
𝜙′
𝑝(𝜉)

𝛽 − 𝑝− 1
(1− 𝜉)−𝑝+𝛽 ∈ 𝐶([0, 1)).

The function 𝜑(𝜉) according to (2.177) is bounded on the segment [0, 1].

Using the results of Lemmas 2.11.2-2.11.3 we conclude that the function

𝐽0
𝑝,𝑛(𝜉0, 𝜂0) := 𝑄0

𝑝,𝑛(𝜉0, 𝜂0) + 𝜙𝑝(𝜉0)𝒥𝑝,𝑛(𝜉0, 𝜂0)

satisfies the estimates (2.178)-(2.180). Here we take into account that for

(𝜉0, 𝜂0) ∈ 𝒯 we have 1− 𝜂0 < 𝜂0 − 𝜉0.

Then, in view of (2.183), the proof is complete. �

Proof of Theorem 2.10.1. First, recall that the solution of Problem
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𝑃𝐺
𝑚2 is given by (2.133).

Taking into account the estimates (2.109), (2.115), (2.131) and (2.132)

we apply here:

(a) Lemma 2.11.4 with 𝑝 = 𝑛− 2𝑘;

(b) Lemma 2.11.5 if 𝑛 is an even number;

(c) Lemma 2.11.6 with

𝑝 = 𝑛− 2𝑘, 𝜙𝑛−2𝑘(𝜉) = 𝐽𝑛,𝛽
𝑘 (𝜉), 𝑘 = 0, . . . , [(𝑛− 1)/2]

and

𝜙0(𝜉) =

⎧⎪⎨⎪⎩
𝑔(𝜉) + 𝐽𝑛,𝛽

𝑛/2(𝜉), 𝑛 even,

𝑔(𝜉), 𝑛 odd.

Then, noting that

𝐽𝑛,𝛽
𝑘 (0) = 𝜇𝑛,𝛽𝑘 , 𝑔(0) = 0,

we obtain:

∫︁ 𝜉0

0

(︂
𝑈𝜉(𝜉, 1)−

𝛽

1− 𝜉
𝑈(𝜉, 1)

)︂
ℛ(𝜉, 1; 𝜉0, 𝜂0) 𝑑𝜉

=

[𝑛/2]∑︁
𝑘=0

𝜇𝑛,𝛽𝑘 𝑎𝑛,𝛽𝑘

(2− 𝜉0 − 𝜂0)𝑛−2𝑘 2𝐹1

(︂
𝑛− 𝑘 +

1

2
,−𝑘, 1

2
+ 𝛽;

(𝜂0 − 𝜉0)
2

(2− 𝜉0 − 𝜂0)2

)︂
+𝐺

(𝛽)
1 (𝜉0, 𝜂0), (2.184)
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where 𝑎𝑛,𝛽𝑘 = const ̸= 0 and the function 𝐺(𝛽)
1 (𝜉, 𝜂) satisfies the estimates

|𝐺(𝛽)
1 (𝜉0, 𝜂0)| ≤ 𝐾‖𝐹‖𝐶(𝐷) (1− 𝜉0)

1−𝛽
(︀
1 + | ln(1− 𝜉0)|

)︀
, (𝜉0, 𝜂0) ∈ 𝒯 ,

(2.185)

|𝐺(𝛽)
1 (𝜉0, 𝜂0)| ≤ 𝐾‖𝐹‖𝐶(𝐷) (1− 𝜉0)

1−𝛽
(︀
1 + | ln(1− 𝜉0)|

)︀
, (𝜉0, 𝜂0) ∈ 𝐷

in the case 0 < 𝛽 < 1/2; (2.186)

|𝐺(𝛽)
1 (𝜉0, 𝜂0)| ≤ 𝐾‖𝐹‖𝐶(𝐷)

(1− 𝜉0)
1−𝛽+𝜀

(𝜂0 − 𝜉0)𝜀
(︀
1+ | ln(1− 𝜉0)|

)︀
, (𝜉0, 𝜂0) ∈ 𝐷

in the case 1/2 ≤ 𝛽 < 1 (2.187)

with a positive constant 𝐾 and some 𝜀 ∈ (0, 𝛽).

Next, using the estimates for the Riemann function (2.138)-(2.140), we

find that the function

𝐺
(𝛽)
2 (𝜉0, 𝜂0) := −

∫︁ 1

𝜂0

∫︁ 𝜉0

0

𝐹 (𝜉, 𝜂)ℛ(𝜉, 𝜂; 𝜉0, 𝜂0) 𝑑𝜉𝑑𝜂

satisfies the same estimates (2.185)-(2.187) as the function 𝐺(𝛽)
1 (𝜉0, 𝜂0). Re-

spectively, for the function

𝐺(𝛽)(𝜉, 𝜂) := 𝐺
(𝛽)
1 (𝜉, 𝜂) +𝐺

(𝛽)
2 (𝜉, 𝜂)

such estimates hold as well.

To complete the proof we have to confirm that we have 𝐺(𝛽) ∈ 𝐶(𝐷̄)

and 𝐺(𝛽)(1, 1) = 0 even in the case 1/2 ≤ 𝛽 < 1 .
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On the one hand the estimate (2.187) allows the function 𝐺(𝛽)(𝜉, 𝜂)

to have singularities on the line {𝜂 = 𝜉}, but on the other hand from

Theorem 2.6.2 we know that 𝑈(𝜉, 𝜂) ∈ 𝐶(𝐷̄)∖(1, 1). Therefore 𝐺(𝛽)(𝜉, 𝜂) ∈

𝐶(𝐷̄)∖(1, 1) as well. The lines

𝑙𝛿 := {(𝜉, 𝜂) : 𝜂 − 𝜉 = 𝛿 (1− 𝜉)}, 𝛿 ∈ (0, 1]

pass through the point (𝜉, 𝜂) = (1, 1) and on each of them, according to the

estimate (2.187) (applied to 𝐺(𝛽)), we have

|𝐺(𝛽)(𝜉, 𝛿 + (1− 𝛿)𝜉)| ≤ 1

𝛿𝜀
𝐾‖𝐹‖𝐶(𝐷) (1− 𝜉)1−𝛽

(︀
1 + | ln(1− 𝜉)|

)︀
,

implying

lim
(𝜉,𝜂)→(1,1)

𝐺(𝛽)(𝜉, 𝜂) = 0, (𝜉, 𝜂) ∈ 𝐷̄∖{𝜂 = 𝜉}.

By continuity we have that this equality holds for (𝜉, 𝜂) ∈ 𝐷̄ as well.

The proof is complete. �

The assertions in Theorem 2.2.3 and Remark 2.2.1 follow from Theorem

2.10.1 after the inverse transformation from Problem 𝑃𝑚2 to Problem 𝑃𝑚.

To obtain this, take into account that the coefficients 𝜇𝑛,𝛽𝑘 are proportional

to the coefficients 𝜇𝑛,𝑚𝑘,𝑠 with non-zero constants, which can be proved in

analogous way as Lemma 1.7.1 in Chapter 1.
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Appendix A.

Some formulas for the

hypergeometric function

In the present research we widely use various well known formulas (see for

example [3], [5], [48]), concerning the hypergeometric function and some of

its generalizations.

A. The Pochhammer symbol. In order to operate with the hyper-

geometric series we need to use some basic relations for the Pochhammer

symbol

(𝑎)𝑖 :=
Γ(𝑎+ 𝑖)

Γ(𝑎)
, 𝑎, 𝑎+ 𝑖 ̸= 0,−1,−2, . . . ,

which for each 𝑎 ∈ C and nonnegative integer 𝑖 is also defined as

(𝑎)𝑖 = 𝑎(𝑎+ 1) . . . (𝑎+ 𝑖− 1), 𝑖 ∈ N, (𝑎)0 = 1.
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Such basic relations are:

(𝑎)𝑖+𝑗 = (𝑎)𝑖(𝑎+ 𝑖)𝑗, (A.1)

(𝑎)𝑖−𝑗 =
(−1)𝑗 (𝑎)𝑖
(1− 𝑎− 𝑖)𝑗

, (A.2)

(𝑎)2𝑖 = 22𝑖
(︁𝑎
2

)︁
𝑖

(︂
𝑎+ 1

2

)︂
𝑖

, (A.3)

(𝑎)𝑗 = (−1)𝑗(1− 𝑎− 𝑗)𝑗. (A.4)

B. The Gauss hypergeometric series. The Gauss hypergeometric

series is defined as:

2𝐹1(𝑎, 𝑏, 𝑐; 𝜁) :=
∞∑︁
𝑖=0

(𝑎)𝑖(𝑏)𝑖
(𝑐)𝑖 𝑖!

𝜁 𝑖, 𝑎, 𝑏, 𝑐 ∈ C, 𝑐 ̸= 0,−1,−2, . . . .

For |𝜁| < 1 this series is absolutely convergent. In the case when 𝑎 or 𝑏 is a

nonpositive integer, 2𝐹1(𝑎, 𝑏, 𝑐; 𝜁) becomes a polynomial and then it is well

defined for each 𝜁 ∈ C.

∙ In the case when 0 < Re 𝑎 < Re 𝑐 the hypergeometric series has the

following integral representation:

2𝐹1(𝑎, 𝑏, 𝑐; 𝜁) =
Γ(𝑐)

Γ(𝑎)Γ(𝑐− 𝑎)

∫︁ 1

0

𝑡𝑎−1(1− 𝑡)𝑐−𝑎−1(1− 𝜁𝑡)−𝑏 𝑑𝑡. (A.5)

∙ The hypergeometric series may become unbounded or it may be

bounded as 𝜁 → 1 and it satisfies the following estimates:

(i) If 𝑐−𝑎−𝑏 = 0, then for each 𝛼 > 0 there exists a constant 𝑐(𝛼) > 0
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such that

| 2𝐹1(𝑎, 𝑏, 𝑐; 𝜁)| ≤ 𝑐(𝛼)(1− 𝜁)−𝛼. (A.6)

(ii) In the case 𝑐− 𝑎− 𝑏 < 0 we have a constant 𝐾 > 0 such that:

| 2𝐹1(𝑎, 𝑏, 𝑐; 𝜁)| ≤ 𝐾(1− 𝜁)𝑐−𝑎−𝑏. (A.7)

(iii) In the case 𝑐− 𝑎− 𝑏 > 0, as well as in the case when 2𝐹1(𝑎, 𝑏, 𝑐; 𝜁)

is a polynomial of a bounded argument 𝜁, we have a constant 𝐾 > 0 such

that:

| 2𝐹1(𝑎, 𝑏, 𝑐; 𝜁)| ≤ 𝐾. (A.8)

In the last case the hypergeometric series can be evaluated at 𝜁 = 1 as

2𝐹1(𝑎, 𝑏, 𝑐; 1) =
Γ(𝑐)Γ(𝑐− 𝑎− 𝑏)

Γ(𝑐− 𝑎)Γ(𝑐− 𝑏)
, (A.9)

provided the Gamma functions in (A.9) are well defined.

∙ The derivatives of 2𝐹1(𝑎, 𝑏, 𝑐; 𝜁) are given by

𝑑𝑠

𝑑𝜁𝑠
2𝐹1(𝑎, 𝑏, 𝑐; 𝜁) =

(𝑎)𝑠(𝑏)𝑠
(𝑐)𝑠

2𝐹1(𝑎+ 𝑠, 𝑏+ 𝑠, 𝑐+ 𝑠; 𝜁), 𝑠 = 0, 1, 2, . . . .

(A.10)

∙ Some of the important simple particular cases of the hypergeometric

series are the following ones:

(i) The binomial series:

2𝐹1(𝑎, 𝑏, 𝑎; 𝜁) = (1− 𝜁)−𝑏; (A.11)
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(ii) The function −𝜁−1 ln(1− 𝜁):

2𝐹1(1, 1, 2; 𝜁) = −1

𝜁
ln(1− 𝜁). (A.12)

C. Transformations of the hypergeometric series. In the present

work we use various formulas transforming the hypergeometric series into

other hypergeometric series. Some of them give an analytical continuation

of 2𝐹1(𝑎, 𝑏, 𝑐; 𝜁) for values of 𝜁 with |𝜁| ≥ 1. The hypergeometric series

with its maximal possible analytical continuation outside the circle |𝜁| < 1

represents the hypergeometric function.

∙ For the hypergeometric series the so called auto transformation

formula is valid:

2𝐹1(𝑎, 𝑏, 𝑐; 𝜁) = (1− 𝜁)𝑐−𝑎−𝑏
2𝐹1(𝑐− 𝑎, 𝑐− 𝑏, 𝑐; 𝜁). (A.13)

∙ We use the next formulas, changing the argument 𝜁 in the hyperge-

ometric function:

2𝐹1 (𝑎, 𝑏, 𝑐; 𝜁) = (1− 𝜁)−𝑎
2𝐹1

(︂
𝑎, 𝑐− 𝑏, 𝑐;

𝜁

𝜁 − 1

)︂
= (1− 𝜁)−𝑏

2𝐹1

(︂
𝑐− 𝑎, 𝑏, 𝑐;

𝜁

𝜁 − 1

)︂
, (A.14)
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2𝐹1(𝑎, 𝑏, 𝑐; 𝜁) =
Γ(𝑐)Γ(𝑐− 𝑎− 𝑏)

Γ(𝑐− 𝑎)Γ(𝑐− 𝑏)
2𝐹1(𝑎, 𝑏, 𝑎+ 𝑏− 𝑐+ 1; 1− 𝜁)

+
Γ(𝑐)Γ(𝑎+ 𝑏− 𝑐)

Γ(𝑎)Γ(𝑏)
(1− 𝜁)𝑐−𝑎−𝑏

2𝐹1(𝑐− 𝑎, 𝑐− 𝑏, 𝑐− 𝑎− 𝑏+ 1; 1− 𝜁).

(A.15)

∙ In the case when 𝑏 = 0,−1,−2, . . . and, simultaneously, 𝑎 ̸=

0,−1,−2, . . . the changing from 𝜁 to (1− 𝜁)−1, 𝜁 ̸= 1 is given by

2𝐹1(𝑎, 𝑏, 𝑐; 𝜁) =
Γ(𝑐)Γ(𝑎− 𝑏)

Γ(𝑎)Γ(𝑐− 𝑏)
(1− 𝜁)−𝑏

2𝐹1

(︂
𝑐− 𝑎, 𝑏, 𝑏− 𝑎+ 1;

1

1− 𝜁

)︂
.

(A.16)

∙ In the special case when 𝑐 = (𝑎 + 𝑏 + 1)/2 it can be applied the so

called quadratic transformation:

2𝐹1(𝑎, 𝑏,
𝑎+ 𝑏+ 1

2
; 𝜁) = ℎ1 2𝐹1

(︂
𝑎

2
,
𝑏

2
,
1

2
; (1− 2𝜁)2

)︂
+ ℎ2(1− 2𝜁) 2𝐹1

(︂
𝑎+ 1

2
,
𝑏+ 1

2
,
3

2
; (1− 2𝜁)2

)︂
, (A.17)

with

ℎ1 =
Γ(12)Γ(

𝑎+𝑏+1
2 )

Γ(𝑎+1
2 )Γ(𝑏+1

2 )
, ℎ2 =

Γ(−1
2)Γ(

𝑎+𝑏+1
2 )

Γ(𝑎2)Γ(
𝑏
2)

, (A.18)

where we additionally define:

1

Γ(𝑘)
:= lim

𝑘→𝜀

1

Γ(𝑘 + 𝜀)
= 0, for 𝑘 = 0,−1,−2, . . . . (A.19)

D. Some generalizations of the hypergeometric series. In the
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present research we also use:

(i) The generalized hypergeometric series

3𝐹2(𝑎, 𝑏, 𝑐; 𝑑, 𝑒; 𝜁) :=
∞∑︁
𝑖=0

(𝑎)𝑖(𝑏)𝑖(𝑐)𝑖
(𝑑)𝑖(𝑒)𝑖 𝑖!

𝜁 𝑖

with 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ C and 𝑑, 𝑒 ̸= 0,−1,−2, . . .;

(ii) The hypergeometric series of two variables

𝐹1(𝑎, 𝑏1, 𝑏2, 𝑐;𝑥, 𝑦) :=
∞∑︁
𝑖=0

∞∑︁
𝑗=0

(𝑎)𝑖+𝑗(𝑏1)𝑗(𝑏2)𝑖
(𝑐)𝑖+𝑗 𝑖! 𝑗!

𝑥𝑗𝑦𝑖, (A.20)

𝐹3(𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐;𝑥, 𝑦) :=
∞∑︁
𝑖=0

∞∑︁
𝑗=0

(𝑎1)𝑗(𝑎2)𝑖(𝑏1)𝑗(𝑏2)𝑖
(𝑐)𝑖+𝑗 𝑖 !𝑗!

𝑥𝑗𝑦𝑖, (A.21)

𝐻2(𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐;𝑥, 𝑦) :=
∞∑︁
𝑖=0

∞∑︁
𝑗=0

(𝑎1)𝑗−𝑖(𝑎2)𝑗(𝑏1)𝑖(𝑏2)𝑖
(𝑐)𝑗 𝑖! 𝑗!

𝑥𝑗𝑦𝑖 (A.22)

with 𝑎, 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐 ∈ C and 𝑐 ̸= 0,−1,−2, . . ..

∙ The Saalschutz’s Theorem asserts:

Theorem A.0.1. If 𝑎, or 𝑏, or 𝑐 is a nonpositive integer and 𝑎+𝑏+𝑐+1 =

𝑑+ 𝑒, then:

3𝐹2(𝑎, 𝑏, 𝑐; 𝑑, 𝑒; 1) =
Γ(𝑑)Γ(1 + 𝑎− 𝑒)Γ(1 + 𝑏− 𝑒)Γ(1 + 𝑐− 𝑒)

Γ(1− 𝑒)Γ(𝑑− 𝑎)Γ(𝑑− 𝑏)Γ(𝑑− 𝑐)
.
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