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Abstract. In series of our works ([6, 7, 18, 19]) we considered a four-dimensional Protter-Morawetz problem for a Keldysh-type
weakly hyperbolic equation with power-type degeneracy of order m, where 0 < m < 2. It was shown that this problem is not well
posed, since it has an infinite-dimensional cokernel, but it can be studied in the frame of generalized solutions with possible big
singularities. However, existence and uniqueness results, as well as results on the asymptotic behavior of the singular solutions,
were established only for the case 0 < m < 4/3. In this paper we succeed to extend these results for m = 4/3.

STATEMENT OF THE PROBLEM

In series of our works ([6, 7, 18, 19]) we considered a four-dimensional boundary value problem (the so-called Protter-
Morawetz problem) for the Keldysh-type equation

ux1 x1 + ux2 x2 + ux3 x3 − (tmut)t = f (x, t) (1)

with m ∈ R, 0 < m < 2, where we denote the points in R4 as (x, t) := (x1, x2, x3, t). It was shown that this problem is not
well posed, since it has an infinite-dimensional cokernel, but it can be studied in the frame of generalized solutions with
possible big singularities. However, existence and uniqueness results, as well as results on the asymptotic behavior of
the singular solutions, were established only for the case 0 < m < 4/3, since the applied calculations fail for m ≥ 4/3.

In this paper we succeed to extend our results for m = 4/3. More precisely, here we study the following boundary
value problem:

Problem PK. Find a solution of the equation

ux1 x1 + ux2 x2 + ux3 x3 − (t4/3ut)t = f (x, t) in Ω, (2)

satisfying the boundary conditions
u|Σ1 = 0, t4/3ut → 0 as t → +0, (3)

where the region Ω is given by

Ω :=
{

(x, t) : 0 < t <
1

216
, 3t1/3 < |x| < 1 − 3t1/3

}
, |x| =

√
x2

1 + x2
2 + x2

3

and it is bounded by the ball
Σ0 :=

{
(x, t) : t = 0, |x| < 1

}
and by the following two characteristic surfaces of equation (2):

Σ1 :=
{

(x, t) : 0 < t <
1

216
, |x| = 1 − 3t1/3

}
,
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Σ2 :=
{

(x, t) : 0 < t <
1

216
, |x| = 3t1/3

}
.

The adjoint problem of PK is the following one:

Problem PK∗. Find a solution to the self-adjoint equation (2) in Ω which satisfies the boundary conditions

u|Σ2 = 0, t4/3ut → 0 as t → +0.

SOME REMARKS ON THE PROTTER-MORAWETZ PROBLEMS

The Protter-Morawetz problems firstly were proposed by Protter [22] for Tricomi-type equations as multidimensional
analogues of the famous Guderley-Morawetz problem arising in transonic fluid dynamic (see for example [1, 14]) and
later they were generalized for Keldysh-type equations. For their part, the Keldysh-type equations are known in some
specific applications in plasma physics, optics and analysis on projective spaces ([13, 16, 17]).

Today it is well known that the Protter-Morawetz problems are not well posed, since they have infinite-
dimensional cokernels ([12, 21, 25]). For this reason these problems, as it was proposed by Popivanov and Schneider
[21], are studied in the frame of generalized solutions with possible big singularities. It is well known that in the
general case such singularities really exist. It is interesting that they are isolated at one boundary point and they do
not propagate along the bicharacteristics, which is not traditionally assumed for the hyperbolic equations. Results on
the exact asymptotic behavior of the generalized solutions of different Protter-Morawetz problems can be found for
example in [8, 15, 20].

In particular, as we mentioned above, similar facts we find for the Protter-Morawetz problem for equation (1). A
generalization of this problem for three-dimensional equations involving lower order terms is treated in [9], where an
uniqueness result was proved.

Here we mention a specific feature in the statement of the problems for Keldysh-type equations: on the degenerate
boundary {t = 0} we have no prescribed values of the derivative ut and instead of this we have only limitation
on the growth of its singularity. Actually, it is well known that the solutions of the Keldysh-type equations are not
differentiable at the degenerate boundary ([2]).

Other different boundary value problems for Keldysh-type equations and some their generalizations are studied
in [3, 4, 5, 10, 11, 23, 24].

ILL-POSEDNESS OF PROBLEM PK

The adjoint homogeneous Problem PK∗ has infinitely many linearly independent classical solutions. Actually, in [19]
we proved this fact for the general case when we have equation (1) with m ∈ (0, 2), as well as we gave an explicit
representation of these solutions. Here we will interpret this result for our case m = 4/3.

More precisely, for k, n ∈ N ∪ {0} define the functions

En
k(|x|, t) :=

(|x|2 − 9t2/3)n−2k−1

|x|n−2k+1 2F1

(
n − k +

1
2
,−k,

3
2

;
9t2/3

|x|2

)
, (4)

where 2F1(a, b, c; z) is the Gauss hypergeometric series. Further, denote by Y s
n(x), n ∈ N ∪ {0}, s = 1, 2, . . . , 2n + 1

the three-dimensional spherical functions. They are usually defined on the unit sphere S 2 := {x ∈ R3 : |x| = 1}, but
for convenience of our discussions we extend them out of S 2 radially, keeping the same notation for the extended
functions:

Y s
n(x) := Y s

n(x/|x|), x ∈ R3 \ {(0, 0, 0)}.

Lemma 1. For all k, n ∈ N ∪ {0}, n > 2k + 3 and s = 1, 2, . . . , 2n + 1, the functions

vn
k,s(x, t) :=

{
En

k(|x|, t)Y s
n(x), (x, t) , O,

0, (x, t) = O,

with O := (0, 0, 0, 0), are classical solutions from C2(Ω) ∩C(Ω̄) of the homogeneous Problem PK∗.

040020-2



A necessary condition for the existence of a classical solution of Problem PK is the orthogonality of the right-
hand side function f (x, t) to all these functions vn

k,s(x, t). Respectively, an infinite number of orthogonality conditions
µn

k,s = 0 with

µn
k,s :=

∫
Ω

vn
k,s(x, t) f (x, t) dxdt (5)

must be fulfilled.
In order to study Problem PK in the frame of generalized solvability, we will also interpret for our case the

generalized solution’s definition given in ([18]):

Definition 1. We call a function u(x, t) a generalized solution of Problem PK in Ω if:
(1) u, ux j ∈ C(Ω̄ \ O), j = 1, 2, 3, ut ∈ C(Ω̄ \ Σ̄0);
(2) u|Σ1 = 0;
(3) For each ε ∈ (0, 1) there exists a constant C(ε) > 0, such that

|ut(x, t)| ≤ C(ε)t−1 in Ω ∩ {|x| > ε} ; (6)

(4) The identity ∫
Ω

{t4/3utvt − ux1 vx1 − ux2 vx2 − ux3 vx3 − f v} dxdt = 0

holds for all v from

V :=
{
v(x, t) : v ∈ C2(Ω̄), v|Σ2 = 0, v ≡ 0 in a neighborhood of O

}
.

This definition allows the generalized solutions to have strong singularities at the point O. Note that the inequality
(6) restricts the generalized solution’s function space to a class which is smaller than it is allowed by the second
boundary condition in (3).

TWO-DIMENSIONAL PROBLEM CORRESPONDING TO PROBLEM PK

In the case when the right-side function f (x, t) is of the form

f (x, t) =

l∑
n=0

2n+1∑
s=1

f s
n (|x|, t)Y s

n(x) (7)

Problem PK reduces to a two-dimensional problem. To do this, let us look for solutions of the form

u(x, t) =

l∑
n=0

2n+1∑
s=1

us
n(|x|, t)Y s

n(x). (8)

Passing to the spherical coordinates (r, θ, ϕ, t) ∈ R4, r > 0, 0 ≤ θ < π, 0 ≤ ϕ < 2π with

x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ

and after that using the characteristic coordinates

ξ = 1 − r −
2

2 − m
t

2−m
2 , η = 1 − r +

2
2 − m

t
2−m

2 ,

for the functions
U(ξ, η) := r(ξ, η) us

n

(
r(ξ, η), t(ξ, η)

)
the following Darboux-Goursat problem is obtained:
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Problem PK2. Find a solution of the equation

Uξη +
1

η − ξ
(Uξ − Uη) −

n(n + 1)
(2 − ξ − η)2 U = F(ξ, η) in D, (9)

satisfying the following boundary conditions

U(0, η) = 0, lim
η−ξ→+0

(η − ξ)2
(
Uξ − Uη

)
= 0,

where
D := {(ξ, η) : 0 < ξ < η < 1}

and
F(ξ, η) :=

1
8

(2 − ξ − η) f s
n

(
r(ξ, η), t(ξ, η)

)
.

In conformity with [18] and with Definition 1, we define a generalized solution of Problem PK2 in the following
way:

Definition 2. We call a function U(ξ, η) a generalized solution of Problem PK2 in D if :
(1) U, Uξ + Uη ∈ C(D̄ \ (1, 1)) , Uξ − Uη ∈ C(D̄ \ {η = ξ});
(2) U(0, η) = 0;
(3) for each ε ∈ (0, 1) there exists a constant C(ε) > 0, such that

|(Uξ − Uη)(ξ, η)| ≤ C(ε)(η − ξ)−1 in D ∩ {ξ < 1 − ε};

(4) the identity ∫
D

(η − ξ)2
{

UξVη + UηVξ +
2n(n + 1)

(2 − ξ − η)2 UV + 2FV
}

dξ dη = 0

holds for all

V ∈ V (2) := {V(ξ, η) : V ∈ C2(D̄), V(ξ, 1) = 0,V ≡ 0 in a neighborhood of (1, 1)}.

EXISTENCE AND UNIQUENESS RESULT FOR PROBLEM PK2 AND ASYMPTOTIC
EXPANSION OF ITS SINGULAR SOLUTIONS

To solve this problem, we find an appropriate Riemann-Hadamard function. Then we state:

Theorem 1. Let F ∈ C1(D̄). Then there exists an unique generalized solution of Problem PK2 and it has the
following integral representation at a point (ξ0, η0) ∈ D:

U(ξ0, η0) =

∫ ξ0

0

∫ η0

ξ

Φ(ξ, η; ξ0, η0)F(ξ, η) dηdξ, (10)

where the Riemann-Hadamard function Φ(ξ, η; ξ0, η0) is defined as

Φ(ξ, η; ξ0, η0) :=


Φ+(ξ, η; ξ0, η0), η > ξ0,

Φ−(ξ, η; ξ0, η0), η < ξ0

(11)

with

Φ+(ξ, η; ξ0, η0) :=
η − ξ

η0 − ξ0
2F1(n + 1,−n, 1; Y), (12)

Φ−(ξ, η; ξ0, η0) :=
η − ξ

η0 − ξ0

{
2F1(n + 1,−n, 1; Y) − 2F1(n + 1,−n, 1; Y∗)

}
(13)
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and

Y = Y(ξ, η; ξ0, η0) :=
−(ξ0 − ξ)(η0 − η)

(2 − ξ − η)(2 − ξ0 − η0)
, Y∗ = Y(ξ, η; η0, ξ0) :=

−(η0 − ξ)(ξ0 − η)
(2 − ξ − η)(2 − ξ0 − η0)

. (14)

Next, to investigate the asymptotic behavior of the generalized solution U(ξ, η), we derive a special decompo-
sition of the Riemann-Hadamard function. To give this representation, it is convenient to introduce the following
functions:

Ẽn
k (ξ, η) :=

1
(2 − ξ − η)n−2k 2F1

(
n − k +

1
2
, − k,

3
2

;
(η − ξ)2

(2 − ξ − η)2

)
,

En
k (ξ, η) := (1 − ξ)n−2k−1(1 − η)n−2k−1 Ẽn

k (ξ, η),

Q̃n
k(ξ, η) :=

1
(2 − ξ − η)n−2k 2F1

(
n − k +

1
2
, − k,

1
2

;
(η − ξ)2

(2 − ξ − η)2

)
,

Qn
k(ξ, η) := (1 − ξ)n−2k(1 − η)n−2k Q̃n

k(ξ, η),

The functions En
k

(
ξ(r, t), η(r, t)

)
obviously are proportional to the functions r En

k(r, t) (see (4)) and for k =

0, 1, . . . , [n/2] − 1 they solve in D equation (9) with F(ξ, η) ≡ 0, as well as they satisfy the adjoint boundary con-
ditions

U(ξ, 1) = 0, lim
η−ξ→+0

(η − ξ)2
(
Uξ − Uη

)
= 0.

Theorem 2. The Riemann-Hadamard function Φ−(ξ, η; ξ0, η0) given by (11)-(14) can be decomposed in the fol-
lowing way:

Φ−(ξ, η; ξ0, η0) := (η − ξ)2

[(n−1)/2]∑
k=0

an
k Ẽn

k (ξ0, η0)En
k (ξ, η) +

[n/2]−1∑
k=0

an
k En

k (ξ0, η0)Ẽn
k (ξ, η)

 ,
Φ+(ξ, η; ξ0, η0) :=

1
2

Φ−(ξ, η; ξ0, η0) +
η − ξ

η0 − ξ0

[n/2]∑
k=0

bn
k Q̃n

k(ξ0, η0)Qn
k(ξ, η) +

[(n−1)/2]∑
k=0

bn
k Qn

k(ξ0, η0)Q̃n
k(ξ, η)

 ,
where ak

n and bk
n are non-zero constants.

Applying this expansion into (10) we come to the following theorem:

Theorem 3. Let F ∈ C1(D̄). Then the unique generalized solution of Problem PK2 has the following asymptotic
representation at the singular point (1, 1):

U(ξ, η) =

[(n−1)/2]∑
k=0

µn
kan

kGn
k(ξ, η)(2 − ξ − η)2k−n + G(ξ, η), (ξ, η) ∈ D,

where

µn
k :=

∫
D

(η − ξ)2En
k (ξ, η)F(ξ, η) dξdη,

Gn
k(ξ, η) := 2F1

(
n − k +

1
2
,−k,

3
2

;
(η − ξ)2

(2 − ξ − η)2

)
and G(ξ, η) is a bounded in D function.
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THE MAIN RESULTS

From the results obtained for the 2-D Problem PK2 we obtain the following theorems for the 4-D problem PK:

Theorem 4. There exists at most one generalized solution of Problem PK in Ω.

Theorem 5. Let the right-hand side function f (x, t) be of the form (7) and f ∈ C1(Ω̄). Then there exists an unique
generalized solution u(x, t) of Problem PK in Ω and it has the form (8).

Next, we note that the coefficients µn
k in Theorem 3 are proportional to the scalar products µn

k,s defined by (5).
Then we obtain the following expansion of u(x, t) in negative powers of |x|:

Theorem 6. Let the right-hand side function f ∈ C1(Ω̄) has the form (7). Then the unique generalized solution
u(x, t) of problem PK has the following expansion at the point O:

u(x, t) =
1
|x|

 l∑
p=1

Fp(x, t) |x|−p + F0(x, t)

 ,
where:

(i) F0(x, t) is a bounded in Ω function;
(ii) The functions Fp(x, t), p = 1, . . . , l have the following structure:

Fp(x, t) =

[(l−p)/2]∑
k=0

2p+4k+1∑
s=1

cp+2k
k µ

p+2k
k,s Hp+2k

k,s (x, t), (15)

where cp+2k,m
k , 0 are constants independent of f (x, t) and

Hn
k,s(x, t) := 2F1

(
n − k +

1
2
,−k,

3
2

;
9t2/3

|x|2

)
Y s

n(x);

(iii) If at least one of the constants µp+2k
k,s in (15) is different from zero, then for the corresponding function Fp(x, t)

there exists a vector α ∈ R3, |α| = 1, such that

lim
t→+0

Fp(σ(t), t) = const , 0,

where
(σ(t), t) :=

(
3αt1/3, t

)
∈ Σ2, t > 0.

This means that in this case the order of singularity of u(x, t) is no smaller than p + 1.

The assertion (iii) in this theorem follows from the linear independence of the spherical functions and from the
fact that Hn

k,s(σ(t), t) = const , 0.

The main conclusion from Theorem 6 is that the order of singularity of u(x, t) can be strictly fixed by the coef-
ficients µn

k,s defined by (5), i.e. by choosing the right-hand side f (x, t) to be orthogonal to the appropriate functions
vn

k,s(x, t) from Lemma 1.
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