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Abstract – In modern telecommunications the necessity of 
supporting a large number of broadband services requires a 
guaranteed QoS routing. The basic task of routing is to find a 
path from source to destination. This path should satisfy these 
requirements. When the needed QoS depends on more than one 
parameter, the problem is known as Multi Constraint problem 
(MCP). Our goal in this article is to propose a new modified 
heuristic algorithm able to solve the problem.  
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I. INTRODUCTION 

To support broadband services such as the real time 
services, the QoS routing is the major problem. Routing has to 
deal two basic task – to support and update the information of 
the network and to find a path from source to destination. In 
cases when an application has no special requirements for the 
parameters (bandwidth, delay, jitter, packet loss) which define 
the QoS, finding the path from source to destination is known 
as The Shortest Path Problem. In other cases when two or 
more parameters have to be guaranteed from source to 
destination the problem is known as Multi Constraint Problem 
(MCP). MCP is NP hard [1] Depending on these parameters 
they may be classified as additive, multiplicative or concave. 
The paper is about the additive parameters, where the weight 
of this parameter (end to end) is equal to the sum of the 
weights of all links on the path. A path which satisfies all 
constraints is called a feasible path. There exist two basic 
routing strategies [2]: source routing and distributed routing. 
The source routing calculates the entire path locally in the 
source node. The distributed routing calculates the path in the 
intermediate note between the source and  the destination. 
The algorithms able to solve the MCP can generally be 
classified as heuristic and exact. The heuristic algorithms do 
not guarantee finding a feasible path(if it exists), while the 
exact algorithms do it. For this reason they are not applicable 
in practice. They are usually used to evaluate heuristic 
algorithms. 
Our goal in this paper is to propose a new heuristic, modified, 
distributed routing algorithm, able to solve the MCP with two 
constraints. 
 
Notation 
Each real network can be presented as a graph G(V, E) where 

V is the set of nodes and E is the set of links. The nodes are 
routers , while the links are physical or logical connections 
between them. Each link e E∈ is associated with two – 

dimensional link vector 1 2( , )w w w
ur

. The paths are noted as 

p , the source node as s , the destination node as t , any 

intermediate node as u . A path is feasible if (1) and (2) are 
correct. 

 1 1 1( )
e p

w p w C
∈

= ≤∑  (1) 

 2 1 2( )
e p

w p w C
∈

= ≤∑  (2) 

where 1C  and 2C are the constraints. 

II.  RELATED WORK 

In the proposed algorithm, we present the two weights on 
each link as a linear combination. There exist many 
algorithms using this technique. They are known as 
algorithms with mixed metrics. Some of these algorithms use 
linear path length [3][4][5][6][7], others use non - linear path 
length[8][9]. The main advantage of linear path length 
algorithms is that they can implement Dijkstra’s algorithm 
[10], while their major drawback is that they can return a path, 
which is not feasible (path outside the feasible region). 
The major advantage of the algorithms that use the non - 
linear path length is that they can scan the feasible region 
precisely. Their drawback however is that subsections of 
shortest path are not always shortest paths. As a result of 
using Dijkstra’s algorithm they are likely to fail. Fig.1 shows 
the way the two types of algorithms scan the feasible region. 
Fig 2 shows that the algorithm with linear path length works, 
Fig 3.shows that the algorithm fails.  

 
Fig. 1. Two types of algorithms scan the feasible region 
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Fig. 2. The algorithm works [3] 

 

 
Fig. 3. The algorithm fails [3] 

 
The first who proposed each link to be presented as linear 
combination was Jaffe[3]. 
 1 1 2 2( )w e d w d w= +  (3) 

Where 1d and 2d  are Lagrange multipliers.  

Iwata [4] suggests a heuristic algorithm to solve MCP  This 
algorithm computes the shortest path, based on  the first 
parameter and checks whether all constraints are satisfied. If 
they are - the algorithm returns this path. If they are not - the 
algorithm finds the shortest path with respect to the second 
parameter and this is repeated until a feasible path is found. 
In [5] the author proposed to reduce the search space 
increasing in this way the probability to find a solution. 
Feng [6] proposed an algorithm based on [5],reducing the 
search space and implementing the k-th shortest path, 
suggested by Chong[11]. 
Based on these algorithms we worked out a heuristic 
algorithm able to deal with MCP in cases with two 
constraints. 

III.  OUR ALGORITHM 

In this Section, we first prove an important theorem. 
Theorem: If we use Dijkstra’s algorithm to minimize the 
linear cost function on a graph that contains at least one 
feasible path, the algorithm returns a path where at least one 

( )w p C≤ . 

We assume that there is at least one feasible path p* Using 
Dijkstra’s algorithm, it returns the path p that minimizes the 

following linear cost function 
 1 2( )g p w kw= +  (4) 

where k is positive multiplier. This path however is not 
feasible  
 ( ) ( *)g p g p<  (5) 

 1 2 1 2( ) ( ) ( *) ( *)w p kw p w p kw p+ < +  (6) 

Since p* is feasible path it follows 

 1 1( )w p C≤  and 2 2( )w p C≤  (7) 
From (6) and (7) follow that at least one  
 ( )w p C≤  (8) 

With (8) we prove this basic theorem. 

Our basic idea in this algorithm is to minimize two linear cost 
functions for each intermediate node – one from u  to s and 

the other from u to t . First the algorithm finds the shortest 

paths from s  to t  with respect to 1w  and 2w . Then the 

algorithm defines k  multipliers, as follows: 

 1 1 1
1

2 2 2

( )

( )

C w p
k

C w p

−=
−

 (9) 

The node s shares this value with all other nodes. Each of the 

intermediate nodes calculates two paths-one from u  to s , 
and another – from u  to t .These paths  are calculated by the 
nodes using Dijkstra’s algorithm to minimize the cost function 
 1 1 2( )g p w k w= +  (10) 

If some of the nodes finds a feasible path, it returns it to s , if 
not according to our theorem each path contains not more than 
one w C> . In this case each of the nodes checks whether 1w  
or 2w  does not satisfy the constraint. If it is 1w  - then the 

node decreases 1k  to 2k . If  2w  does not satisfy the 

constraint – the node increases 1k  to 2k . 
In the next step each node computes the shortest path from u  
to s with respect to (10),and the path from u  to t  with 
respect to 
 1 2 2( )g p w k w= +  (11) 

If the path  
( ) ( ) ( )p s t p u s p u t→ = → + → (10) 

satisfies the constraint, the node returns this path. If not – the 
node changes the position of the two cost functions. 
 

PSEUDO CODE 
 

1. Dijkstra ( )1 1 1( )w s t w p→ →  



 

2. IF 1 1 1( )w p C≤  AND 2 1 2( )w p C≤  

3. RETURN path 
4. END IF 

5.  Dijkstra 2 2 2( ) ( )w s t w p→ →  

6. IF 1 2 1( )w p C≤  AND 2 2 2( )w p C≤  

7. RETURN path 
8. END IF 

9.  IF 1 1 1( )w p C>  OR 2 2 2( )w p C>  

10.  No Solution 
11. . END IF 

12.  1 1 1
1

2 2 2

( )

( )

C w p
k

C w p

−=
−

 

13.  FOR each link 

14.  1 1 2( )w e w k w= +  

15.  END FOR 
16.  Dijkstra ( )p s t→  

17.  IF 1 1( )w p C≤  AND 2 2( )w p C≤  

18. RETURN path 
19. END IF 
20. FOR each node u  

21. Dijkstra 1( , )p u t k→ ; 

22. Dijkstra 1( , )p s u k→  

23. ( ) ( ) ( )p s t p s u p u t→ = → + →  

24.   IF 1 1( )w p C≤  AND 2 2( )w p C≤  

25.     RETURN path 
26.   ELSE 

27.      IF 1 1( )w p C≤  AND 2 2( )w p C>  

28.       2 1k k>  

29.        DO 

30.          Dijkstra 2( , )p u s k→ , 

31. Dijkstra 1( , )p u t k→  

32.    2 1( ) ( , ) ( , )p s t p u s k p u t k→ = → + →   

33.         UNTIL 2 2( )w p C≤  

34.             IF 1 1( )w p C≤  AND 2 2( )w p C≤  

35.                 RETURN path 
36.              ELSE 
37.                 Dijkstra 1( , )p u s k→  

38. Dijkstra ( , 2)p u t k→  

39.    1 2( ) ( , ) ( , )p s t p u s k p u t k→ = → + →  

40.                IF 1 1( )w p C≤  AND 2 2( )w p C≤  

41.                        RETURN path 
42.                    END IF 
43.                END IF 
44.           END IF 

45.        END IF 

46. IF 1 1( )w p C>  AND 2 2( )w p C≤  

47. 2 1k k<  

48.        DO 

49.          Dijkstra 2( , )p u s k→ , 

50. Dijkstra 1( , )p u t k→  

51.    2 1( ) ( , ) ( , )p s t p u s k p u t k→ = → + →   

52.         UNTIL 2 2( )w p C≤  

53.             IF 1 1( )w p C≤  AND 2 2( )w p C≤  

54.                 RETURN path 
55.              ELSE 
56.                Dijkstra 1( , )p u s k→  

57.               ,Dijkstra ( , 2)p u t k→  

58.    1 2( ) ( , ) ( , )p s t p u s k p u t k→ = → + →  

59.                 IF 1 1( )w p C≤  AND 2 2( )w p C≤  

60.                        RETURN path 
61.                    END IF 
62.                END IF 
63.           END IF 
64.        END IF 
65. END FOR 

From line 1 to line 8 we implement Iwata’s algorithm. On line 
12 the algorithm calculates 1k  based on LARAC [5] 

algorithm. From line 20 to the last line the algorithm contains 
our basic idea which we exposed above. 
 
EXAMPLE 
 
Let we have a graph with six nodes. Each link is associated 
with two weights - 1w  and 2w . Our task is to find a path from 

source A to destination F with the given constraints 1 5C =  

and 2 10C = Fig. 4. There are four paths from A to F: 

ABDF=6, 3; ACEF=4, 11; ABCEF=5, 10; ACBDE=9, 6. If 
we apply only one linear cost function (like in most 
algorithms) the algorithm returns the path ABDF or the path 
ACEF(according to the choice of k )as solutions. 

 
Fig. 4. Graph with two weights on each link 

 
 



 

 
However these solutions are not correct. 
Applying our algorithm it will first find the shortest paths 
from s  to t  with respect to 1w  and 2w These paths are ACEF 

and ABDF. Both paths however are not solution. Next the 

algorithm will calculate 
1

7
k =  based on (9). It will find again 

the shortest path based on (4). This path is ACEF, but it is not 
a solution either. In the next step the nodes C and B will 

calculate the path p  based on (12), by 
1

7
k = . For node B the 

path will be ABDF while for node C the path will be ACEF. 
The two nodes will check which one (1w  or 2w ) does not 

satisfy the constraint. Node B will establish that this is 1w , 

while for node C it is 2w . Then the node will decrease k  and 

when 
1

8
k ≤  with respect to the path from B to F, it will find 

the path BCEF. The node will return the path ABCEF which 
is the feasible path. The procedure is the same concerning 

node C. When 
11

10
k ≥  for the path from C to A the node will 

return the path ABCEF. 

IV.  CONCLUSION 

We have created an algorithm that is based on five concepts: 
1. The algorithm is distributive 
2. Iwata’s algorithm is implemented 
3. Reduced search space[5] 
4. Look – ahead approach[12][13] 
5. Two linear functions for each intermediate node 

In some algorithms with linear  path length[6],as well as in 
other with non linear path length[8][9], a solution is searched 
applying the concept of k – th shortest path. This however 
leads to considerable increase in complexity of the algorithm.  
We suggest another approach. Each of the intermediate nodes 
explores a set of paths that could be feasible. This idea is 
similar to the idea proposed by Korkmaz in his algorithm [14]. 
He uses one linear and one non linear function, while we use 
two linear function.  
In the example looked through it becomes clear that Iwata’s  
and LARAC algorithms are not able to solve the problem of 
finding the feasible path, while our algorithm finds it 
successfully 
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