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Abstract —In modern telecommunications the necessity of
supporting a large number of broadband services requires a
guaranteed QoS routing. The basic task of routing is to find a
path from source to destination. This path should satisfy these
requirements. When the needed QoS depends on more than one
parameter, the problem is known as Multi Constraint problem
(MCP). Our goal in this article is to propose a new modified
heuristic algorithm able to solve the problem.
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. INTRODUCTION

To support broadband services such as the real time

services, the QoS routing is the major problem.tRgthas to
deal two basic task — to support and update therimdtion of
the network and to find a path from source to desibn. In
cases when an application has no special requirsnienthe
parameters (bandwidth, delay, jitter, packet logsich define
the QoS, finding the path from source to destimatioknown
as The Shortest Path Problem. In other cases whenot
more parameters have to be guaranteed from source
destination the problem is known as Multi Constr&roblem
(MCP). MCP is NP hard [1] Depending on these patarse
they may be classified as additive, multiplicatoweconcave.
The paper is about the additive parameters, wheraveight
of this parameter (end to end) is equal to the sidinthe
weights of all links on the path. A path which shdis all
constraints is called a feasible path. There eixigt basic
routing strategies [2]: source routing and distiéourouting.
The source routing calculates the entire path lpdal the
source node. The distributed routing calculatesptité in the
intermediate note between the source and thenddisin.

The algorithms able to solve the MCP can generblly
classified as heuristic and exact. The heurisigo@thms do
not guarantee finding a feasible path(if it existshile the
exact algorithms do it. For this reason they areapplicable
in practice. They are usually used to evaluate ikgtr
algorithms.

Our goal in this paper is to propose a new hearigtiodified,
distributed routing algorithm, able to solve the RI@ith two
constraints.

Notation
Each real network can be presented as a graphE)(Where
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V is the set of nodes and E is the set of linkse Tibdes are
routers , while the links are physical or logicanoections
between them. Each linke] Eis associated with two —
dimensional link vectorw(w, W,). The paths are noted as
p. the source node as, the destination node afs, any

intermediate node a8 . A path is feasible if (1) and (2) are
correct.

w(p)=> wsC

elp

(1)

Wz(p)=ZV\iSC2 )
elp

where C,; and C, are the constraints.

[l. RELATED WORK

In the proposed algorithm, we present the two wisigim
each link as a linear combination. There exist many
algorithms using this technique. They are known as
algorithms with mixed metrics. Some of these altons use
linear path length [3][4][5][6][7], others use netinear path
length[8][9]. The main advantage of linear path gign
algorithms is that they can implement Dijkstra'gaithm
[10], while their major drawback is that they caturn a path,
which is not feasible (path outside the feasibtgae).
The major advantage of the algorithms that usene -
linear path length is that they can scan the féagibgion
precisely. Their drawback however is that subsestiof
shortest path are not always shortest paths. Assaltrof
using Dijkstra’s algorithm they are likely to falfig.1 shows
the way the two types of algorithms scan the fdagikgion.
Fig 2 shows that the algorithm with linear pathgénworks,
Fig 3.shows that the algorithm fails.

wz(p)t

L2

L1 w1(p)

Fig. 1. Two types of algorithms scan the feasiblgon

[3](8](9]



We assume that there is at least one feasible nﬁathsing
Dijkstra’s algorithm, it returns the patf that minimizes the

following linear cost function

9(p) =W + kw (4)
where kis positive multiplier. This path however is not
feasible

a(p) < o( P) (5)

w(p)+ kw(p<w(p)+ kol B (6)
wi(p)
Fig. 2. The algorithm works [3] Since p* is feasible path it follows
W(p) <G gpgW(p) =G, @)
X From (6) and (7) follow that at least one
) w(p)< C ®

C:
With (8) we prove this basic theorem.

Our basic idea in this algorithm is to minimize tlirear cost
functions for each intermediate node — one fromto s and

the other fromuto t. First the algorithm finds the shortest
paths froms to t with respect tow; and w,. Then the
algorithm definesk multipliers, as follows:

wi(p)

Fig. 3. The algorithm fails [3] —wy(
k1 :M 9)
The first who proposed each link to be presentediresr Co ~Wy(py)
combination was Jaffe[3].
we)=dw+ dw (3) The nodes shares this value with all other nodes. Each of the
intermediate nodes calculates two paths-one ftonO S,
Where d, and d, are Lagrange multipliers. and another — fronu to t.These paths are calculated by the
nodes using Dijkstra’s algorithm to minimize thestcfunction
Iwata [4] suggests a heuristic algorithm to solv€R This g(p=w+kw (10)

algorithm computes the shortest path, based on fitee
parameter and checks whether all constraints disfied. If

they are - the algorithm returns this path. If tlaeg not - the i 5006rding to our theorem each path containsnooe than
algorithm finds the shortest path with respecthe second

parameter and this is repeated until a feasible igfbund. one w>C. In this case each of the nodes checks wheter
In [5] the author proposed to reduce the searchcespaor w, does not satisfy the constraint. If it is; - then the
increasing in this way the probability to find dugn.

Feng [6] proposed an algorithm based on [5],redudhe ) i
search space and implementing the k-th shortesh, pagonstraint — the node increasksto k; .

suggested by Chong[11]. In the next step each node computes the shortdsfnoan u
Based on these algorithms we worked out a heuristié swith respect to (10),and the path from to t with
algorithm able to deal with MCP in cases with twQespectto
constraints.

If some of the nodes finds a feasible path, itretut to s, if

node decreasek;, to k,. If w, does not satisfy the

g(p)=w+kw (11)

I1l. OUR ALGORITHM If the path
_ _ _ _ p(s- = pu- 3+ B u- X(10)
In this Section, we first prove an important theore satisfies the constraint, the node returns thik.démnot — the

Theorem: If we use Dijkstra’s algorithm to minimize the node changes the position of the two cost functions
linear cost function on a graph that contains atstieone

feasible path, the algorithm returns a path whéereast one PSEUDO CODE
w(p) < C.

1. Dijkstra w(s - 9 - w( p)
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IF w,(p) < G AND wy(p) < G,
RETURN path
END IF

Dijkstra w,(s - 1) - w( p)
IF w,(p,)< C, AND w,(p,)<C,
RETURN path

END IF

IF w(p,) > C, ORW,(p,)>C,

No Solution
.END IF

k1 — Cl B WL( p.L)
C,—Wy(p)
FOR each link
w(e) = w+ Kk w
END FOR
Dijkstra p(s - 1)

IF w(p)< G AND wy(p)< G,
RETURN path

END IF

FOR each nodeu

Dijkstra p(u - t, k) ;
Dijkstra p(s - u k)
p(s— 9= ps- 9+ g u- X
IF w(p)= G AND w,(p) = G,

RETURN path
ELSE

IF w(p)< G, AND w,(p) > G,
ky >k
DO
Dijkstrap(u - s k),
Dijkstrap(u - t, k)

P(s— 9= pHu- sk+ gu- 1§

UNTIL w,(p)< G,

IF w(p)< G AND w,(p)< G,

RETURN path
ELSE

Dijkstrap(u —» s k)
Dijkstra p(u - t, k2)

p(s~ 9= pu- SR+ pu- LK
IF w(p)< G AND w(p)< G,

RETURN path
END IF
END IF
END IF

45.  ENDIF
46. IF w,(p)> C, AND w,(p)< C,

47. k, <k
48. DO
49. Dijkstrap(u - s k),

50. Dijkstrap(u - t, k)

51. p(s-f=pu- sk)+ gu tR
52 UNTIL wy(p)<C,

53. IF w(p)< C AND w,(p) <C,
54. RETURN path

55. ELSE

56. Dijkstrgp(u - s K)

57. ,Dijkstrap(u - t, k2)

58. p(s— 9= Hu— SK+ Pu- tK
59. IF w(p)<C AND w,(p)<C,
60. RETURN path

61. END IF

62. END IF

63. END IF

64. END IF

65. END FOR

From line 1 to line 8 we implement Iwata’s algonithOn line
12 the algorithm calculates; based on LARAC [5]

algorithm. From line 20 to the last line the al¢fum contains
our basic idea which we exposed above.

EXAMPLE

Let we have a graph with six nodes. Each link isoamted
with two weights -w; andw, . Our task is to find a path from

source A to destination F with the given constsai@ =5

and C, =10Fig. 4. There are four paths from A to F:
ABDF=6, 3; ACEF=4, 11; ABCEF=5, 10; ACBDE=9, 6. If
we apply only one linear cost function (like in rhos
algorithms) the algorithm returns the path ABDFtloe path
ACEF(according to the choice &f)as solutions.

B 2.1 D

¢ 1.3 E

Fig. 4. Graph with two weights on each link



However these solutions are not correct.
Applying our algorithm it will first find the shoest paths
from s to t with respect tow; and w, These paths are ACEF

and ABDF. Both paths however are not solution. Niwet
algorithm will calculatek =% based on (9). It will find again

the shortest path based on (4). This path is AGEFEit is not
a solution either. In the next step the nodes C Bndill

calculate the patlp based on (12), bk =%. For node B the

path will be ABDF while for node C the path will Be&CEF.
The two nodes will check which oney( or w,) does not

satisfy the constraint. Node B will establish thiais is w;,
while for node C it isw, . Then the node will decrease and

when k s% with respect to the path from B to F, it will find

the path BCEF. The node will return the path ABGH#ich
is the feasible path. The procedure is the sameecnimg

node C. Wherk 2% for the path from C to A the node will
return the path ABCEF.

I\VV. CONCLUSION

We have created an algorithm that is based orciveepts:
1. The algorithm is distributive

2. lwata’s algorithm is implemented

3. Reduced search space[5]

4. Look — ahead approach[12][13]

5. Two linear functions for each intermediate node

In some algorithms with linear path length[6],asllvas in
other with non linear path length[8][9], a solutitnsearched
applying the concept of k — th shortest path. Thosvever
leads to considerable increase in complexity ofetlgerithm.
We suggest another approach. Each of the interteedades
explores a set of paths that could be feasibles Tdea is
similar to the idea proposed by Korkmaz in his dthon [14].
He uses one linear and one non linear functionlenhe use
two linear function.

In the example looked through it becomes clear tata’s
and LARAC algorithms are not able to solve the peobof
finding the feasible path, while our algorithm fndit
successfully
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