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Abstract—the paper presents an approach to modeling, analysis, 
and simulation of overconstrained parallel manipulators, based 
on joint virtualization. This novel concept is proposed for the 
purpose of studying a three-degree-of-freedom closed-loop 
mechanism, which has found a broad industrial application in the 
field of semiconductor device manufacturing and fab automation. 
A distinctive feature of this overconstrained manipulator, known 
as GPR, is its ability to “use” the inherent elasticity and backlash 
of its components in order to perform finite small rotations when 
in the vicinity of a singular configuration, eliminating the need of 
using additional kinematic joints. This characteristic behavior is 
exhaustively studied by introducing virtual joints at the GPR’s 
terminal link, allowing the development of precise computational 
models that facilitate the execution of realistic motion simulations 
(in 3D SolidWorks environment), as well as in-depth mobility and 
accuracy analyses, essential for the efficient implementation and 
optimization of the GPR in terms of both practice and theory. 
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I. INTRODUCTION 

Regardless of the already widespread industrial application 
of parallel robots (due to their numerous advantages over their 
serial counterparts [2], [4], [5], [7], [8]), the implementation of 
overconstrained parallel manipulators (OCPM) in industry is 
still quite limited [1], [3], [6]. In 1996, Genmark Automation, a 
corporation in California, developed and started to manufacture 
a special type of OCPM intended for the field of semiconductor 
device manufacturing and fab automation. The mechanism was 
named GPR and was trademarked and patented in 1996 [9]. It 
had three degrees of freedom (DOF) and was designed to 
perform two small independent rotations in the range of ±1.5°, 
as well as one larger translation (up to 20"). Its terminal link 
(platform) was used as a basis for installing serial planar arms 
(one or two) with up to four DOF each. The resultant hybrid 
parallel-serial structure was capable of adapting to misaligned 
equipment and compensating for the deflection of the handled 
objects (wafers) [10] (Fig. 1). Since 1996, thousands of GPRs 
have been implemented in various fabs, turning out to be one of 
the largest industrial implementations of OCPM in the world.  

  
Figure 1.  Substrate-handling robot (left) and structure of the GPR (right).  

A distinctive feature of the GPR is the ability to “use” the 
inherent elasticity and backlash of its components in order to 
perform the required small rotations of the platform, instead of 
using additional kinematic joints. Such an original concept has 
many advantages, such as increased accuracy, reduced cost and 
simplified design. On the other hand, due to its overconstrained 
nature, the GPR has less mobility than required by the task. In 
other words, specific moves would not exist if the mechanism 
was ideal, becoming possible only because of its imperfections. 
Being quite specific, this behavior has not been adequately 
addressed in the literature and its study represents both research 
and practical interest. To precisely analyze and simulate the 
GPR’s mobility, its overconstrained structure has to be relieved 
by introducing virtual joints to the platform. It is important to 
remark that these joints are imaginary - they do not exist in the 
actual mechanism, and must be treated as a purely theoretical 
means, developed and used for GPR description purposes only. 
Previous paper of the same authors and co. proposes an initial 
approach for joint virtualization of the GPR [11]. This paper 
aims at extending the original work by developing even more 
realistic method, thus providing a more precise computational 
model. The last facilitates the performance of in-depth mobility 
and accuracy analyses, and allows the execution of efficient 
motion simulations in 3D environments – tasks with a great 
importance to the applicability and optimization of the GPR.  

II. STRUCTURE AND FUNCTIONALITY OF THE GPR  

The GPR is comprised of a base and a platform, connected 
together by three rods, which are parallel to each other. They 
are linked to the base via fifth-order sliding joints, whose axes 
are also parallel. The rods are connected to the platform via 
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spherical joints (Fig. 1). While the spherical joints are passive, 
the sliding joints are active, allowing the length of each rod 
with respect to the base flange to be individually controlled. 
The GPR’s motion capabilities are highly beneficial for the 
process of handling silicon wafers/substrates between different 
locations (carriers, processing equipment, peripheral devices), 
where high reachability, superior precision, and tilting of the 
robot’s end-effector are simultaneously required by the task. 

III. NEED FOR VIRTUALIZATION OF THE GPR  

In order to describe the mobility of the GPR, the concept of 
joint virtualization is proposed. It’s a theoretical means, based 
on imaginary components (virtual joints), which add degrees 
of freedom to the GPR, thus “relieving” its overconstrained 
structure. The main purpose is to model the mechanism’s 
inherent imperfections, reflect their contribution to the overall 
mobility and hence be able to solve its kinematics. In this way, 
complete mobility and accuracy analyses of the GPR become 
possible, which allow to quantitatively express the relationship 
between the components’ elasticity/clearances and the amount 
of motion of the platform; to evaluate the undesirable effect of 
shifting the platform’s center when tilting (as a result of the 
GPR’s overconstrained nature); and to develop an exhaustive 
kinematic model that could be later used for the execution of 
precise motion simulations in a virtual 3D environment.  

The essential need for performing motion simulations and 
offline programming of the GPR is one of the key factors that 
motivates the development of the present work. Currently, all 
substrate-handling manipulators, manufactured by Genmark 
Automation, are simulated in a 3D SolidWorks environment 
for application analysis, offline programming, and marketing 
purposes. This is done by using a custom tool for robot motion 
simulation and offline programming, based on SolidWorks 
API, that has been proposed and developed by the same author 
[12]. Despite its so far successful and efficient utilization, the 
recent versions of the tool were not capable of performing 
precise motion simulations and offline programming tasks, 
associated with GPR-based robots, simply because a complete 
description of the GPR’s mobility was not available. To deal 
with this limitation, the following assumption was made – the 
platform was considered to perform two basic rotations about 
its X and Y axes, as if it wasn’t attached to the three vertical 
rods at all. As a result of this simplification, the rods were 
forced out of the spherical bearing housings each time the 
platform was tilted (Fig. 2). More importantly, the actual shift 
of the center of the platform was not accounted for.  

 
Figure 2.  Platform tilting simulation, based on approximate GPR modeling.  

Such inaccuracy, even though relatively small, could have a 
significant impact on the GPR offline programming procedure, 

as well as on the overall effectiveness of the simulation tool in 
general, especially when dealing with absolute positioning 
robot applications. To solve this issue, a GPR virtualization 
approach, based on three radially-oriented sliding virtual joints 
has been proposed in the authors’ previous work [11] (Fig. 3).  

 

Figure 3.  Geometry of the GPR and virtualization via three sliding joints. 

In this manner, more precise modeling of the mechanism has 
been developed (once the forward and the inverse kinematics 
problems are solved) that allowed to establish the relationship 
between GPR’s imperfections and the motion of the platform. 
In addition, the shifting of its center has also been investigated 
as a function of the tilting, making it possible to accommodate 
this model into the SolidWorks API-based motion simulation 
tool, and thus allow the execution of much more accurate and 
realistic simulations and offline programming tasks. 

Despite proving to be much more efficient than the original 
approximation (based on two elementary rotations), the newly-
created model of the mechanism is still considered as partially 
complete by the authors, who, based on experience, performed 
simulations and research, are confident that the imperfections 
of the GPR’s components are distributed not just linearly, in a 
radial fashion, but practically in any direction, when tilting the 
platform. For this reason, the so-called enhanced virtualization 
approach is proposed, which, compared to the initial one, aims 
at providing an even more realistic description of the GPR’s 
mobility by introducing three new virtual joints to the platform 
– this time rotational. Two modifications of the approach are 
demonstrated in the course of work, both featuring six virtual 
joints in total – three translational and three rotational.   

IV. A GENERAL APPROACH TO VIRTUALIZATION  

In order to formalize the GPR virtualization approach, let’s 
introduce two orthonormal coordinate frames Obeb1eb2eb3 and 
Opep1ep2ep3,  firmly attached to the base and the platform, 
respectively. The centers of the spherical joints are denoted by 
Pk , and the intersection points of the sliding joints with the 
plane of the base passing through the origin Ob are denoted by 
Bk, k = 1, 2, 3. There are also multiple radius-vectors defined: 
rObPk

= ObPk
ሬሬሬሬሬሬሬሬ⃗ ; rbk = ObBk

ሬሬሬሬሬሬሬሬሬሬሬ⃗ ; rpk = OpPk
ሬሬሬሬሬሬሬሬሬ⃗ ; rPkPl 

= PkPlሬሬሬሬሬሬሬ⃗ , see Fig. 3. 

The length of BkPkሬሬሬሬሬሬሬሬ⃗  is denoted by qk and q = (q1  q2  q3)T is the 
vector of the generalized coordinates of the manipulator.  

A. Mobility and Sensitivity Analysis  

The position and the orientation of all links of the GPR are 
uniquely defined by a set of parameters P ∈ 𝕽N, which are not 



necessarily independent. A possible convenient choice for P is 

(qT rObP1
T  rObP2

T  rObP3
T )

T
. The equations of constraints imposed 

on P by the mechanism are:  

 Φ:𝕽N → 𝕽N: Φ(P) = 0 

Given the definition of P with dimension N =12, (1) can be 
rewritten as: 

rbi + qieb3 − rObPi
= 0, i =1,2,3 

(rObPi%3+1
− rObPi

)2 − Li(i%3+1)
2  = 0, i =1,2,3 

 
where % represents the modulus operation. 

 
The mobility of the GPR mechanism, characterized by its 

DOF, is h = N − rankቀ
∂Φ

∂P
ቁ, see [11] for the definition of 

∂Φ

∂P
. In 

the case of q1 = q2 = q3 , rankቀ
∂Φ

∂P
ቁ = 9 and h  = 3. In other 

words, the platform has instantaneous local mobility with 
dimension three. Even small differences in the coordinates q1, 
q2, q3, which are in the range of the normal deviations from 
the parallelism of the rods connecting the platform to the base, 

bring rankቀ
∂Φ

∂P
ቁ  to 11. This means that the platform has a 

single DOF at the specific configuration, which is an apparent 
deficiency. The GPR is designed to work in a close vicinity of 
singular configurations (q1 = q2 = q3). It has to perform two 
small independent rotations of the platform (±1.5°) about an 
axis, which lies in the plane of the platform, and a vertical 

translation in a larger range. Since rankቀ
∂Φ

∂P
ቁ is equal to 11 

everywhere except for q1 = q2 = q3, the constraints imposed to 
the platform by the spherical joints have to be relieved. In real, 
this happens naturally because of the imperfection of the joints 
and the inherent elasticity of the links, which compensates the 
two DOF deficiency. The virtualization of the mechanism 
comes to model this behavior. As seen from (1), the equations 
of constraints contain the three parameters L12  L23  L31, which 
are constant in the ideal case of having all the components of 
the mechanism rigid, and in the lack of backlashes. Let us 
rewrite (1) as Φ(P, L) = 0 , where L = (L12  L23  L31)T , and 
assume that L is made variable through the parameterization 
𝐋 = 𝐅(𝐗), X ∈ RM, X = 𝑣𝑎𝑟. The first virtualization approach, 
presented in [11], had X = (l1  l2  l3)T, where  lk = ฮrpkฮ, 𝑘 =

1,2,3. Let us introduce the vector Ψ = ൣPT XT൧
்
, Ψ ∈ 𝕽N+M in 

order to further study the mobility of the GPR, augmented by 
virtual joints. The equation of constraints (1) can be written as: 

 Φ(Ψ) = Φ(P, X) = 0 

with Jacobian matrix:  

∂Φ

∂Ψ
= ቂ

∂Φ

∂P
  

∂Φ

∂X
ቃ = ቂ

∂Φ

∂P
   

∂Φ

∂L

∂L

∂X
ቃ ∈ 𝕽12×(12+M)  

since  
∂Φ

∂P
∈ 𝕽12×12, 

∂Φ

∂L
∈ 𝕽12×3, 

∂L

∂X
∈ 𝕽3×M, and 

∂Φ

∂L
 
∂L

∂X
∈ 𝕽12×M. 

It’s important to note that contrary to rankቀ
∂Φ

∂P
ቁ, rankቀ

∂Φ

∂Ψ
ቁ 

is always equal to 12, i.e. it does not depend on the “distance” 

to a singular configuration. Therefore, the augmented GPR has 

always M DOF = dim(Ψ) − rankቀ
∂Φ

∂Ψ
ቁ = 12 + 𝑀 − 12 = 𝑀. 

Let’s differentiate (2) with respect to P and X, and evaluate 

the properties of the matrices 
∂Φ

∂P
 and 

∂Φ

∂X
:  

 ∂Φ

∂P
dP +

∂Φ

∂X
dX = 0 

It will be shown that the eigenvalues and the singular values of 
∂X

∂P
 can be effectively used in evaluating the sensitivity of the 

vector X to variations of the vector P. The matrix 
∂Φ

∂X
 has three 

non-zero singular values, which vary slightly as the GPR 

moves. In particular, they are non-zero at singularity. Let 
∂Φ

∂X

ற
 

be the Moore-Penrose pseudo-inverse of  
∂Φ

∂X
 [13]. From (3):  

dX = −
∂Φ

∂X

† ∂Φ

∂P
dP = 

∂X

∂P
dP 

The last equation will allow us to answer a very important 
question: “What are the boundaries of ‖𝑑𝐗‖  for a given 
‖𝑑𝐏‖?”, or in other words: “How big the virtual joints’ motion 
would be for a given tilting of the platform?”. To answer it, let 

us consider the eigenvalue decomposition of  
డ𝐗

డ𝐏

் ப𝐗

ப𝐏
= 𝐕𝐃𝐕், 

where V ∈ 𝕽12x12  and its columns are the eigenvectors of 
డ𝐗

డ𝐏

் ப𝐗

ப𝐏
  i.e. V = (v1, v2,…, v12), and D = diag(d1, d2,…, d12) is 

a diagonal matrix, containing the eigenvalues of 
డ𝐗

డ𝐏

் ப𝐗

ப𝐏
, 

arranged in an ascending order, i.e. d1 < d2 <…< d12 [14]. 

Since rankቀ
∂X

∂P
ቁ  is equal to three, only d10, d11 and d12 are 

nonzero, and it becomes obvious that: 

0 ≤ ‖𝑑𝐗‖ଶ = dPT 
∂X

∂P

T ∂X

∂P
dP ≤ 𝑑ଵଶ‖𝑑𝐏‖ଶ 

However, the last inequality is not strong enough and we 
would like to derive another inequality, which defines closer 
boundaries of ‖𝑑𝐗‖ by taking into consideration the fact that 

only three eigenvalues of  
డ𝐗

డ𝐏

் ப𝐗

ப𝐏
 are nonzero, namely:  

 ඥ𝑑ଵ଴ ∑ (𝒗௞
்𝑑𝐏)ଶଵଶ

௞ୀଵ଴  ≤ ‖𝑑𝐗‖ଶ ≤ ඥ𝑑ଵଶ ∑ (𝒗௞
்𝑑𝐏)ଶଵଶ

௞ୀଵ଴  

 σ௠௜௡ ቀ
∂X

∂P
ቁ ඥ∑ (𝒗௞

்𝑑𝐏)ଶଵଶ
௞ୀଵ଴  ≤ ‖𝑑𝐗‖ ≤ σ௠௔௫ ቀ

∂X

∂P
ቁ ඥ∑ (𝒗௞

்𝑑𝐏)ଶଵଶ
௞ୀଵ଴  

where σ௠௜௡ ቀ
∂X

∂P
ቁ is the minimum nonzero and σ௠௔௫ ቀ

∂X

∂P
ቁ is the 

maximum singular values of 
∂X

∂P
. Inequalities (4) and (5) define 

the lower and the upper bounds of ‖dX‖ for a given ‖dP‖.  

B. Kinematic Transformations Between X and L  

The relationship between vectors X and L is of significant 
importance for the solution of the direct and inverse kinematic 
problems of the augmented GPR mechanism. Normally, the 
vectors X and L are implicitely related through the equation:  

 F(X, L) = 0 

The explicit solution of (6) for X in both virtualization cases 
of this study is quite difficult and that’s why (6) is solved for 



X by using the well-known Newton-Raphson iterative method. 

The last requires knowledge of the matrix 
∂X

∂L
 and the solution 

for X is Xk = Xk-1 +
∂X

∂L
(L − Lk-1), k =1, 2…. Normally it takes 

2–3 iterations to find a very accurate solution if the initial 
value of X corresponds to q1 = q2 = q3.   

V. EXTENDED VIRTUALIZATION OF THE GPR  

A. Augmented Vector X, Described in Terms of  𝑙 and 𝜑  
Considering the general virtualization approach, introduced 

above, the geometry of the GPR mechanism can be represented 
by the following parameters: X = (l1  l2  l3  𝜑1  𝜑2  𝜑3)T  and    
L = (L12  L23  L31)T, as shown in Fig. 4 (left). In this case, (6) 
becomes:  

li
2 + li%3+1

2 − 2lili%3+1 cos(120° − 𝜑i + 𝜑i%3+1) − Li(i%3+1)
2  = 0, 

 𝑖 = 1,2,3  

The matrices 
∂F

∂X
 ∈ 𝕽3x6 and 

∂F

∂L
 ∈ 𝕽3x3 can be represented as:  

∂𝐅

∂𝐗
=

⎝

⎜
⎜
⎛

2𝑙1 − 2𝑙2 c(120° − 𝜑1 + 𝜑2) 0 2𝑙ଷ − 2𝑙ଵ c(120° − 𝜑3 + 𝜑1)
2𝑙ଶ − 2𝑙2 c(120° − 𝜑1 + 𝜑2) 2𝑙ଶ − 2𝑙3 c(120° − 𝜑2 + 𝜑3) 0

0
−2𝑙1𝑙2 s(120° − 𝜑1 + 𝜑2)

2𝑙1𝑙2 s(120° − 𝜑1 + 𝜑2)
0

2𝑙ଷ − 2𝑙2 c(120° − 𝜑2 + 𝜑3)
0

−2𝑙2𝑙3 s(120° − 𝜑2 + 𝜑3)
2𝑙2𝑙3 s(120° − 𝜑2 + 𝜑3)

2𝑙ଵ − 2𝑙3 c(120° − 𝜑3 + 𝜑1)

−2𝑙3𝑙1 s(120° − 𝜑3 + 𝜑1)
0

2𝑙3𝑙1 s(120° − 𝜑3 + 𝜑1) ⎠

⎟
⎟
⎞

்

 

where s(.) denotes sin(.) and c(.) denotes cos(.).  

 ∂F

∂L
=diag( − 2L12, − 2L23, −2L31) 

The matrix 
∂X

∂L
 needed to solve (6) for X is:  


∂X

∂L
= − ቀ

∂F

∂X
ቁ

ற ∂F

∂L
= −

డ𝐅

డ𝐗

்
൬

డ𝐅 

డ𝐗
 

డ𝐅

డ𝐗

்
൰

ିଵ
∂F

∂L
 

B. Augmented Vector X, Described in Terms of 𝑑𝑟 and 𝑑𝜑  
Another possible way of describing the mobility of the 

GPR by using the same concept of three translational and three 
revolute virtual joints is associated with the introduction of an 
augmented vector X, described in terms of coordinates 𝑑𝑟 and 
𝑑𝜑 , as shown in Fig. 4 (right). In contrast to the previous 
method, where the effect of backlash and elasticity is 
represented as a portion of a disc, the newly introduced 
augmented vector X represents the more realistic scenario 
where the imperfections of the GPR are evenly distributed, 
taking the shape of a circle.  

Figure 4.  Visualization of the virtual joints of the two extended GPR models. 

Considering the modeling modification, described in terms 
of 𝑑𝑟  and 𝑑𝜑  coordinates, the geometry of the GPR can be 
represented by the following equations: 

(ri%3+1 − ri)
்(ri%3+1 − ri) − Li(i%3+1)

2 = 0, i=1,2,3, where 

r1 = [𝑅 + 𝑑𝑟ଵ cos(𝑑𝜑ଵ) 𝑑𝑟ଵ sin(𝑑𝜑ଵ)]் 
r2 = [𝑅 cos(120°) + 𝑑𝑟ଶ cos(120° + 𝑑𝜑ଶ) 𝑅 sin(120°) + 𝑑𝑟ଶ sin(120° + 𝑑𝜑ଶ)]் 

r3 = [𝑅 cos(240°) + 𝑑𝑟ଷ cos(240° + 𝑑𝜑ଶ) 𝑅 sin(240°) + 𝑑𝑟ଷ sin(240° + 𝑑𝜑ଷ)]் 

The matrix 
∂F

∂X
 ∈ 𝕽3x6 can be represented as:  

∂𝐅

∂𝐗
=

⎝

⎜
⎜
⎜
⎛

2(𝐫ଶ − 𝐫ଵ)்𝜕(𝐫ଶ − 𝐫ଵ)/𝜕𝑋ଵ 0 2(𝐫ଵ − 𝐫ଷ)்𝜕(𝐫ଵ − 𝐫ଷ)/𝜕𝑋ଵ

2(𝐫ଶ − 𝐫ଵ)்𝜕(𝐫ଶ − 𝐫ଵ)/𝜕𝑋ଶ 2(𝐫ଷ − 𝐫ଶ)்𝜕(𝐫ଷ − 𝐫ଶ)/𝜕𝑋ଶ 0

0
2(𝐫ଶ − 𝐫ଵ)்𝜕(𝐫ଶ − 𝐫ଵ)/𝜕𝑋ସ

2(𝐫ଶ − 𝐫ଵ)்𝜕(𝐫ଶ − 𝐫ଵ)/𝜕𝑋ହ

0

2(𝐫ଷ − 𝐫ଶ)்𝜕(𝐫ଷ − 𝐫ଶ)/𝜕𝑋ଷ

0
2(𝐫ଷ − 𝐫ଶ)்𝜕(𝐫ଷ − 𝐫ଶ)/𝜕𝑋ହ

2(𝐫ଷ − 𝐫ଶ)்𝜕(𝐫ଷ − 𝐫ଶ)/𝜕𝑋଺

2(𝐫ଵ − 𝐫ଷ)்𝜕(𝐫ଵ − 𝐫ଷ)/𝜕𝑋ଷ

2(𝐫ଵ − 𝐫ଷ)்𝜕(𝐫ଵ − 𝐫ଷ)/𝜕𝑋ସ

0
2(𝐫ଵ − 𝐫ଷ)்𝜕(𝐫ଵ − 𝐫ଷ)/𝜕𝑋଺⎠

⎟
⎟
⎟
⎞

்

 

The matrices 
∂F

∂L
  and 

∂X

∂L
 are given by (7) and (8), respectively.  

VI. SIMULATIONS 

The main focus of the simulation study is to experimentally 
evaluate the relationship between the motion of the virtual 
joints and the motion of the platform, with emphasis on the 
singular configurations, which are considered as working 
configurations. The GPR mechanism was given a cyclic 
motion, varying the generalized coordinates (q1, q2, q3) in such 
a way that the platform repeatedly passes through singularity.  

A. Simulation of the Extended GPR Model (𝑙 and 𝜑) 

Subject of the first simulation study is the extended GPR 
model containing six virtual joints, described in terms of 𝑙 and 
𝜑 coordinates. The goal is to derive the relationship between 
the motion of the platform X = (l1  l2  l3  𝜑1  𝜑2  𝜑3)T  and 
L=(L12  L23  L31)T . The simulation process is a sequence of 
moves (samples), corresponding to yaw and pitch rotations of 
the platform, defined by γ and α angles, respectively. For each 
γ [0° ÷ 360°] the α changes in the interval [–2° ÷ 2°] by a step 
of 0.2°. A number of zoomed-in graphs represent the behavior 
of the GPR in a vicinity of singular configurations, q1 = q2 =

q3 = 500 mm (Fig. 5). At singularity, 𝑙ଵ, 𝑙ଶ, 𝑙ଷ  reach their 
extremum 𝑙ଵ = 𝑙ଶ = 𝑙ଷ = 93.218 (Fig. 6). In other words, the 
platform performs rotation at the expense of minimal linear 
motion of 𝑙ଵ, 𝑙ଶ and 𝑙ଶ. Similarly, the angular components of 
X (𝜑ଵ, 𝜑ଶ and 𝜑ଷ), shown in Fig. 7, and the components of the 
vector L (𝐿ଵଶ , 𝐿ଶଷ  and 𝐿ଷଵ) , shown in Fig. 8, reach their 
extremum at singular configurations. It is obvious from Fig. 7 
that the deviation of 𝜑1 𝜑2 and 𝜑3 is negligibly small – a fact 
that confirms the validity of the initial virtualization approach, 
based on three sliding joints.  

 
Figure 5.  Zoomed-in of the GPR generalized coordinates displacements.  
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Figure 6.  Zoomed-in of vector X linear components displacements. 

 
Figure 7.  Zoomed-in of vector X angular components displacements. 

 
Figure 8.  Zoomed-in of vector L components displacements. 

B. Simulation of the Extended GPR Model (𝑑𝑟 and 𝑑𝜑) 

The second simulation study is similar and is dedicated to 
the extended GPR model with six virtual joints, described in 
terms of 𝑑𝑟 and 𝑑𝜑 coordinates. As with the first simulation 
study, the goal is to define the relationship between the tilt of 
the platform, the parameters describing the virtual joints 𝐗 = 
(dr1  dr2  dr3  𝑑𝜑1  𝑑𝜑2  𝑑𝜑3)T and the vector L. The analysis 
is based on the identical motion of the platform, already 
introduced in the previous study. The linear (𝑑𝑟 ) and the 
angular (𝑑𝜑) components of vector X are shown in Fig. 9 and 
Fig. 10. Fig. 11 plots the variations of the components of L. 
The graphs indicate that the angular displacements of the 
virtual joints (corresponding to the imperfections of the real 
spherical bearing in the direction, perpendicular to their radial 
axes) are negligibly small.   

 
Figure 9.  Displacements of the linear components of vector X. 

 
Figure 10.  Displacements of the angular components of vector X. 

 
Figure 11.  Displacement of the components (linear) of vector L. 

VII. CONCLUSION 

The presented work contributes to the process of modeling, 
studying and simulating the mobility and accuracy of the GPR 
manipulator by introducing an original concept for robot joint 
virtualization. Based on this approach, two extended kinematic 
models of the overconstrained mechanism, both featuring six 
virtual joints (three translational and three revolute), have been 
developed. The last are exhaustively studied by using methods 
from the analytical mechanics in order to find the relationship 
between the finite rotations of the platform and the inherent 
imperfections of the GPR components, responsible for the 
three-degree-of-freedom mobility of the actual manipulator. 
The Eigen Decomposition of the Jacobian matrices of the 
equations of constraints imposed on the platform was found to 
be an efficient tool for determining the boundaries of the 
virtual joints’ motion (which was proved to be very small and 
within the range of the inherent imperfections), required for 
the execution of a specific tiling of the platform when near 
singular configurations. The introduction of three additional 
(revolute) virtual joints results in the development of precise 
computational models that provide a realistic representation of 
the GPR’s overconstrained behavior, allowing their further use 
with the already implemented SolidWorks API-based tool for 
motion simulation and offline programming purposes essential 
for the industrial application of the GPR mechanism. 
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