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Abstract:  Nowadays more and more 
telecommunication services appear with 
increasing number of users. A large 
number of these services require a 
guaranteed Quality of Service (QoS). The 
main task of QoS routing is to find a path 
from source to destination satisfying all 
constraints. Our goal in this article is to 
make an overview of the algorithms able 
to solve MCP known as algorithms with 
single or mixed metrics. 
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1.Introduction 

 

As we all know the modern Internet from 
the very beginning was created on the 
principle of “The Best Effort”. This principle 
provides a fair usage of the net’s 
resources, but it is not able to cope with 
the new challenges, related to the 
provision of given Quality of Service 
(QoS). 

According to the ITU definition the QoS is 
“The collective effect of service 
performance which determines the degree 
of satisfaction of a user of the service”. 

Nowadays the number of services 
(especially such as the real time services) 
is constantly increasing. They need a 
guaranteed quality, which may be 
achieved by supporting one or more given 
parameters from source to destination. 

The main tasks of routing are to find this 
path and to update and store the available 
data for a network. 

A certain number of algorithms that are 
able to find the shortest path from a 
source to a destination are suggested in 
the literature [5][2]. These algorithms 

however can be applied only in cases 
when the parameter examined is one and 
only. When a certain service requires two 
or more parameters guaranteed from a 
source to a destination, the problem is 
known as Multi Constraint Problem (MCP). 
MCP is NP hard [7]. 

Depending on these parameters (such as 
delay, bandwidth, packet loss etc.) they 
may be classified as additive, 
multiplicative or concave. Delay is 
exemplified by additive parameter, while 
the bandwidth is an example for concave. 
This paper is about the additive 
parameters, where the weight of this 
parameter (end to end) is equal to the sum 
of the weights of all links on the path. A 
path which satisfies all constraints is 
called a feasible path. 

The algorithms, which are able to find this 
path (if it exists) are exact algorithms. The 
general drawback is their high complexity, 
and they are inapplicable in practice. They 
are mainly used for evaluating other types 
of algorithms known as heuristic. The 
heuristic algorithms refer to experience-
based techniques for problem solving, 
they have lower complexity but they don’t 
guarantee the finding of solution. The 
other class is ε–approximation algorithms. 
They are not necessarily exact but can 
provide a solution quantifiably close to the 
exact solution. 

The article is aimed at reviewing a large 
number of algorithms, known as 
algorithms with single or mixed metrics. 
Most of them are heuristic but there are 
also exact ones. Their advantage is the 
low complexity and easy implementation 
in practice. Their drawback is the 
insufficient information they give 
concerning the fulfillment of QoS 
requirements [17]. 

 

2. Problem Formulation 



 

Each network can be presented as a 
graph G(V, E), where V is the set of nodes 
and E is the set of links. The nodes are 
routers or switches, while the links are 
physical or logical connections between 
them. Each link e is associated with  

n-dimensional link vector 1 2( , ,..., )nw w w w
ur

. 

The source node will be noted as s, while 
the destination node will be noted as t. We 
will note the path from the source to the 
destination with p and the given 
constraints as iL  (1 i n≤ ≤ ).The problem is 

to find a path from source node to 
destination node such that  

  ( ) ( )  Li i i
e p

w p w e
∈

= ≤∑  (1) 

A path that satisfies all n constraints is 
referred to as a feasible path. 

Each path that has two metrics may be 
represented on the 1 2(( ,( ) ( ))w p pw plane. 

 

 

 

Figure 1 : Non-dominant path 

 

Fig. 1 shows that 1 2 1 1( ) ( )w p w p<  and 

22 1 2( ) ( )w p w p<  and we cannot define 

whether 1 2p p<  or not.  

 

 

 

Figure 2 : Dominant path 

 

Fig. 2 shows that 1 1 1 2( ) ( )w p w p<  and 

22 1 2( ) ( )w p w p< . In this case the path 2p  

is dominated by 1p . If 1 2( )( )i iw p w p<  for 

all i, 1p  is dominant path [5]. If there is a 

dominant path, it is easy MCP to be 
solved since having found the shortest 
path with respect to one parameter, the 
same path is the shortest with respect to 
all other parameters. 

The algorithms that will be considered in 
this article use two different path lengths – 
linear path length (ALPL) and non-linear 
path length (ANLPL). 

 

3. Algorithms with Linear Path Length 

 

3.1. Jaffe’s Algorithm 

 

In 1985 Jaffe presented his heuristic 
algorithm [10], based on Lagrange 
relaxation. He suggested that the weights 
of each link be presented as linear 
combination. 

 1 1 2 2( ) ( ) ( )w e d w e d w e= +  (2) 

where 1 d  and 2d  are positive multipliers.  

The region between 1L  and 2L  (Fig. 3, 

Fig. 4) is feasible region of solutions. The 
black dots present the different paths. All 



paths that lie on the same parallel line 
have the same constant value c. 

 ( ) ( )1 1 2 2d w d w cp p+ =  (3) 

 

 

 

Figure 3 : The algorithm works 

 

 

 

Figure 4 : The algorithm fails 

 

Each parallel line that lies above the other 
line has a higher constant value c. The 
main task in this method is defining the 
multipliers d1 and d2. Jaffe proposed these 
multipliers to be defined by the following 
equation:  

 

1 2

2 1

L d

L d
= . (4) 

Fig. 3 indicates that Jaffe’s algorithm 
works, while in Fig. 4 it fails. 

 

3.2  Feng’s Algorithm 

 

Based on Jaffe’s heuristic algorithm Feng 
proposed a new exact algorithm [6], 
applying in it two basic ideas: 

- Reducing the search space; 

- k-th shortest path. 

This algorithm reduces the search space 
as follows: firstly it finds the shortest path 
with respect to each weight, and the 
feasible region is defined as  ( )i iL w p− , 

 ( )i iL w p− , Fig. 5. 

 

 

 

Figure 5: Reducing search space 

 

Secondly the author suggests that the 
multipliers be defined as: 

 

0 0 0

  : ( ) 

( )
    :  

( )

i i i

i

i i i

L w p

d L w p

L w p

∞ =
= −
 −

otherwise
 

(5) 

The algorithm uses k-th shortest path, 
which means that if the first path returned 
by the algorithm is out of the feasible 
region it returns the second one and so on 
until the returned path by the algorithm is 
feasible or this path lies on a straight line 
with a higher constant value than the 
straight line with optimal constant value,  



 

1 1

0 0
1 1

( ) ( )
n n

i i i i
i i

w e d w e L d L
− −

= =

+ > +∑ ∑  (6) 

then the algorithm returns no solution. 

3.3 Iwata’s Algorithm  

 

Iwata proposed a heuristic algorithm (8) 
using single metrics to solve MCP. This 
algorithm uses Dijkstra’s algorithm. It first 
computes one shortest path, based on a 
QoS measure and checks whether the 
constraints are satisfied. If they are – the 
algorithm returns this path. If they are not 
– another measure is applied and this is 
repeated until a feasible path is found.  
Fig. 6 shows that algorithm fails. 

 

 

 

Figure 6: The algorithm fails 

 

3.4 LARAC Algorithm 

 

LARAC (Lagrange Relaxation based 
Aggregate cost) is an heuristic algorithm 
that is able to solve DCLC (Delay 
Constrained Least Cost) problem in 
polynomial time [11]. 

The first step in this method is to calculate 
the shortest path with respect to the cost-

1w  Fig. 7. In our case this path is 2  p  and 

if this path meets the delay constraint 

2 2( ) dw p L< , where   dL  is constraint, this 

path is optimal. If this path doesn’t satisfy 
this requirement, in the second step the 
algorithm finds the path with respect to 
delay constraint 1p  (if such a path exists). 

Thus the authors reduce the search space 
Fig. 7. 

 

 

Figure 7: Two shortest paths with respect 
to cost 2p  and delay 1p  

 

Based on the reduced search space the 
authors propose the multiplier to be 
defined in the following way: 

 

( )
( )

1 2 1 1

2 1 2 2

( )
 

( )

w p w p
d

w p w p

−
=

−
. (7) 

where 1w , 2w  are the cost and delay 

respectively . 

 

3.5 Khadivi’s Algorithm 

 

Khadivi proposed a heuristic algorithm 
[12], where he uses the single mixed 
metric as follow: 

 ( ) ( ) ( )[ ]w e e eµ ε= ∆ + , (8) 

where ε  is constant 0≤ ε  ≤1,  

 
1

( )1
 ( )

n
i

i i

w e

Ln
eµ

=

= ∑ , (9) 



and

 

 

 ( ) ( ) ( )
2

1

n
i

i i

w
µ

L

e
e e

=

 
−


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where ( )w e is a new mixed metric. 

 

4. Algorithms with Non - Linear Path 
Length. 

 

4.1  TAMCRA(Tunable Accuracy 
Multiple Constraints Routing 
Algorithm) 

 

Hans de Neve and Piet van Mieghem 
created a heuristic algorithm [4], based on 
three concepts: 

- non-linear path length [1]; 

- k-th shortest path algorithm[3]; 

- non-dominated paths. 

The authors replace the straight scanning 
lines used in the linear algorithms by 
curved equivalents lines Fig. 8. 

 

 

 

Figure 8: Linear and non-linear search 
space 

 

In linear algorithms if the multipliers are 
calculated by the equation 

 1 2

2 1

 
L d

L d
=   (11) 

then the area that will be scanned before 
the algorithm is able to return any solution 
outside the feasible region, will be half of 
the whole area. 

The path’s length from source to 
destination is non-linear combination: 

 
1

( )
( )

q

i

i n i

w p
l p

L= …

 
=  

 
∑   (12). 

The best match is obtained in the limit 
when q → ∞ . 

If we use the non-linear definition of the 
path length, the subsection of shortest 
paths are not necessarily the shortest 
paths. In this reason if we use Dijkstra’s 
algorithm, it can fail to find solution. 
TAMCRA avoids this drawback using the 
k-th shortest path. The third feature of 
TAMCRA is that it stores the paths only if 
they are not dominated by the others. 

 

4.2. H_MCOP 

 

Kormaz and Krunz proposed a heuristic 
algorithm based on three theorems that 
they proved [13]. The algorithm uses two 
modified versions of Dijkstra’s algorithm – 
in the forward direction and in the 
backward direction. In backward direction 
the algorithm uses the linear path length 
(q = 1) with respect to   

 ( ) ( )
1

q

i

i m i

w p
w e

L= …

 
=  

 
∑  (13) 

from each intermediate node to 
destination node t. After that the algorithm 
evaluates the suitable paths. In the 
forward direction the algorithm discovers 
each intermediate node from the source 
node, using the non-linear function (q > 



1).The path from s to t in the forward 
direction is heuristically found.  

 

4.3. SAMCRA 

 

SAMCRA (Self-Adaptive Multiple 
Constraints Routing Algorithm) is a further 
development of TAMCRA, it is improved 
and exact algorithm [16]. Two versions 
were created. According to the first 
version the basic difference with TAMCRA 
is the fact that TAMCRA stores an equal 
number of paths at each node that are 
predefined, while SAMCRA adaptively 
defines the number of the paths at each 
node. Predefining the number of paths is 
TAMCRA main drawback because if this 
number isn’t sufficient then the algorithm 
fails to give solution. 

In the second version the concept look 
ahead was added to reduce the search 
space. This concept was primarily 
proposed in [14][15]. 

 
5. Conclusions 
 
The algorithms analyzed in this article are 
ALPL or ANLPL. 
 
The major advantage of ANLPL is that 
when q → ∞ , they scan the feasible 
region precisely. Their drawback is that 
subsections of shortest paths are not 
necessarily shortest paths. Due to this, 
using Dijkstra’s algorithm ANLPL are likely 
to fail. That is why algorithms using non-
linear path length (TAMCRA, SAMCRA), 
need a modified Dijkstra’s algorithm that 
stores k-number of paths. All this results in 
a higher algorithm complexity. 
 
Korkmaz and Krunz [13] avoid the k-th 
shortest path concept. Instead they apply 
the “look ahead” concept to obtain paths 
which could be a possible solution. The 
usage of k-th shortest path guarantee that 
a shortest path will be found (if it exists) 
while “look ahead” does not. 
 

When using ALPL only half of the feasible 
region is scanned before the algorithm is 
able to return the solution outside this 
region. 
 
The main task is to choose the multipliers 
that define the ratio between the metrics, 
inside the mixed metric. 
 
Iwata’s algorithm [9] computes the 
shortest path with respect to each metric 
without mixing them. This algorithm has 
low complexity but the probability to find a 
solution is low too. 
 
The authors of LARAC [11] use a similar 
method to find the shortest path with 
respect to cost and delay reducing the 
search space and based on this space to 
define a multiplier for a subsequent search 
with mixed metric. 
 
Feng [6] applies the same approach, 
adding the concept of k-th shortest path to 
create an exact algorithm. 
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