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NONLINEAR STATE SPACE MODELS OF THE GENERALIZED
INDUCTION ELECTROMECHANICAL CONVERTER
BASED ON A STATIONARY COORDINATE FRAME

RUMEN MISHKOV AND IVAN KOSTOV

Abstract. A mathematical description of the electromechanical energy conversion in
induction motors is presented in the paper. The dynamic equations connecting the currents
and fluxes in the electrical motors are built by taking the projections of the respective
variables in a stationary orthogonal coordinate frame. Those equations are untied with
regard to different variables by solving the equations for the derivatives of the respective
variables. Orientated nonlinear non-autonomous state space models based on state variables
choices stemming from the solutions are created, describing the electromechanical
conversion of energy. The structural properties of the proposed nonlinear state space
models are analyzed with regard to complexity, observability, and suitability for nonlinear
observers design. The peculiarities of the models are considered from the viewpoint of non-
autonomy, bound conditions, stiffness and numerical properties. The consistency of the
models and their equivalence are confirmed by physical experiments and simulation.

Keywords: Induction motor control; Nonlinear systems; Park and Clark transformations;
Electromechanical converter; Three-phase induction machine; .

1. Introduction :

The induction motors have a wide industrial application and more than half of the
electrical energy consumed is converted through them into mechanical [7]. Along with
the uncontrolled electrical drives the share of controlled electrical drives increasingly
grows including the control of the starting and braking processes, and the spinning
velocity in wide limits via semiconductor starters and frequency converters. The number
of uncontrolled electrical drives with modern microprocessor-based protection devices
increases continuously. The reliable electrical drives with high quality of control imply
knowledge of the mathematical description of electromechanical energy conversion and
the possibilities for closed-loop systems design based on state observers [2,3.4,6,11].
The present advances in computer technology permit the design of high quality systems
for control and protection of electrical motors by the implementation of modern
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methods and techniques from electrical drive theory and control theory [7.9,10].

The objectives of the paper is to present the generalized electromechanical model
of the electrical drive, build a series of nonlinear state space models with respective
state vectors, prove their equivalence by a physical experiment, and perform
observability, numerical and stiffness analysis of the state space models derived.

2. Generalized electromechanical model of the electrical drive

Electrical drive with an induction motor is considered in this section. The three-phase
power voltage system is a symmetric voltage source (VS) with infinite power and
constant angular frequency. The momentary values of the phase power voltages and
currents are known. The induction motor is considered as a symmetric load also. The
controllable variables are the electromagnetic torque and the angular velocity of the
motor as shown on fig. 1. In the electrical drives theory the motor is considered as an
electromechanical energy converter conditionally separated into electrical part (EP) and

- Y : e,
u, (1) Electromechanical converter
R\ F i
Voltage u,(t) Electrical Mechanical o(t)
Source | Part - Part 3
(VS) / {EP) (MP) ‘
u.(t :
10 : P
'
\ J \ J

Figure 1: Generalized block diagram of the electrical drive
mechanical part (MP). The voltage and current equations of the voltage source (VS) are
ul(t) = umax Sin(ﬂ)t % (Pu)’ i](t) i imax Sin(a)t + ('pl)
u,(t) =u,, sinfot+2n/3+9,), i,(t)=1i,, sin(ot+27/3+¢;) 2.1
u,(t)=u,, sin(ot+4n/3+¢,), i(t)=i,, sin(ot+4n/3+9;)
The electrical energy conversion in the induction motor is described by space vectors or
their projections in orthogonal coordinate frames using appropriate transformations of
the variables number (Clark transformation) and the angular velocity of the coordinate
frame (Park transformation). These transformations usually impose the condition of

power invariability. Generally, the voltage equations in orthogonal coordinate frames
which can rotate with arbitrary angular velocities are [7]:
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The variables in this vector equation system represent the mapping vectors of the motor
voltage, current and flux, while the rotor parameters are reflected to the respective stator
parameters. The angular velocities of the two coordinate frames o, and @, can be

arbitrary unrelated functions of time, but they can be related as well. From the group of
the related velocities the cases o, =, =o, and o, =0, =0 are used most often.

For the first case the coordinate frame can be orientated along different vectors — most
frequently fluxes.

The real variables and control inputs have upper and lower bounds imposed —
currents, voltages, angular velocities, and torques. In other words they are nonlinearly
bounded.

When the mathematical description is accomplished in a joint orthogonal
coordinate frame with angular velocity o, =, =o, then the equations (2.2) go into

d—":s+jmews

u =R, + i
(2.3)
N A
0=Ri +—+j(0o, - ®, )V,
dt

Here ®, denotes the electrical angular velocity of the variables in the rotor circuit.
When the mathematical description is accomplished in a joint orthogonal coordinate
frame with angular velocity o, =0 then the equations (2.3) read

u, =R, +%
ddt (2.4)
LB L
0=Ri + g jo, v,
The relations between the variables in equations (2.1), (2.3) and (2.4) (Clark
transformation) and the real variables of the induction machine are given by the
expressions [2,6,7]:

‘ﬁ \ﬁ _\ﬁ u, (1) 2.k
w=|13 16 Mluml i< A 6 1|, (2.5)
0

1 E 1 1|,
\g —\E u,(t) b S ey il
v, =L +L,i,, (2.6a)
v.=Li +L.i. (2.6b)

Different expressions [2] can be used for the determination of the electromagnetic
torque momentary value T(t) from the electrical part of the converter, but for the case

o, =, =0 itis suitable to use the expression
T=K,Im[yi,] (2.7)
where y denotes the complex conjugate of y, and K is the motor coeficient. The
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mechanical part of the electromechanical converter is most often represented by the
simplified equation of motion

do
T-T,=J—. 2.8
5 (2.8)

In (2.8) T, and ® denote the momentary values of the load torque and the motor
mechanical angular velocity, while J denotes the total inertia moment reflected to the
motor shaft. The relation between the electrical frequency in the rotor ®, and the

mechanical angular velocity o is given by the equation

®, =Z,0. (2.9)
The momentary value of the torque originating from the vector equation (2.7) is
g [\Ijrﬁlsa Yigl sji] (2 10)

The description considered is traditional and frequently used [1.4,7 8] for motor
process analysis. It can be applied to explore electrical motors connected in star or delta
scheme. The analysis is aceomphshed in a stationary coordinate frame and a
recalculation of the vector coordinates in other coordinate frames is not necessary,
which is an advantage of this description.

The main model considered is built on the basis of equations (2.4) by taking the
projections of the respective variables on the real axis (o) and the i imaginary axis ()

of a stationary orthogonal coordinate frame

um:Rsim-i-d—wsi"—_
dt te
d
usD=Rsisﬁ+-ﬂ-@- ‘
- dt 2.11)
O0=R.i +d—wﬁ—m\p g
o dt ]
dy
0=Ri,+—2+®
rp dt I’wﬂl

This model will be used in the next section to derive a series of nonlinear state space
(SS) models defined by different choices of the state vector.

3. Nonlinear state space models of the induction motor :
The general form of the nonlinear SS models that will be built is

x =f(x,u), x(t,) =X, (3.1a)
y = h(x,u) (3.1b)
where x =[X,,X,,...,x,] is the state vector, u =[u,,u,,...,u,]" is the input vector, and
Y =[¥,»¥ss:-s¥n ] is the output vector. The functions f and h are real and nonlinear.

For the purpose of building those models equations (2.6) will be presented
componentwise in the coordinates of the stationary orthogonal coordinate frame
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TR T A (3.2a)

W, =L, +Lois (3.2b)
Vi = Lrirot + Lmisu (320)
lI"I’[.’o = Lrirﬁ * Lmisﬁ (32d)

Thus, our models will be built on the basis of equations (2.8), (2.9), (2.10), (2.11), and
(3.2). The first model is determined by the choice of the state, input, and output vectors

X= [x’,x2,X3,X4,X5]T T [isaﬁisﬁ?iraQirﬂBm]T .} (3.33)
T VR TR R T O e e )
Y =[y, Y.l =[x,.x,T. (3.3¢)
The input and output vectors will be the same for all SS models. The state vector is
defined by the components of the stator and rotor currents and the mechanical angular
velocity. The SS model is composed from the joint system of the electrical and
mechanical equations (2.11) and (2.8) which are transformed by a substitution of the

algebraic equations (3.2) and (2.9) to eliminate the fluxes y,, Y4, V> V5. and ©,,a
subsequent solving of the resulting equations for the total time derivatives of the state
vector (3.3a), and considering the vectors (3.3) which yields

X, =k, —k,x, +kx; — kX, X5 — kXX,

X, = ku, —k,x, +k;x, + kXX, + KX X4

X, =k, ~ kX, + kX, = kox X, ~ KX X, (3.4a)
X, =k, —kx, +kx, +kox,x; + kXX,

X5 = [k, (%%, = X;X3) —u,]/u;

Yi =X (3.4b)

Y2 =X%; .
The coefficients in these equations are defined as functions of the motor parameters L,

— stator inductance, L, - rotor inductance, L, — mutual inductance, R, — stator

resistance; R, — rotor resistance, z, —number of pole pairs as follows

RI L 7
k]= L;- -, L= RSLr23k1= rmz,k4: m[-32’
LrLs 7 Lm : LrLs it Lm ] LrLs 3 Lm LrLs e Lm
— L"‘LFZP Ao Lm k e RsLm k B RrLs
] LrLs = L2m G le = LrLs 5 le “LrLs i Lzm % LrLs i
L. L2z EL.2
R R e L R

TR T TR ST
The second SS model is defined by the following choice of the state vector

X=X, % X0 X ) = [ Al Wi O (3.5)
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This model is obtained by solving (3.2¢d) for i, i, and substitution of the solution in

the joint system of the electrical and mechanical equations (2.11) and (2.8) to eliminate
these variables. By consideration of (2.9) the other superfluous variable ®, is
eliminated. After solving the resulting equations for the total time derivatives of the
state vector (3.5), and considering the vectors (3.3bc) we arrive at the second model
Xo=ku - kx +kx, <k XX,

X; = kox, —kex; + kX X; (3.6a)
X, = kX, —kex, —Kk,X,X;

X = [k (%%, —X,%3) —u,]/u,

—i5 ¢ 5 : :
Yi I ' (3.6b)
=% ; a5
where the coefficients are

R I’ R
kl — Ll‘ K % k2 = T m % + RSLI' - , I(3 - : er i y
LTLS -—Lm g LT(LI“LS-LIH) LI‘LS —Lm ‘ LT(LI’LS—LITI)
L.z RL, R, R 4

e Rl LRl sdaie s

The third SS model is based on the state vector
X =[X,X,, X5, Xy, Xs]' = [WWWSWW,Q»WT&,UJ]T- (3.7
It is obtained by analogous elimination of the superfluous variables from the electrical
and mechanical equations (2.11) and (2.8) and subsequent solving for the total time
derivatives of the state vector components
X, =y, + kX, —k,x;
X, =u, +kx, -k,x, |
X, = —K,X; +k%; + kX, X, ' (3.8a)
X, =-k;x, +k,x, —ksX;X;

X5 = [ke(XX; —x;x,) —u, ]/ uy

YI = Xl (3.8]3)
Y1 =4,
with coefficients
k L Rer ._ I{sl"m = Rer k T RrLs
I L21'11 b LTLS , : L2m 5 LTLS : 3 Lzm [ LI'LS i : LZI’II i LI'LS :
o oA
ks=2,, kg ZE—LL:I:’ K, e risd

The fourth SS model is defined by the choice of the state vector
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X = [X,5 X5, X3, X5 X5]" = [Wo Wegs Tl @] (3.9)
The derivation of the fourth model is achieved by considering the system of algebraic
equations (3.2) and (2.9) in the joint electromechanical system of equations (2.11) and
(2.8) to eliminate the superfluous variables ., y,;, and o, . The resulting system of

equations is solved for the total time derivatives of the state vector components to yield
X, =y -kx, +k;x,

X, =u, -kx, +kx,

X, =k —k.x, +kx; —kxox; +K XX, (3.10a)
%, =ku, =k, x, +k.x, +kxx, —kx,;Xx,

X = [kg(x,X, — X,%X3) —u,]/u,

=X
a0 (3.10b)
Y, =X,
with coefficients
R, RL £ Bl
k] =‘—, k2: ,k_3=-2——-—-~, k4= 2' a
s LS Lm —LI'LS Ls(Lm _LI'LS)
RrLs Rstm Lmzp
y = B 2 e e
Lm = LI'LS LS(LITI T LTLS) Lm = LI'LS
I’z LLz S
k-,.= 2mp _2r s°p ,kg-"—'%,Kd:}“Z‘I‘i-
Lo~LL Lo =L1 9% 2 B

The SS models (3.4), (3.6), (3.8}, and (3.10) derived in this section are in fact
nonlinear and non-autonomous systems because the inputs have an explicit dependence
on time.

4. Model equivalence and analysis

A physical experiment has been done with an induction motor of type 4A090L4D and
its time response with regard to the angular velocity has been recorded according to
[1,5]. The four SS models derived have been simulated under the same conditions to
confirm their equivalence to the induction motor of type 4A090L4D which is
investigated. Thus, all models are simulated on zero initial conditions and the following
motor parameters L =0263H, L =0251H, L, =024H, R;=48Q,

R, =3.87Q, z, =2. The input vector components are defined as

T, sign(xs),t <0.53s

(T, +T,,)sign(x,),t 20.53s
where u_ =310V, ©,=100ns", J=0.038kgm’, T, =4N.m, T, =10N.m.

Figure 2 shows the angular velocity response @ of SS models (3.4), (3.6), (3.8), (3.10)
and the measured response o,,, obtained from the physical experiment carried out with

— ““max

u, =u_ sin(o,t), u, =u,,, cos(w,t), u;=1J, u, ={
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Figure 8: Motor torque response
the real system Figures 3 and 4 depict the stator and rotor current components while
figures 5 and 6 — the stator and rotor flux components obtained from the respective SS
models which is a necessary confirmation of their equivalence. The module of the stator
current vector is given on figure 7. The motor torque responses on figure 8, obtained
from the four SS models, are one and the same, which is another confirmation of their
equivalence.

The simulation experiment confirms that the four SS models derived are
completely equivalent to each other with regard to the respective state vector
components and the motor torque response. On the other hand-they are equivalent with
respect to the output ® to the measured response from the physical experiment. They
have good numerical properties allowing smooth numerical integration via Runge-Kutta
differential equation solvers. Fast and slow dynamics are observed in their time
responses which is a prerequisite for stiffness of the equations. The fast dynamics is
conditioned by the input signals having explicit time dependence. But luckily the level
of stiffness is insignificant and the SS models can be successfully 1ntegrated with
standard Runge-Kutta solvers by appropriate step selection.

The model analysis performed in this section includes also the investigation of the
observability properties of the four SS models and the possibility to design nonlinear
observers by transformation of the drive equations in reduced generalized observer
canonical form (RGOCF) [8]. It is assumed that the stator current and the angular
velocity are the measured output variables. By choosing’ observability indices
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n,=n,=2 and n;=1 the system is split into three subsystems. Following [8] the
observability matrix for the third SS model (3.8) reads

o
£ 0 -k 00
QLr®=i0 1 0 0 0l
0ol T ka
e

Its determinant is det[Q,(x,W)] = —k; so the observability map is solvable with solution
x(y.u) = [Yv}’zs'k;l(fﬁ -ky, —u)—k; (5, — Ky, —u,),y5T

By replacing this straight observability transformation in the derivatives of the outputs
hiz)(x, u) =10, +k,(u, +k;x; —k;x;) =k, (kyX; — kX, +Kksx,X;)

h?(x, 1) = 0, + K, (u, + k,x, —k,x,) = K, (k,x, —k;x, —KsX;X;)

h{ (x, ) = [k (xX,%; — ;%) —u, ]/ u

they are presented as functions of the outputs, the inputs and their derivatives

hfz)(Ynﬁ) =10, +k,k,y, —k,(u, +ky, -y ) +kiy, — ks (u, +ky;, - ¥,)y,

h(;)('y',ﬁ) =1, +k,k;y, -k, (u, +kyy, - ¥,) + k¥, + ks(u, + Ky, = ¥))y;

hgl)(?sﬁ) = kilkéu;l [(¥\¥2 = ¥2¥1) +(wy; —uy,)] - u,u;'

which define the generalized observability canonical form (GObCF) and the possibility
for transformation in RGOCF depends on them. The RGOCF for this system is

z,=a,(y,u)
Z, =2z, +a,(y,u,n)

Z, = a,(y,u) (4.1a)
Z,=Z,+a,(y,u,0)

zs =as(y,u)

Yi = &(y,w)

¥s = 8,(¥,,0) (4.1b)
Y; = 8;(¥;.0)

The transformation in this form consists in the computation of the unknown functions
taking part in it according to the necessary and sufficient conditions for transformability

[8]. The last function a,(y,u) equals h{"(y,u) or

as(y,u) = k;lkﬁu;l [(y,¥, =¥,y +(uy, —u,y,)]- u4u;l .

It is seen that in this case a,(y,u) depends also on y, and y, which is a break of a
necessary condition. The gradient of a,(y,u,u) and its integrability matrix J_, [8] are
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[6a,/0y,] [k, +k,] 006 . 0 0049 0
da, 1y, K.y, G 0.k 6 000
da, / dy, 0 g0 0 0. 008
beibui=l- 1T -, ¥,=10"0 "0 0 000
da, / du, 0 g0 0 0000
da, / A, 0 g0 0 0 0G0
| 0a, /1, | 0 000 00 0 0

The integrability matrix J_, is not symmetric and therefore the function a,(y,u,u)
with the above gradient does not exist which is a second break of a necessary condition.
The situation with the function a,(y,u,u) is similar. Thus, the fact that some necessary
conditions are not fulfilled means that this system is not transformable in RGOCF and
the nonlinear observer based on this canonical form cannot be designed. The third SS
model (3.8) is structurally the simplest. The other three SS models have also been
checked and the results are analogous.

The observability and transformability in RGOCF of a nonlinear system are
structural properties of the nonlinear system model and its generalized characteristic
equation. The transformation in RGOCF and its nonlinear observer design are
impossible for all the four SS models developed which is due to the specific crossed
nonlinear dependencies in their equations leading to unsuitable, structure of the
respective generalized characteristic equations.

5. Conclusions ‘
A mathematical description of the electromechanical energy conversion in an induction
motor is presented in the paper based on a stationary coordinate frame for control
purposes. The algebraic dependencies between the currents and the fluxes are revealed
in vector and componentwise form. On this basis, the differential equations are untied
with respect to different combinations of variables by solving them for the derivatives
of those variables. A choice of state variables is done stemming from the solutions
obtained resulting in the building of all possible orientated nonlinear state space models,
describing the electromechanical converter based on a stationary coordinate frame. The
consistency of the models and their equivalence are confirmed by physical experiments
and simulation.

The structural properties of the nonlinear SS models derived are analyzed with
regard to complexity, numerical properties and stiffness, non-autonomy, bound
conditions, observability, and possibility for nonlinear observer design by RGOCF.
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