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THEORY∗
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Abstract

In this paper we introduce some significant counting distributions
in risk theory. The first one is the I-Delaporte distribution. It is a
generalization of the Non-central negative binomial distribution. The
second distribution is the Non-central Pólya-Aeppli distribution. It is
a sum of two independent random variables, one that is a Poisson and
another one, a Pólya-Aeppli distributed. The Pólya-Aeppli-Lindley,
the compound Pólya and compound binomial distributions are also
considered. They are mixed Pólya-Aeppli distribution with Lindley
mixing distribution, compound negative binomial and compound bi-
nomial distribution with geometric compounding distribution. The
main application of these distributions is that they can be used as
corresponding counting processes’ distributions in risk models.
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keywords: counting distributions, mixed distributions, compound dis-
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1 Introduction

The Inflated-parameter negative binomial distribution (INBD) was intro-
duced in [18] as a compound negative binomial distribution (NBD) with
geometric compounding distribution. We analyse a convolution of INBD
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and Pólya-Aeppli (PA) distribution. It is a Generalized Delaporte distribu-
tion, defined in [19] and it is called an I-Delaporte distribution, [14]. The
I-Delaporte distribution is a generalization of the Non-central negative bi-
nomial distribution (NNBD), defined in [21] and developed in [20] and [22].
The NNBD is a convolution of independent NB distribution and PA distri-
bution. The PA distribution was derived by Anscombe in 1950, see [1] from
a model of randomly distributed colonies. In 1953 it was also studied by
Evans, see [3]. Anscombe states that in 1930 the distribution was given by
A. Aeppli in a thesis and then developed by G. Pólya. For this reason he
called it a PA distribution. It is a compound Poisson with geometric com-
pounding distribution. The Non-central Pólya-Aeppli distribution (NPAD),
also considered in this overview paper is a sum of independent Poisson and
PA distribution. It is introduced in [13] as a corresponding distribution of
the Non-central Pólya-Aeppli process (NPAP) which is applied as a count-
ing process in a risk model. In 1970 Sankaran introduced a mixed Poisson
distribution with Lindley mixing distribution and called it a Poisson-Lindley
distribution, [25]. In 2002 Minkova defined a mixed PA distribution with a
mixing gamma distribution and called it an INBD, [18]. As the properties
of the PA distribution are very close to these of the Poisson distribution, see
[2] this led to the idea of introducing a PA distribution with Lindley mixing
distribution, [15]. The resulting distribution is called a Pólya-Aeppli-Lindley
distribution. When the random variable (r.v.) N has a compound distribu-
tion then it is interpreted as an aggregate claim amount. This fact provokes
our attention on two compound distributions - the compound Pólya distri-
bution and the compound binomial distribution. The first distribution is a
compound NBD with compounding geometric distribution and the second
one is a compound binomial distribution with geometric compounding dis-
tribution. Nice properties of these distributions are derived in [9] and [10].
In 1934 Fisher, [4] introduces a dispersion measure of the r.v. N , known as
a Fisher index of dispersion - FI(N). This index gives the ratio of the r.v.’s
dispersion to its mean, see [26] and is given by the following formula

FI(N) =
V ar(N)

E(N)
.

According to this measure a distribution is said to be equi-dispersed when
FI(N) = 1, under-dispersed when FI(N) < 1 and over-dispersed when
FI(N) > 1. Our main purpose in this paper is to introduce some distribu-
tions which have the over-dispersion property and are suitable for financial
data. This property give the advantage to use them as counting distributions
in the risk theory.
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2 Counting distributions in risk theory

2.1 I-Delaporte distribution

The Delaporte distribution is given in [5] as a counting distribution in risk
models. It is a sum of independent NB distribution and a Poisson distribu-
tion. In this subsection we introduce an Inflated-parameter Delaporte distri-
bution (I-Delaporte distribution) which is a Generalized Delaporte distribu-
tion. It is a mixed PA distribution with shifted Gamma mixing distribution
and is used as a corresponding distribution of the I-Delaporte process, see
[11] .

Suppose that the r.v. N with a given λ > 0 has a PA distribution, i.e.

P (N = m | λ) =


e−λ, m = 0,

e−λ
m∑
i=1

(
m− 1

i− 1

)
[λ(1− ρ)]i

i!
ρm−i, m = 1, 2, . . . ,

(1)
where ρ ∈ [0, 1) is a parameter. We use the notation N ∼ PA(λ, ρ).

The probability generating function (PGF) of the PA distribution with
given parameter λ is given by

ψN (s|λ) = e−λ(1−ψX(s)), (2)

where

ψX(s) = EsX =
(1− ρ)s

1− ρs
(3)

is the PGF of the compounding geometric distribution, Ge1(1− ρ).
The mean and the variance of the PA distribution are given by

E(N) =
λ

1− ρ
and V ar(N) =

λ(1 + ρ)

(1− ρ)2
.

The related Fisher index of dispersion is FI(N) = 1+ρ
1−ρ > 1, i.e. for ρ 6= 0

the PA distribution is over-dispersed related to the Poisson distribution.
Let the mixing distribution be a shifted Γ - distribution with density

function given by

g(λ) =
βr

Γ(r)
(λ− α)r−1e−β(λ−α), λ > α, (4)

where r and β are positive parameters. The parameter α in (4) can be
interpreted as a risk parameter, see [5]. The function Γ(r) is a Gamma
function defined by Γ(r) =

∫∞
0 xr−1e−xdx, r > 0.
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Mixing the parameter λ in (2) with mixing distribution (4) we obtain
the following PGF of the I-Delaporte distribution

ψN (s) =
[

π
1−(1−π)ψX(s)

]r
e−α(1−ψX(s)) =

[
π(1−ρs)

1−(1−π(1−ρ))s

]r
e
−α
(
1− (1−ρ)s

1−ρs

)
,

(5)
where π = β

1+β .

Remark 1 In the case ρ = 0, the compounding variable X degenerates at
point one and the distribution of N coincides with the Delaporte distribution,
given in [5].

Definition 1 The random variable N with PGF (5) has an Inflated-parameter
Delaporte distribution (I-Delaporte distribution).

2.1.1 The Probability Mass Function

The unconditional probability mass function (PMF) of the I-Delaporte dis-
tribution is the following

P (N = m) =

∫ ∞
α

P (N = m | λ)
βr

Γ(r)
(λ− α)r−1e−β(λ−α)dλ. (6)

Calculating the integral in (6) leads to the PMF of the I-Delaporte distri-
bution.

Lemma 1 The PMF of the I-Delaporte distribution is given by

P (N = m)

=



e−α
(

β
β+1

)r
, m = 0,

e−α
(

β
β+1

)r [
r(1− ρ) 1

β+1 + α(1− ρ)
]
, m = 1,

e−α
(

β
β+1

)r [∑m
i=1

(
m−1
i−1
) [α(1−ρ)]i

i! ρm−i

+
∑m

i=1

(
m−1
i−1
)(
r+i−1
i

) (
(1− ρ) 1

β+1

)i
ρm−i

+
∑m−1

i=1

∑i
j=1

(
i−1
j−1
) [α(1−ρ)]j

j! ρi−j
∑m−i

k=1

(
m−i−1
k−1

)
×
(
r+k−1
k

) (
(1− ρ) 1

β+1

)k
ρm−i−k

]
, m = 2, 3, . . .
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The proof of Lemma 1 is given in [14]. From (5) it follows that the r.v. N
is a sum N = N1 + N2 of two independent random variables. The random
variable N1 has the following PMF

P (N1 = m)

=


(

β
β+1

)r
, m = 0,

(
β
β+1

)r∑m
i=1

(
m−1
i−1
)(
r+i−1
i

)
[(1− ρ) 1

β+1 ]iρm−i, m = 1, 2, . . .

(7)

The random variable in (7) has an INBD with parameters π = β
1+β , ρ, r and

is given in [18]. We shortly say I-negative binomial distribution and use the

notation N1 ∼ INB
(

β

1 + β
, ρ, r

)
. The random variable N2 is Pólya-Aeppli

distributed, i.e N2 ∼ PA(α, ρ).

Remark 2 The r.v. N can be represented as a compound Delaporte dis-
tribution, i.e. N = X1 + . . . + XN0 , where N0 has a Delaporte distribution
and Xi, i = 1, 2, . . . are independent, geometrically distributed with success
probability 1− ρ and PGF, given in (3), independent of the r.v. N0.

According to the idea of Ong and Lee [21] we can give the following
interpretation. Suppose that the PGF of the r.v. N has the form

ΨN (s) =

[
π

1− (1− π)ψX(s)

]T
,

where the r.v. T is represented as a sum of Poisson distributed r.v. V with
parameter α and a positive constant r, i.e. T = r + V . Then the resulting
PGF ψN (s) is given by (5).

Let denote by pm = P (N = m), m = 0, 1, . . . the PMF of the r.v. N .
Then the following proposition holds.

Proposition 1 The PMF of the I-Delaporte distribution satisfies the fol-
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lowing recursions

p0 = πre−α, m = 0,

p1 = (1 − ρ) [r(1 − π) + α] p0, m = 1,

p2 =
[
1 + 2ρ− π(1 − ρ) + (1−ρ)(r(1−π)+α)−2ρ−(1−π(1−ρ))

2

]
p1

− (1−ρ)
2

[r(1 − π)ρ+ α(1 − π(1 − ρ))] p0, m = 2,

pm =
[
1 + 2ρ− π(1 − ρ) + (1−ρ)(r(1−π)+α)−2ρ−(1−π(1−ρ))

m

]
pm−1

−
[
(m−2)
m

ρ(ρ+ 2(1 − π(1 − ρ))) + (1−ρ)[r(1−π)ρ+α(1−π(1−ρ))]
m

]
pm−2

+ ρ2
(
1 − 3

m

)
(1 − π(1 − ρ))pm−3, m = 3, 4, . . .

Proof. Upon substituting s = 0 in the PGF ψN (s), given in (5) we obtain
the initial value p0 of the recursion formulas. Differentiation in (5) leads to

ψ′(s) =
1− ρ
1− ρs

[
r(1− π)

1− (1− π(1− ρ))s
+

α

1− ρs

]
ψ(s), (8)

where ψ(s) =
∞∑
i=0

pis
i and ψ′(s) =

∞∑
i=0

(i+1)pi+1s
i. After some mathematical

steps and substituting ψ(s) and ψ′(s) with their expressions in (8) we obtain

∞∑
i=0

(i+ 1)pi+1s
i − [1 + 2ρ− π(1− ρ)]

∞∑
i=1

ipis
i + ρ [2 + ρ− 2π(1− ρ)]

×
∞∑
i=2

(i− 1)pi−1s
i − ρ2 [1− π(1− ρ)]

∞∑
i=3

(i− 2)pi−2s
i

= (1− ρ) [r(1− π) + α]
∞∑
i=0

pis
i − (1− ρ)·

[(1− π)(rρ+ α) + ρπα]
∞∑
i=1

pi−1s
i. (9)

The recursions are obtained by equating the coefficients before si from the
both sides of the equality (9) for i = 0, 1, 2, . . .

An alternative recursion formulas are given in the next corollary.
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Corollary 1 The PMF of I-Delaporte distribution satisfies the following
alternative recursion formulas

p0 = πre−α, m = 0,

p1 = (1− ρ)[r(1− π) + α]p0, m = 1,

2p2 = (1− ρ)
[
1+ρ
1−ρ − π + (r(1− π) + α)

]
p1

− [(1− ρ)2(1− π)α]p0, m = 2,

mpm = (1− ρ)
[(

1+ρ
1−ρ − π

)
(m− 1) + (r(1− π) + α)

]
pm−1

+ (1− ρ)

m−2∑
k=0

[−αρm−2−k(1− π(1− ρ)) + αρm−1−k]pk

−ρ[1− π(1− ρ)](m− 2)pm−2, m = 3, 4, . . .

Proof. Representing (8) in the form

[1− [1 + ρ− π(1− ρ)]s+ ρ[1− π(1− ρ)]s2]ψ′(s)

= (1− ρ)[r(1− π) + α− [(1− π)(rρ+ α) + ρπα]s]
∞∑
j=0

(ρs)jψ(s)

and substituting ψ(s) =
∑∞

i=0 pis
i and ψ′(s) =

∑∞
i=0(i+ 1)pi+1s

i we obtain

∞∑
i=0

(i+ 1)pi+1s
i = [1 + ρ− π(1− ρ)]

∞∑
i=1

ipis
i − ρ[1− π(1− ρ)]

×
∞∑
i=2

(i− 1)pi−1s
i + (1− ρ)[r(1− π) + α]

∞∑
i=0

i∑
j=0

ρi−jpjs
i

− (1− ρ)[(1− π)(rρ+ α) + ρπα]
∞∑
i=1

i−1∑
j=0

ρi−j−1pjs
i. (10)

The alternative recursions are obtained by equating the coefficients before
si from the both sides of the equality (10) for i = 0, 1, 2, . . .
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2.1.2 Moments of I-Delaporte distribution

The mean and the variance of the I-Delaporte distribution are given by

E(N) =

(
α+

r

β

)
1

1− ρ

and

V ar(N) =

[
α(1 + ρ) +

r[(1 + ρ)β + 1]

β2

]
1

(1− ρ)2
.

For the Fisher index of dispersion we obtain

FI(N) =
1 + ρ

1− ρ
+

r

(1− ρ)β2(α+ r
β )

>
1 + ρ

1− ρ
,

i.e. the I-Delaporte distribution is over-dispersed related to the PA distri-
bution. It means that this distribution is suitable for financial data and can
be applied in risk theory.

2.2 Non-central Pólya-Aeppli distribution

The NNBD arises as a model in photon and neural counting, birth and death
processes and mixture models, see [21]. Ong and Lee gave a formulation of
the NNBD as a Poisson and NB mixture. In 1983 Gurland et. al., [6]
considered the NNBD and referred it to as a Laguerre series distribution.
Lately it had been developed in the work of Ong et. al., [20] and Ong and
Shimizu [22]. The PMF and the PGF of the NNBD are given by

P (N = i) = e−λppiqνLν−1i (−λq)

and

ψN (s) =

(
q

1− ps

)ν
e
−
[
1− q

1−ps

]
, (11)

where ν > 0 and λ > 0 are parameters, 0 < p = 1 − q < 1 and Lαi (x) are
the Laguerre polinomials orthogonal over (0,∞) with respect to xα−1e−x.

The PA distribution is a compound Poisson with geometric compounding
distribution. The PMF of the compounding distribution is given by

P (X = i) = (1− ρ)ρi−1, i = 1, 2, . . .

and the PGF by (3).
Another generalization of the NNBD is the I-Delaporte distribution, de-

fined in [14]. It is a convolution of INBD, introduced in [17] as a compound
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NB distribution with geometric compounding distribution and a PA dis-
tribution. The second counting distribution introduced in this paper is the
Non-central Pólya-Aeppli distribution (NPAD). Useful properties of this dis-
tribution are given in [12].

Suppose that the first random variable N1 with a given parameter λ1 > 0
has a Poisson distribution, i.e.

P (N1 = i) =
(λ1)

i

i!
e−λ1 , i = 0, 1, . . .

with the following PGF ψN1(s) = e−λ1(1−s). We use the notation N1 ∼
Po(λ1). The second random variable N2 with parameters λ2 > 0 and ρ ∈
[0, 1) has a PA distribution with PMF, given in (1). This distribution is
also known as an Inflated-parameter Poisson distribution, see [17]. For the
random variable N2 we use the notation N2 ∼ PA(λ2, ρ).

Considering the fact that N = N1+N2 where N1 and N2 are independent
random variables we obtain that the PGF of the NPAD r.v. is given by

ψN (s) = e−λ1(1−s)e−λ2[1−ψX(s)], (12)

where ψX(s) is the PGF of the compounding geometric distribution.

Definition 2 The random variable N with PGF given in (12) is referred
to a NPAD. We use the notation N ∼ NPAD(λ1, λ2, ρ).

2.2.1 The Probability Mass Function

The paper of Ong and Lee, [21] motivated the name of this distribution i.e
NPAD, see [12]. It is well known that the Poisson distribution is a limiting
case of the NBD. If we take ν(1− q)→ λ > 0 in the first term of (11) then
we will obtain the PGF, given in (12). Thus if the both terms in (11) have
different parameters, then the NPAD could be a limiting case of the NNBD.

Lemma 2 The PMF of the NPAD is given by

P (N = m) =

=


e−(λ1+λ2), m = 0,

e−(λ1+λ2)

[
(λ1)m

m! +
m∑
j=1

(λ1)m−j

(m−j)!

j∑
k=1

(
j−1
k−1
) [λ2(1−ρ)]k

k! ρj−k

]
,m = 1, 2, . . .

In the next proposition we obtain recursion formulas for the PMF of the
defined distribution.
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Proposition 2 The PMF of the NPAD satisfies the following recursions

p0 = e−(λ1+λ2), m = 0,
p1 = [λ1 + λ2(1− ρ)]p0, m = 1,

p2 =
[
ρ+ λ1+λ2(1−ρ)

2

]
p1 − λ1ρp0, m = 2,

pm = [2ρ+ [λ1+λ2(1−ρ)−2ρ]
m ]pm−1 − ρ[ρ+ 2λ1−ρm ]pm−2 + λ1ρ2

m pm−3,
m = 3, 4, . . .

Proof. Upon substituting s = 0 in the PGF ψN (s), given in (12) we obtain
the initial value p0. Differentiation in (12) leads to

ψ′(s) =

[
λ1(1− ρs)2 + λ2(1− ρ)

(1− ρs)2

]
ψ(s) =

[
λ1 +

λ2(1− ρ)

(1− ρs)2

]
ψ(s), (13)

where ψ(s) =
∑∞

i=0 pis
i and ψ′(s) =

∑∞
i=0(i + 1)pi+1s

i. After some math-
ematical steps and substituting ψ(s) and ψ′(s) with their expressions in
equation (13) we obtain

∞∑
i=0

(i+ 1)pi+1s
i = 2ρ

∞∑
i=1

ipis
i − ρ2

∞∑
i=2

(i− 1)pi−1s
i

+ [λ1 + λ2(1− ρ)]
∞∑
i=0

pis
i − 2λ1ρ

∞∑
i=1

pi−1s
i + λ1ρ

2
∞∑
i=2

pi−2s
i.

(14)

The recursions are obtained by equating the coefficients before si from the
both sides of the equality (14) for i = 0, 1, 2, . . .

An alternative recursion formulas are given in the next corollary.

Corollary 2 The PMF of the NPAD satisfies the following alternative re-
cursion formulas

p0 = e−(λ1+λ2), m = 0,

p1 = [λ1 + λ2(1− ρ)]p0, m = 1,

pm =
[λ1 + λ2(1− ρ)]

m
pm−1 + λ2(1− ρ)

m−1∑
j=1

(
1− j − 1

m

)
ρm−1−jpj−1,

m = 2, 3, . . .

Proof. Representing (13) in the form

ψ′(s) = [λ1 + λ2(1− ρ)
∞∑
j=0

(j + 1)ρjsj ]ψ(s)
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and after substituting ψ(s) =
∑∞

i=0 pis
i and ψ′(s) =

∑∞
i=0(i + 1)pi+1s

i in
the above equality we obtain

∞∑
i=0

(i+ 1)pi+1s
i = [λ1 + λ2(1− ρ)

∞∑
j=0

(j + 1)ρjsj ]
∞∑
i=0

pis
i

= λ1
∞∑
i=0

pis
i + λ2(1− ρ)

∞∑
i=0

pis
i
∞∑
j=0

(j + 1)ρjsj

= λ1
∞∑
i=0

pis
i + λ2(1− ρ)

∞∑
i=0

i∑
j=0

(i− j + 1)ρi−jpjs
i

(15)

The alternative recursions are obtained by equating the coefficients before
si from the both sides of the equality (15) for i = 0, 1, 2, . . .

2.2.2 Moments of Non-central Pólya-Aeppli distribution

The mean and the variance of the NPAD are given by

E(N) =

(
λ1 +

λ2
1− ρ

)
and V ar(N) =

[
λ1 + λ2

1 + ρ

(1− ρ)2

]
.

For the Fisher index we obtain

FI(N) =
λ1(1− ρ)2 + λ2(1 + ρ)

(1− ρ)[λ1(1− ρ) + λ2]
.

It is easy to check that

FI(N) = 1 +
2λ2ρ

(1− ρ)[λ1(1− ρ) + λ2]
,

i.e. NPAD is over-dispersed related to Poisson distribution and

FI(N) =
1 + ρ

1− ρ
− 2λ1ρ

λ1(1− ρ) + λ2
<

1 + ρ

1− ρ
,

i.e. NPAD is under-dispersed related to Pólya-Aeppli distribution.

2.3 Pólya-Aeppli-Lindley distribution

The Lindley distribution was introduced by Lindley in 1958, [16] as a mixture
of Gamma(1, β) and Gamma(2, β) distributions with the following proba-
bility density function

g(λ) =
β

1 + β
βe−βλ +

1

1 + β
β2λe−βλ, λ > 0. (16)
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Definition 3 The random variable Λ has a Lindley distribution with pa-
rameter β > 0, if its density function is given by

g(λ) =
β2

1 + β
(1 + λ)e−βλ, λ > 0.

In 1970 Sankaran, see [25] had introduced the Poisson-Lindley distribu-
tion as a mixture of Poisson distribution with Lindley mixing distribution
with the following PMF

P (N = m) =
β2

(1 + β)m+3
[2 + β +m], m = 0, 1, . . . (17)

Let us suppose that the parameter λ in the PA distribution, given in
(1) has a Lindley distribution with density function of the form (16). Then
from the PGF of the PA distribution we obtain that the unconditional PGF
of the r.v. N has the form

Ψ(s) =
β

1 + β

β

β + (1− ψX(s))
+

1

1 + β

[
β

β + (1− ψX(s))

]2
, (18)

where ψX(s) is the PGF of the geometric distribution given in (3).
In (18) we denote by θ = β

1+β the new parameter of the distribution.
This parametrization was used for the Poisson-Lindley distribution.

Then the PGF of the Pólya-Aeppli-Lindley distribution has the form

ΨN (s) =
θ

1− (1− θ)ψX(s)

[
θ + (1− θ) θ

1− (1− θ)ψX(s)

]
(19)

or

ΨN (s) =
θ(1− ρs)

1− (1− θ(1− ρ))s

[
θ + (1− θ) θ(1− ρs)

1− (1− θ(1− ρ))s

]
.

Definition 4 The distribution of the random variable N with PGF given
in (19) is called Pólya-Aeppli-Lindley distribution with parameters θ and ρ.
We use the notation N ∼ PAL(θ, ρ).

2.3.1 The Probability Mass Function

From the PGF in (19) it follows that the r.v. N can be represented as a
sum of two independent variables N = N1 + N2, where the r.v. N1 has a
compound geometric distribution and the r.v. N2 has a compound modified
geometric distribution with the same geometric compounding distribution.
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The corresponding PGFs are given by

ψN1(s) =
θ

1− (1− θ)ψX(s)
and ψN2(s) = θ + (1− θ) θ

1− (1− θ)ψX(s)
.

Taking into account that the probability density function of the mixing
distribution g(λ), given in (16) and the PMF of the PA distribution we
obtain the following result.

Lemma 3 The PMF of the Pólya-Aeppli-Lindley distribution is given by

P (N = m)

=



β2

(1+β)3
(2 + β), m = 0,

(1−ρ)β2

(1+β)4
(3 + β), m = 1,

(1−ρ)β2(1+βρ)m−2

(1+β)m+3 [(1 + βρ)(3 + β) + (m− 1)(1− ρ)], m = 2, 3, . . .

(20)

Remark 3 In the case of ρ = 0 the PMF given in (20) coincides with the
PMF of the Poisson-Lindley distribution given in (17).

From the PGFs of the r.v.’s N1 and N2 in the terms of θ = β
1+β we

obtain the following PMFs

P (N1 = m) =


θ, m = 0,

θ(1− θ)(1− ρ)[1− θ(1− ρ)]m−1, m = 1, 2, . . .

and

P (N2 = m) =


θ(2− θ), m = 0,

θ(1− θ)2(1− ρ)[1− θ(1− ρ)]m−1, m = 1, 2, . . .

Taking into account that N = N1 +N2 in the terms of θ we obtain the
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following PMF of N :

P (N = m)

=



θ2(2− θ), m = 0,

θ2(1− θ)(1− ρ)(3− 2θ), m = 1,

θ2(1− θ)(1− ρ)[1− θ(1− ρ)]m−2

×[(1− θ(1− ρ))(3− 2θ + (m− 1)(1− θ)2(1− ρ)], m = 2, 3, . . .

Proposition 3 The PMF of the Pólya-Aeppli-Lindley distribution satisfies
the following recursion formulas

p0 = θ2(2− θ)

(2− θ)p1 = (1− ρ)(1− θ)(3− 2θ)p0,

(2− θ)2p2 =
[
3(2− θ).(1− θ(1− ρ))

]
p1

−(1− ρ)(1− θ)
[
1− θ + (2− θ)ρ

]
p0,

and for m = 3, 4 . . .

(2− θ)mpm
=
[
[3− 4θ + (3 + θ)ρ+ θ2(1− ρ)](m− 1) + (1− ρ)(1− θ)(3− 2θ)

]
pm−1

−
[
[(1− θ)2 + 4ρ(1− θ)− (θ2 − 3θ − 1)ρ2](m− 2)

+ (1− ρ)(1− θ)[1− θ + (2− θ)ρ]
]
pm−2

+ ρ
[
(1− θ)2 + ρ(1− θ2 + θρ)](m− 3)pm−3.

Proof. The initial value p0 is obtained upon substituting s = 0 in the PGF
ψN (s), given in formula (19). Differentiation in (19) leads to

[1− (1− θ(1− ρ))s] [2− θ − (1− θ + ρ)s] (1− ρs)ψ′(s)

= (1− ρ)(1− θ)[3− 2θ − (ρ+ (1 + ρ)(1− θ))s]ψ(s),
(21)
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where ψ(s) =
∑∞

i=0 pis
i and ψ′(s) =

∑∞
i=0(i + 1)pi+1s

i. After substituting
ψ(s) and ψ′(s) in (21) we obtain

(2− θ)
∞∑
i=0

(i+ 1)pi+1s
i − [3− 4θ + (3 + θ)ρ+ θ2(1− ρ)]

∞∑
i=1

ipis
i

+[(1− θ)2 + 4ρ(1− θ)− ρ2(θ2 − 3θ − 1)]
∞∑
i=2

(i− 1)pi−1s
i

−ρ[(1− θ)2 + ρ(1− θ2 + θρ)]
∞∑
i=3

(i− 2)pi−2s
i

= (1− ρ)(1− θ)(3− 2θ)

∞∑
i=0

pis
i

−(1− ρ)(1− θ)(1− θ + (2− θ)ρ)
∑∞

i=1 pi−1s
i.

(22)

The recursions are obtained by equating the coefficients before si from the
both sides of the equality (22) for i = 0, 1, 2, . . .

Corollary 3 The PMF of the Pólya-Aeppli-Lindley distribution satisfies the
following alternative recursions

p0 = θ2(2− θ)

(2− θ)p1 = (1− ρ)(1− θ)(3− 2θ)p0,

(2− θ)2p2 = [(3− 2θ)(1 + (1− ρ)(1− θ)) + ρ+ (1− ρ)(θ − 2)θ
]
p1

−(1− ρ)2(1− θ)2p0,

(2− θ)mpm = [3− 2θ − (1− ρ)(2− θ)θ + ρ](m− 1)pm−1

−(1− θ(1− ρ))(1− θ + ρ)(m− 2)pm−2

+(1− ρ)(1− θ)(3− 2θ)

m−1∑
j=0

ρm−1−jpj

−(1− ρ)(1− θ)(1− θ + (2− θ)ρ)

m−2∑
j=0

ρm−2−jpj , m = 3, 4, . . .
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Proof. Representing the PGF (21) in the form[
(2− θ)− [(1− θ + ρ) + (1− θ(1− ρ))(2− θ)]s

+[(1− θ(1− ρ))(1− θ + ρ)]s2
]
ψ′(s)

= (1− ρ)
[
(1− θ)(3− 2θ) + [(1− θ)(1− θ + (2− θ)ρ)]s

] ∞∑
j=0

(ρs)jψ(s)

and after substituting ψ(s) =
∞∑
i=0

pis
i and ψ′(s) =

∞∑
i=0

(i + 1)pi+1s
i in the

above equality we obtain

(2− θ)
∞∑
i=0

(i+ 1)pi+1s
i = [3− 2θ + (1− ρ)(θ − 2)θ + ρ]

∞∑
i=1

ipis
i

−(1− θ(1− ρ))(1− θ + ρ)

∞∑
i=2

(i− 1)pi−1s
i + (1− ρ)(1− θ)(3− 2θ)

×
∑∞

i=0

∑i
j=0 ρ

i−jpjs
i − (1− ρ)(1− θ)(1− θ + (2− θ)ρ)

∞∑
i=1

i−1∑
j=0

ρi−j−1pjs
i.

(23)
The alternative recursions are obtained by equating the coefficients before
si from the both sides of the equality (23) for i = 0, 1, 2, . . .

2.3.2 Moments of Pólya-Aeppli-Lindley distribution

The mean and the variance of the PAL distribution in terms of θ are given
by

E(N) =
(1− θ)(2− θ)
θ(1− ρ)

and V ar(N) =
(1− θ)[2(1 + θρ)− θ2(θ + ρ)]

θ2(1− ρ)2
.

For the Fisher index of dispersion we obtain

FI(N) =
V ar(N)

E(N)
>

1 + ρ

1− ρ
,

which shows that the PAL distribution is over-dispersed related to the PA
distribution. This means that this distribution is suitable for financial data.



36 K. Y. Kostadinova, M.D. Lazarova

2.4 Compound Pólya distribution

Let us consider the following random sum

N = X1 +X2 + . . .+XZ , (24)

where the r.v.’s Xi are independent and identically distributed (iid) as the
r.v. X. The r.v. Z belongs to the family of the Generalized Powers Se-
ries Distributions (GPSDs). The binomial, negative binomial, Poisson and
logarithmic series distributions belong to this family, see [24]. Compound
GPSDs are defined in [8], where the compounding r.v. X has a shifted ge-
ometric distribution with parameter 1− γ, γ ∈ [0, 1). In this paper, let the
r.v. X has a geometric distribution with parameter γ ∈ (0, 1), denoted by
X ∼ Ge(γ) and the r.v. Z is independent of the r.v. X.

We suppose that the r.v. Z has a NBD with parameters r ∈ N and
θ ∈ (0, 1). We use the notation Z ∼ NB(r, θ). In this case the r.v. N has a
compound NBD with compounding geometric distribution.

The PMF and the PGF of X are given by

qi = P (X = i) = γ(1− γ)i, i = 0, 1, . . . (25)

and

ψ1(s) =
γ

1− (1− γ)s
, |s| < 1

1− γ
. (26)

The PMF and PGF of Z are given by

P (Z = i) =

(
r + i− 1

i

)
(1− θ)rθi, i = 0, 1, . . .

and

ψZ(s) =

(
1− θ
1− θs

)r
, |s| < 1

θ
.

Then the PGF of the r.v. N is given by

ψN (s) =

(
1− θ

1− θψ1(s)

)r
, (27)

where ψ1(s) is the PGF of the compounding distribution, given by (26).

Definition 5 The probability distribution of N, defined by the PGF (27)
and compounding distribution, given by (25) and (26) is called a compound
Pólya distribution.
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2.4.1 The Probability Mass Function

The probability function of the r.v. N is given by the expanding of the PGF
ψ(s) in powers of s. Denote by f(i) = P (N = i), i = 0, 1, 2, . . . , the PMF
of the r.v. N.

Rewriting the PGF of (27) leads to

ψ(s) = (1− θ)r
∞∑
m=0

(
r +m− 1

m

)(
θγ

1− (1− γ)s

)m
. (28)

Denote by ψ(i)(s) = ∂(i)ψ(s)
∂si

, for i = 0, 1, . . . , the derivatives of ψ(s).

From (28) we get the following

ψ(i)(s) = (1− γ)i(1− θ)r
∞∑
m=1

(
r +m− 1

m

)
(θγ)m

m(m+ 1) . . . (m+ i− 1)

(1− (1− γ)s)m+i
.

From [7], it is known that

f(i) =
ψ(i)(s)

i!

∣∣∣∣∣
s=0

. (29)

Lemma 4 The PMF of the compound Pólya distribution is given by

f(0) =
(

1−θ
1−θγ

)r
,

f(i) = (1− γ)i(1− θ)r
∞∑
m=1

(
r+m−1
m

)(
m+i−1

i

)
(θγ)m, i = 1, 2, . . .

In the next proposition we obtain recursion formulas for the PMF of
the defined distribution. This proposition gives an extension of the Panjer
recursion formulas (see [23]).

Proposition 4 The PMF of the compound Pólya distribution satisfies the
following recursions

(1−θγ)if(i) = (1−γ)

(i− 1)f(i− 1) + θr
i−1∑
j=0

qjf(i− j − 1)

 , i = 2, 3, . . .

(30)

and f(1) = 1−γ
1−θγ θrq0f(0) with f(0) =

(
1−θ
1−θγ

)r
.
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Proof. Differentiation in (27) leads to

ψ′(s) =
(1− γ)θr

1− (1− γ)s− θγ
ψ1(s)ψ(s), (31)

where ψ(s) =
∞∑
i=0

f(i)si, ψ′(s) =
∞∑
i=0

(i+ 1)f(i+ 1)si, and ψ1(s) =
∞∑
j=0

qjs
j .

After substituting ψ(s), ψ′(s), ψ1(s), changing the variable from i + j =
l⇒ i = l − j and after equivalent transformations in (31) yields to

[1−θγ]

∞∑
i=0

(i+1)f(i+1)si = (1−γ)

∞∑
i=1

if(i)si+(1−γ)θr

∞∑
i=0

[

i∑
j=0

qjf(i−j)]si.

The recursion formulas (30) are obtained by equating the coefficients of
si on both sides for fixed i = 0, 1, 2, . . .

Corollary 4 The PMF of the compound Pólya distribution satisfies the re-
cursions

(1− θγ)if(i) = (1− γ)[(i− 1)(2− θγ) + rθγ]f(i− 1)

− (1− γ)2(i− 2)f(i− 2), i = 2, 3, . . .

and f(1) = 1−γ
1−θγ θrγf(0) with f(0) =

(
1−θ
1−θγ

)r
.

Proof. Differentiation in (27) leads to

ψ′(s) =
θr

1− θψ1(s)
ψ′1(s)ψ(s), (32)

where ψ(s) =
∞∑
i=0

f(i)si, ψ′(s) =
∞∑
i=0

(i+ 1)f(i+ 1)si, and

ψ′1(s) =
(1− γ)γ

(1− (1− γ)s)2
(33)

is the derivative of (26). So, the equation (32) has the form

(1− θγ)
∞∑
i=0

(i+ 1)f(i+ 1)si = (2− θγ)(1− γ)
∞∑
i=1

if(i)si

−(1− γ)2
∞∑
i=2

(i− 1)f(i− 1)si + rθγ(1− γ)
∞∑
i=0

f(i)si.

The alternative recursions are obtained by equating the coefficients in front
of si on both sides for fixed i = 0, 1, 2, . . .
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2.4.2 Moments of compound Pólya distribution

The mean and the variance of the compound Pólya distribution are given
by

E(N) =
(1− γ)θr

(1− θ)γ
and V ar(N) =

(1− γ)((1− γ)(2− θ) + (1− θ)γ)

((1− θ)γ)2
θr.

For the Fisher index of dispersion we obtain

FI(N) =
V ar(N)

E(N)
= 1 +

(1− γ)(2− θ)
(1− θ)γ

> 1,

i.e. the compound Pólya distribution is over-dispersed related to the Pois-
son distribution. This makes the compound Pólya distribution suitable for
financial data.

2.5 Compound binomial distribution

Let us consider again the random sum (24), where the r.v.’s Xi are iid as the
r.v. X and X ∼ Ge(γ). The PMF and the PGF of the r.v. X are given by
(25) and (26). The r.v. Z is independent of the r.v.’s Xi, i = 1, 2, . . . The
r.v. Z has a binomial distribution with parameters n ∈ N and θ ∈ (0, 1),
with notation Z ∼ Bi(n, θ). Then the r.v. N has a compound binomial
distribution with compounding r.v. X.

The PMF and PGF of the r.v. Z are given by

P (Z = i) =

(
n

i

)
θi(1− θ)n−i, i = 0, 1, . . . , n

and

ψZ(s) = (1− θ + θs)n.

Then the PGF of N is given by

ψ(s) = ψN (s) = (1− θ + θψ1(s))
n, (34)

where ψ1(s) is the PGF of the compounding distribution, given in (26).

Definition 6 The probability distribution of the r.v. N, defined by the PGF
(34) and compounding distribution, given by (25) and (26) is called a com-
pound binomial distribution.
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2.5.1 The Probability Mass Function

Rewriting the PGF in (34) leads to

ψ(s) =

n∑
m=0

(
n

m

)(
θγ

1− (1− γ)s

)m
(1− θ)n−m. (35)

From (35) follows

ψ(i)(s) = (1− γ)i
n∑

m=1

(
n

m

)
m(m+ 1) . . . (m+ i− 1)

(1− (1− γ)s)m+i
(θγ)m(1− θ)n−m.

Using (29) is obtained the following Lemma.

Lemma 5 The PMF of the compound binomial distribution is given by

f(0) = (1− θ + θγ)n,

f(i) = (1− γ)i
n∑

m=1

(
n
m

)(
m+i−1

i

)
(θγ)m(1− θ)n−m, i = 1, 2, . . .

In the next proposition are given an extension of the Panjer recursion
formulas (see [23]).

Proposition 5 The PMF of the compound binomial distribution satisfies
the following recursion formulas

(1− θ + θγ)if(i)

= (1− γ)

[
(1− θ)(i− 1)f(i− 1) + nθ

i−1∑
j=0

qjf(i− j − 1)

]
, i = 2, 3, . . .

(36)

and f(1) = nθ(1−γ)
1−θ+θγ q0f(0) with f(0) = (1− θ + θγ)n.

Proof. Differentiation in (34) leads to

ψ′(s) =
nθ(1− γ)

(1− θ)(1− (1− γ)s) + θγ
ψ1(s)ψ(s), (37)

where ψ(s) =
n∑
i=0

f(i)si, ψ′(s) =
n∑
i=0

(i+ 1)f(i+ 1)si, and ψ1(s) =
∞∑
j=0

qjs
j .

After substituting ψ(s), ψ′(s), ψ1(s), changing the variable from i + j =
l⇒ i = l − j and after equivalent transformations in (37) yields to
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[1− θ + θγ]
n∑
i=0

(i+ 1)f(i+ 1)si = (1− θ)(1− γ)
n+1∑
i=1

if(i)si

+nθ(1− γ)

[
n∑
i=0

i∑
j=0

qjf(i− j) +
∞∑
i=n

i∑
j=i−n

qjf(i− j)

]
si.

The recursions (36) are obtained by equating the coefficients of si in
front of the both sides of the previous equation for fixed i = 0, 1, 2, . . .

Corollary 5 The PMF of the compound binomial distribution satisfies the
recursions

(1− θ + θγ)if(i) = (1− γ) [(i− 1)(2− 2θ + θγ) + nθγ] f(i− 1)

−(1− γ)2(1− θ)(i− 2)f(i− 2), i = 2, 3, . . .

and f(1) = nθγ(1−γ)
1−θ+θγ f(0) with f(0) = (1− θ + θγ)n.

Proof. Differentiation in (34) leads to

ψ′(s) =
nθ

1− θ + θψ1(s)
ψ′1(s)ψ(s), (38)

where ψ(s) =
n∑
i=0

f(i)si, ψ′(s) =
n∑
i=0

(i + 1)f(i + 1)si, and ψ′1(s) is given by

(33). So, the equation (38) has the form

(1− θ + θγ)
n∑
i=0

(i+ 1)f(i+ 1)si = (2− 2θ + θγ)(1− γ)
n+1∑
i=1

if(i)si

−(1− γ)2(1− θ)
n+2∑
i=2

(i− 1)f(i− 1)si + nθγ(1− γ)
n∑
i=0

f(i)si.

The recursions are obtained by equating the coefficients of si on both sides
for fixed i = 0, 1, 2, . . .

2.5.2 Moments of compound binomial distribution

The mean and the variance of the compound binomial distribution are given
by

E(N) =
nθ(1− γ)

γ
and V ar(N) =

(1− γ)((1− γ)(2− θ) + γ)

γ2
nθ.
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For the Fisher index of dispersion we obtain

FI(N) =
V ar(N)

E(N)
= 1 +

(1− γ)(2− θ)
γ

> 1,

i.e. the compound binomial distribution is over-dispersed related to the Pois-
son distribution. This makes the compound binomial distribution suitable
for financial data.

3 Concluding remarks

In this paper we introduced five essential counting distributions with their
applications in risk theory as corresponding distributions of counting pro-
cesses in risk models. The probability generating functions, the probability
mass functions, moments, recursion formulas and alternative recursion for-
mulas are obtained. Some nice properties of these distributions are derived.
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MATTEX 2016. 1:81-86, 2016.

[16] D.V. Lindley. Fiducial distributions and Bayes’ theorem. Journal of the
Royal Statistical Society. 20:102-107, 1958.

[17] L.D. Minkova. A family of compound discrete distributions. Compt.
Randue Bulg. Acad. Sci. 54:11-14, 2001.



44 K. Y. Kostadinova, M.D. Lazarova

[18] L.D. Minkova. A Generalization of the Classical Discrete Distributions.
Communications in Statistics - Theory and Methods. 31:871-888, 2002.

[19] L.D. Minkova. Distributions in Insurance Risk Models. Doctor of Sci-
ence Thesis, available in: www.fmi.uni-sofia.bg, 2012.

[20] S.H. Ong, S. Chakraborty, T. Imoto, K. Shimizu. Generalizations of
Non-central Negative Binomial Charlier Series Distributions and their
extensions by Lagrange expansion. Commun. Statist.-Theory and Meth-
ods. 41:571-590, 2012.

[21] S.H. Ong, P.A. Lee. The Non-central Negative Binomial Distribution.
Biom. J. 21:611-628, 1979.

[22] S.H. Ong, K. Shimizu. A discrete Distribution Arising as a Solution
of a Linear Difference Equation: Extension of the Non-central nega-
tive binomial distribution. Communication in Statistics - Theory and
Methods. 38:927-938, 2009.

[23] H. Panjer. Recursive evaluation of a family of compound discrete dis-
tributions. ASTIN Bull. 12(1):22-26, 1981.

[24] G.P. Patil. Certain properties of the generalized power distributions.
Ann. Inst. Stat. Math. 14:179-182, 1962.

[25] M. Sankaran. The discrete Poisson-Lindley distribution. Biometrics.
26:145-149, 1970.

[26] E. Xekalaki. Under and overdispersion. In Encyclopedia of actuarial
science, 3, (Eds., Teugels J.L., Sundt B.), pp. 1700–1705, John Wiley
& Sons, Hoboken, New Jersey, 2006.


