

ANNUAL JOURNAL

OF

ELECTRONICS

Technical University of Sofia

Faculty of Electronic **Engineering and Technologies**

ANNUAL JOURNAL OF ELECTRONICS

EDITOR`S BOARD

President: Vice President: Members: Prof. Dr. Racho IvanovProf. Dr. Marin HristovProf. Dr. Stefan OvcharovProf. Dr. Georgy MihovAssoc. Prof. Dr. Petar YakimovAssoc. Prof. Dr. Mityo Mitev

The Journal is issued by the FACULTY OF ELECTRONIC ENGINEERING AND TECHNOLOGIES, TECHNICAL UNIVERSITY of SOFIA, BULGARIA.

The Journal includes the selected papers from the International Scientific Conference Electronics '11, held on 14 – 16 September 2011 in Sozopol, Bulgaria.

© 2011 Faculty of Electronic Engineering and Technologies, Technical University of Sofia, Bulgaria.

CONTENTS

BOOK 1

Tashev I., Novel Electronic Sensors and their Applications in the Human- computer Interfaces for Gaming and Entertainment	1
Tashey I Coherence Based Double Talk Detector with Adaptive Threshold	5
Prokon R Analog Offset Compensation of Full Time Working Operational	8
Amplifier	U
Younes D., P. Šteffan, FPGA Implementation of Residue-to-Binary	11
Converters: A Comparison between New CRT-I and MRC Converters	
for the Moduli Set $(2n-1, 2n, 2n+1)$	
Vasileva T., Unified Approach for Parallel Prefix Adders Description	15
Gadieva E., Development of Parameterized SPICE Planar Inductor Models	19
Gadieva E., D. Shikalanov, A. Atanasov, Application of General-Purpose	23
Programs to Automated Fault Generation in Analog Circuit Diagnosis	
Gadieva E., D. Shikalanov, A. Atanasov, Automated Observability	27
Investigation of Analog Electronic Circuits using SPICE	
Stefanova S., Some Applications of the Radial Basis Function Neural	31
Network	-
Pandiev I., Realization of Programmable nth-order Universal Filter Using	35
Four-terminal CFOAs	
Kovacheva M., I. Pandiev, Behavioral VHDL-AMS Model for Half-Flash	39
Analog-to-Digital Converter	
Radeva P., E. Todorov, I. Pandiev, Realization of Tone Encoder/Decoder	43
Based on FPGA and FPAA	
Naydenov T., P. Manoilov, TCAM Implementation on Xilinx FPGAs	47
Kireva T., T. Naydenov, Ethernet Frame Classification Using CAM	51
Implemented on FPGA	
Asparuhova K., T. Djamiykov, Design of Transimpedance Amplifiers	55
Georgiev G., Comparative Analysis of Four Basic Fully Differential	59
Structures in Relation to Their Noise and Frequency Parameters	
Stoimenov E., Developing of User Interface for Spectrum Analyzer	63
Stratev A., Algorithms for Element Identification in Automated Assembly	66
Koleva E., Protection from Overvoltage of Optoelectronic Elements and	69
Circuits	
Koleva E., I. Kolev, Increasing the Functionality of Optoelectronic Circuits	72
by Using of Field-effect Transistors with PN Junction and MOS	
Transistors	
Yordanov R., E. Donkov, Creating a Stand-alone Photovoltaic System	75
Chunyang G., G. Gaydadjiev, Alleviating On-chip Shared Memory Bank	79
Conflicts in Data Parallel Architectures	
Karakehayov Z., Power Management Formalism forEmbedded Systems	87
Kazandzhiev Y., St. Stoyanov, Z. Karakehayov, Local Area Network Packet	91
Buffer	

Stoyanov St., Y. Kazandzhiev, Z. Karakehayov, Hardware Platform for Search Engine Applications	95
Cordemans P., S. Landschoot, J. Boydens, Embedded Software Development	99
Neshev I., P. Cordemans, S. Landschoot, J. Boydens, Multitasking Framework for Embedded Multicore Systems	103
Steffan P., D. Siroky, Control Unit for Concrete Panel with Carbon Fibres Kazakov B., T. Brusev, B. Nikolova, Design and Implementation of 32-bit	107 110
Spirov R., FPGA StereoVision Sensor and Edge Detection Filter for Object Recognition	114
Petrov B., B. Petrov, Neural Network Application of Optical Character Recognition Based on the DSP Architecture	118
Yakimov P., N. Tuliev, Embedded Gateway for Application in Internet-based Energy Management SCADA Systems	121
Kakanakov N., M. Shopov, Using GNU/Linux Tools for Creating ARM9- based Embedded Applications	125
Kakanakov N., G. Spasov, Securing Against Denial of Service Attacks in Remote Energy Management Systems	129
Lyubomirov Sl., St. Ovcharov, Research of an Operating System for the Needs of Relay Protection	133
Gavrovski C., Z. Kokolanski, Distant Measurement of Dose Rate of Ionizing Radiation by Virtual Instrumentation	137
Deneva M., E. Stoikova, M. Nenchev, Wavelength Division-Multiplexing Element with Tunable Outputs/Inputs and High Spectral Selectivity	140
Zhelyazkov G.,, Al. Velchev, M. Mitev, Measuring Time Properties of Correlated Signals from Extensive Air Shower Detector Clusters	144
 Christov Ch., D. Tsankov, A CO₂ Laser for Materials Microprocessing Mora P., A. Krusteva, Transnational Access to European Research Infrastructures according to Fp7 DERri Project 	148 152
Peuteman J., T. Verbeerst, J. Knockaert, D. Pissoort, D. Vanoost, I. Vervenne, Radiated Emission of an Inverter Fed Motor Drive System in a Frequency Range from 30 to 200 MHz	157
Popov E., L. Pindeva, S. Tsolov, An Unified Interpretation of the Electromagnetic Processes in the Autonomous Serial R L C Inverters with or without Free – Wheeling Diodes	161
Tsolov S., E. Popov, Three – Dimensional Normalized Frequency Characteristics of the Autonomous Voltage – Fed R L C Inverter	165
Kraev G., N. Hinov, L. Okoliyski, Analysis and Design of Serial ZVS Resonant Inverter	169
Kraev G., N. Hinov, N. Gradinarov, Waveforms of Serial ZVS Resonant Inverter	173
Arnaudov D., N. Hinov, G. Kraev, S. Stanchev, Computer Tester for Checking Power Electronic Converters	177
Antchev H., Investigation on Dynamic Characteristics of DC/DC Bus with Ultracapacitor and Parallel Connected DC/DC Converters	181

Tomova A., Topologies of Grid Connected PV Inverters: An Overview	186
Lechkov A., T. Grigorova, Hybrid transistor-Thyristor PWM converter with	192
improving reversible time	
Grigorova T., A. Lechkov, B. Pachedjieva, Analysis and Investigation of	196
Modulation Strategies for a Single-Phase Full-Bridge Voltage-Source	

- Inverter Vuchev Al., N. Bankov, Analytical Modeling and Investigation of a Series 200 Resonant DC-DC Converter with an Output Controlled Rectifier
- Bankov N., Al. Vuchev, G. Terziyski, Control Characteristics of a Transistor 204 LCC Resonant DC/DC Converter with a Capacitive Output Filter
- Mareva D., E. Marev, D. Yudov, Combined Regulation of Inverter for 208 Induction Heating
- Angelov Pl., Modified Electronic System for Control the Low Frequency 212 Bridge Inverter – Part.1. Block Diagram
- Angelov Pl., Modified Electronic System for Controlling the Low Frequency 214 Bridge Inverter – Part.2. Simulation

BOOK 2

- Fekri A., M. Nabavi, M. Pertij, St. Nihtianov, A Ratio-metric Analog to 1 Digital Converter for an Eddy Current Displacement Sensor
- Baert J., L. Espeel, St. Puttemans, J. Staelens, Weighted Multi-method User 5 Identification in Gaming Applications
- Nikolov G., B. Nikolova, M. Marinov, Air Conditioning Measurement using 9 Wi-Fi DAQ
- Yakimov P., G. Nikolov, Three Phase Power Monitoring using Virtual 13 Techniques
- Ivanoff R., P. Yakimov, T. Djamiykov, Implementation of Smart Metering as 17 an Essential Part of Advanced Metering Infrastructure by End-Customers
- Ribov B., G. Bakalski, A. Redzheb, D. Olesh, WEB Based Electronic Energy 21 Meter Suitable for Energy Efficiency Analysis
- Sapundjiev P., G. Zhelyazkov, M. Mitev, Rainfall Drops Measurements 25 Using a Modified Lord Kelvin Generator
- Manchev O., D. Mladenova, V. Milenkov, I. Zhivkov, E. Dimitrov, 29 Multisensor Microcontroller Based Device for Temperature Measurement
- Yordanov R., I. Yordanova, V. Mollov, Safety Assisting Control System 33 Based on Side-car Area Monitoring
- Markova V., R. Dimova, V. Draganov, An Architecture Design of a 37 Monitoring Level Sensor System
- Mihov G., Ch. Levkov, R. Ivanov, Common Mode Filters for Subtraction 40 Procedure for Removing Power-Line Interference from ECG
- Levkov Ch., Excitation Slice Pattern a Simple Method for Visualization of 44 Multichannel Electrocardiograms

- Iliev I., S. Tabakov, I. Dotsinsky, Two Steps Approach for Falls Detection in 46 the Elderly
- Dimitrov E., I. Iliev, K. Dilov, System for Analysis on Human Accelerations 49 during Motion
- Stoimenov E., I. Iliev, I. Dotsinsky, I. Pandiev, S. Tabakov, FPAA 52 Implementation of Asynchronous Detector for Fall Detection in the Elderly
- Sapundjiev P., I. Iliev, M. Mitev, Monitoring Environmental Status as Part of 56 Ambient Assisted Living System
- Shopov M., G. Petrova, G. Spasov, Evaluation of Zigbee-based Body Sensor 60 Networks
- Spasov G., G. Petrova, Electronic Health Records Basic Models and 64 Specifics
- Jekova I., V. Krasteva, L.Todorova, P. Vassilev, G. Georgiev, M. Matveev, 68 Monitoring of the Patient Feedback during Weaning Procedure from Mechanical Ventilation

Krasteva V., E. Trendafilova, J.-Ph. Didon, T. Mudrov, I. Christov, Pre- and 72
 Post- Shock Thoracic Impedance Relations in External Electrical Cardioversion

- Dobrev D., T. Neycheva, Bootstrapped Instrumentation Biosignal Amplifier 76
- Dobrev D., T. Neycheva,Increased Power-line Interference Rejection by 80 Adaptive Common Mode Impedance Balance
- Sztojanov I., S. Paşca, Microcontrollers Teaching Basic Skills 84 for Today's Students
- Machan L., P. Steffan, Modernization of the Digital Circuits and 88 Microprocessors Course
- T. Vasileva, Tools Supporting Collaborative Knowledge Building 91
- Marinov O., R. Tsankova, Electronic Methods and Tools for the 95 Administrative Management Democratization
- Videkov V., R. Radonov, A. Stratev, Semi-virtual Laboratory Exercise in 99 SMT
- Shotlekov I., K. Stefanova, M. Ilieva, B. Koen, ELearning and Organization 101 of Laboratory Practicals for Electronics Majors
- Buliev I., E. Bekov, J. Kolev, CRH-BME: A New View of the Education in 105 Biomedical Engineering
- Vainshtein S., V. Javadyan, G. Duan, K. Tsendin, J. Kostamovaara, Simple 109 Requirement to Passivating Film/GaAs Interface for Avalanche Breakdown Suppression
- Vitanov S., J. Kuzmik, V. Palankovski, Study of the Conduction Properties of 113 the n++ GaN Cap Layer in GaN/InAlN/GaN E-HEMTs
- Yuferev V., S. Vainshtein, J. Kostomovaara, Whether Powerful Terahertz 117 Oscillations are Possible in a GaAs n+-n0-n+ Structure?
- Duan G., S. Vainshtein, J. Kostamovaara, Si Avalanche Transistor Optimized 121 for Subnanosecond Operation: Physics Based Transient Modeling
- Yanchev V., E. Manolov, M. Hristov, V. Grozdanov, R. Radonov, Modeling 124 and Simulation of MEMS Horizontal Thermal Actuator with Coventor

Design Environment

Gieva E., R. Rusev, R. Radonov, T. Takov, M. Hristov, Verilog-A Behavioral Model of Hydrogen Bonding Network	128
Gieva E., L. Penov, R. Rusev, G. Angelov, M. Hristov, Protein Hydrogen Bonding Network Electrical Model and Simulation in Verilog-A	132
Spasova M., G. Angelov, M. Hristov, Design of 1T DRAM Memory Cell Using Verilog-A Model of High-k MOS Capacitor in Cadence	135
Angelov G., Compact Model of HfO2-Ta2O5 capacitor in Verilog-A	139
Andonova A., Pl. Apostolov, L. Kolev, Thermal Simulation of LED Devices by Using Computational Fluid-dynamics Software	143
Radev Al., A. Andonova, Face Recognition Using Infrared Images	146
Toteva I., A. Andonova, Simulation of LNA in 0.18µm CMOS Technology	149
Kolev G., K. Denishev, Y. Dutsolova, MEMS Based Microsensor for Direction of Wind	153
Denishev K., G. Kolev, Piezoelectric Devices and Their Application in Energy Harvesting Systems	157
Yordanov R., Enterprise System for Choosing an Optimal Technological Solution in MCM Design	161
Bobeva S., Silicon Carbide as an Advanced Fabrication Material for Sensor Applications	165
Vanoost D., D. Pissoort, I. Vervenne, J. Peuteman, H. Gersem, Design, Simulation, Implementation and Use of a Piezo-actuated Magnetic Flux Switch	168
Nikolov D., B. Boesman, D. Pissoort, Impedance Optimization of an Existing Coil for Wireless Power Transfer at 27 MHz Using a Circuit and Full- Wave Simulator	172
Nikolov D., E. Manolov, M. Hristov, Integrated Circuits for Energy Harvesting Solutions: An Overview	176
Pekárek J., R. Vrba, M. Magát, M. Pavlík, J. Háze, Testing of Novel Device for Anodic Bonding Process in MEMS Application	180
Aleksandrova M., G. Dobrikov, S. Andreev, G. Dobrikov, M. Rassovska, Electrical Properties Characterization of Thick Film Organic Electroluminescent Structures	183
Dobrikov G., M. Aleksandrova, S. Andreev, G. Dobrikov, Preparation and Characterization of Flexible Thick Film Electroluminescent Structures	187
Zakhariev S., L. Bedikyan, P. Shindov, M. Zakharieva, T. Cholakova, R. Kakanakov, Deposition and Optical Properties of TiO ₂ Thin Films	191
Vervenne I., G. Deconinck, Reliability Assessment of Electronic Equipment on System Level	194
Marcheva Y., Corrosion as a Factor for Electronics Reliability	198
Papanchev T., Modeling and Analysis of Electronic Systems with Bridge Structure	202
Papanchev T., A. Georgiev, H. Gigov, N. Georgieva, G. Todorinov, A Study on Reliability Characteristics of Programmable Temperature Controller	206

INDEX

Aleksandrova	Mariya	Petrova	b2 p183,187
Andonova	Anna	Vladova	b2 p143,146,149
Andreev	Svetozar	Krastev	b2 p183,187
Angelov	George	Vasilev	b2 p132,135,139
Angelov	Plamen	Angelov	b1 p212,214
Antchev	Hristo	Mihailov	b1 p181
Apostolov	Plamen	Ognjanov	b2 p143
Arnaudov	Dimitar	Damyanov	b1 p177
Asparuhova	Katya	Konstantinova	b1 p55
Atanasov	Anton	Georgiev	b1 p23,27
Baert	Jurgen		b2 p5
Bakalski	Georgi	Ivanov	b2 p21
Bankov	Nikolay	Dimitrov	b1 p200,204
Bedikyan	Lidiya	Dzhovasar	b2 p191
Bekov	Emylian	Boyanov	b2 p105
Bobeva	Silvia	Dimitrova	b2 p165
Boesman	Bart		b2 p172
Boydens	Jeroen		b1 p99,103
Brusev	Tihomir	Sashev	b1 p110
Buliev	Ivan	Georgiev	b2 p105
Cholakova	Tetiana	Mihailova	b2 p191
Christov	Christo	Georgiev	b1 p148
Christov	Ivaylo	Ivanov	b2 p72
Chunyang	Gou		b1 p79
Cordemans	Piet		b1 p99,103
Deconinck	Geert		b2 p194
Deneva	Margarita	Angelova	b1 p140
Denishev	Krassimir	Hristov	b2 p153,157
Didon	Jean	Philippe	b2 p72
Dilov	Kristian	Dilov	b2 p49
Dimitrov	Emil	Nikolov	b2 p29, 49
Dimova	Rozalina	Stefanova	b2 p37
Djamiykov	Todor	Stoyanov	b1 p55; b2 p17
Dobrev	Dobromir	Petkov	b2 p76,80
Dobrikov	Georgy	Hristov	b2 p183,187
Dobrikov	Georgy	Milchev	b2 p183,187
Donkov	Encho	Elenkov	b1 p75
Dotsinsky	Ivan	Assenov	b2 p46,52
Draganov	Venceslav	Draganov	b2 p37
Duan	Gouvona		h2 n100 121
	Gouyong		02 p109,121

Espeel	Ludovic		b2 p5
Fekri	Ali		b2 p1
Gadjeva	Elissaveta	Dimitrova	b1 p19,23,27
Gavrovski	Cvetan		b1 p137
Gaydadjiev	Georgi	Nedeltchev	b1 p79
Georgiev	Anton	Slavchev	b2 p206
Georgiev	George	Ognyanov	b1 p59
Georgiev	Georgi	Zheliazkov	b2 p68
Georgieva	Neli	Gencheva	b2 p206
Gersem	Herbert	De	b2 p168
Gieva	Elitsa	Emilova	b2 p128,132
Gigov	Hristo	Ivanov	b2 p206
Gradinarov	Nikola	Petrov	b1 p173
Grigorova	Tsvetana	Grigorova	b1 p192,196
Grozdanov	Vladimir	Emilov	b2 p124
Háze	Jiří		b2 p180
Hinov	Nikolai	Lyuboslavov	b1 p169,173,177
Hristov	Marin	Hristov	b2 p124,128,132,135,176
Iliev	Ivo	Tsvetanov	b2 p46,49,52,56
Ilieva	Mariyana	Ivanova	b2 p101
Ivanoff	Radoslav	Velichkov	b2 p17
Ivanov	Ratcho	Marinov	b2 p40
Javadyan	Valeriy		b2 p109
Jekova	Irena	Ilieva	b2 p68
Kakanakov	Nikolay	Rumenov	b1 p125,129
Kakanakov	Roumen	Davidkov	b2 p191
Karakehayov	Zdravko	Georgiev	b1 p87,91,95
Kazakov	Boyko	Plamenov	b1 p110
Kazandzhiev	Yasen	Slavchev	b1 p91,95
Kireva	Teodora	Todorova	b1 p51
Knockaert	Jos		b1 p157
Koen	Beka	Henrich	b2 p101
Kokolanski	Zivko		b1 p137
Kolev	Georgi	Dobrev	b2 p153,157
Kolev	Ivan	Stanchev	b1 p72
Kolev	Jordan	Nikolov	b2 p105
Kolev	Lubomir	Pavlov	b2 p143
Koleva	Elena	Nedyalkova	b1 p69,72
Kostamovaara	Juha		b2 p109,117,121
Kovacheva	Marieta	Georgieva	b1 p39

Kraev	George	Vassilev	b1 p169,173,177
Krasteva	Vessela	Tzvetanova	b2 p68,72
Krusteva	Anastassia	Petrova	b1 p152
Kuzmik	Jan		b2 p113
Landschoot	Sille	Van	b1 p99,103
Lechkov	Anton	Nikolov	b1 p192,196
Levkov	Chavdar	Lev	b2 p40,44
Lyubomirov	Slavi	Yasenov	b1 p133
Machan	Ladislav		b2 p88
Magát	Martin		b2 p180
Manchev	Ognyan	Vasilev	b2 p29
Manoilov	Peter	Georgiev	b1 p47
Manolov	Emil	Dimitrov	b2 p124,176
Marcheva	Yordanka	Stefanova	b2 p198
Marev	Emil	Markov	b1 p208
Mareva	Daniela	Jekova	b1 p208
Marinov	Marin	Berov	b2 n9
Marinov	Orlin	Pavlov	b2 n95
Markova	Valentina	Ilieva	b2 p37
Matveev	Mikhail	Georgiev	b2 p5 7
Mihov	Georgy	Slavchev	b2 p80
Milenkov	Viktor	Stovchev	$h^{2} n^{2} 9$
Mitev	Mityo	Georgiev	$h1 n144 \cdot h2 n21 56$
Mladenova	Daniela	Lyubenova	b1 p144, 02 p21,50
Mollov	Valentin	Stovenov	b2 p29
More	Paolo	Stoyallov	b1 p152
Mudrov	Tevetan	Nikolaav	$b_{1} p_{132}$
WILLIOV	ISvetan	INIKOIdev	02 p72
Nabavi	Mohammad	Reza	b2 p1
Naydenov	Teodor	Borislavov	b1 p47,51
Nenchev	Marin	Nenchev	b1 p140
Neshev	Iordan	Mihailov	b1 p103
Neycheva	Tatyana	Dimitrova	b2 p76,80
Nihtianov	Stoyan	Nihtianov	b2 p1
Nikolov	Dimitar	Nikolov	b2 p172,176
Nikolov	Georgi	Todorov	b2 p9,13
Nikolova	Boyanka	Marinova	b1 p110; b2 p9
Okoliyski	Lyubomir	Antoniev	b1 p169
Olesh	Danny		b2 p21
Ovcharov	Stefan	Jordanov	b1 p133
Dechad	Dominant	Verte 1	$h_{1,2}^{-10}$
Pacnedjieva	Boryana	Nostadinova	01 p196
Palankovski	v assil		02 p113

Pandiev	Ivailo	Milanov	b1 p35,39,43; b2 p52
Papanchev	Toncho	Hristov	b2 p202,206
Pașca	Sever		b2 p84
Pavlík	Michal		b2 p180
Pekárek	Jan		b2 p180
Penov	Lyuben	Mihailov	b2 p132
Pertijs	Michiel		b2 p1
Petrov	Boyan	Boykov	b1 p118
Petrov	Boyko	Baev	b1 p118
Petrova	Galidiya	Ivanova	b2 p60,64
Peuteman	Joan		b1 p157; b2 p168
Pindeva	Liliya	Ivanova	b1 p161
Pissoort	Davy		b1 p157; b2 p168,172
Popov	Evgeniy	Ivanov	b1 p161,165
Prokop	Roman		b1 p8
Puttemans	Steven		b2 p5
Radev	Aleksandar	Petkov	b2 p146
Radeva	Petya	Hristova	b1 p43
Radonov	Rossen	Ivanov	b2 p99,124,128
Rassovska	Milka	Markova	b2 p183
Redzheb	Adnan	Bahri	b2 p21
Ribov	Boris	Yosifov	b2 p21
Rusev	Rostislav	Pavlov	b2 p128,132
Sapundjiev	Petar	Vasilev	b2 p21,56
Shikalanov	Dimitar	Yordanov	b1 p23,27
Shindov	Peter	Hristov	b2 p191
Shopov	Mitko	Petrov	b1 p125; b2 p60
Shotlekov	Ivan	Iliev	b2 p101
Siroky	Daniel		b1 p107
Spasov	Grisha	Valentinov	b1 p129; b2 p60,64
Spasova	Maria	Lubomirova	b2 p135
Spirov	Rosen	Petrov	b1 p114
Staelens	Jan		b2 p5
Stanchev	Sergei	Stanchev	b1 p177
Stefanova	Katya	Krasteva	b2 p101
Stefanova	Stela	Angelova	b1 p31
Šteffan	Pavel	-	b1 p11,107; b2 p88
Stoikova	Elena	Vadimovna	b1 p140
Stoimenov	Eltimir	Chavdarov	b1 p63; b2 p52
Stoyanov	Stefan	Ivanov	b1 p91,95
Stratev	Aleksey	Bogomilov	b1 p66; b2 p99
Sztojanov	Istvan	-	b2 p84
Tabakov	Serafim	Dimitrov	b2 p46,52

Takov	Tihomir	Borisov	b2 p128
Tashev	Ivan		b1 p1,5
Terziyski	Georgi	Petrov	b1 p204
Todorinov	Georgi	Evtimov	b2 p206
Todorov	Emilian	Antonov	b1 p43
Todorova	Lyudmila	Pavlova	b2 p68
Tomova	Angelina	Mihaylova	b1 p186
Toteva	Ina	Plamenova	b2 p149
Trendafilova	Elina	Georgieva	b2 p72
Tsankov	Docho	Tsankov	b1 p148
Tsankova	Roumiana	Strashimirova	b2 p95
Tsendin	Konstantin		b2 p109
Tsolov	Stoyan	Toshev	b1 p161,165
Tuliev	Nikolay	Todorov	b1 p121
Vainshtein	Sergev		b2 p109.117.121
Vanoost	Dries		b1 p157: b2 p168
Vasileva	Tania	Krumova	b1 p15: b2 p91
Vassilev	Peter	Mladenov	b2 p68
Velchev	Aleksandar	Vladimirov	b1 p144
Verbeerst	Tommy	·	b1 p157
Vervenne	Isabelle		b1 p157: b2 p168.194
Videkov	Valentin	Hristov	b2 p99
Vitanov	Stanislav		b2 p113
Vrba	Radimír		b2 p180
Vuchev	Aleksandar	Stoyanov	b1 p200,204
Yakimov	Peter	Ivanov	b1 p121: b2 p13.17
Yanchev	Viktor	Vasilev	b2 p124
Yordanov	Rumen	Stovanov	b1 p75: b2 p33.161
Yordanova	Irena	Radkova	b2 p33
Younes	Dina		bl pl1
Yudov	Dimitar	Dimov	b1 p208
Yuferev	Valentin		b2 p117
Zakhariev	Stoil	Nikolov	b2 p191
Zakharieva	Margarita	Nenova	b2 p191
Zhelvazkov	Georgi	Genchev	b1 p144: b2 p21
Zhivkov	Ivaylo	Tzankov	b2 p29

Three Phase Power Monitoring using Virtual Techniques

Peter Ivanov Yakimov and Georgi Todorov Nikolov

Abstract - This paper presents a power monitoring system that allows analyzing all phenomena related to power quality. The objective is to describe some power quality measurements and analyses that are better served by monitoring with multifunctional data acquisition systems rather than dedicated power quality analyzers. Proposed system is flexible and open to changes and improvements. Measurements which are discussed include three phase voltages, currents and their phasors, active, apparent and reactive powers, power factor and frequency.

Keywords – Data Acquisition System, LabVIEW, Power Monitoring, Virtual Instrumentation

I. INTRODUCTION

The need to manage power is never more critical than when power prices grow up and power quality becomes suspect. Electrical technicians today are more aware of power consumption and are on the watch for consumption that's higher than anticipated. Power monitoring is needed to analyze the power demand [1]. Furthermore, observing the quality of the power helps to analyze the source of disturbance that may cause important stability problems in power systems, or may seriously affect the operation of devices.

Three-phase power measurement and calculation techniques are well established [2, 3]. However, a number of factors have precipitated the need for flexible and reliable measurement and monitoring systems for use in power system applications. Several power quality monitoring systems are available in commerce but almost all of them have the big disadvantage of being embedded and close because it is very difficult to connect different instruments built by different manufacturers to the same system infrastructure and to merge all the monitoring results for unified analyses. Moreover, the commercial power monitoring systems are made up for the general and standard purpose of analyses so they do not always meet the specific customer demands.

On the other hand National Instrument's LabVIEW data acquisition hardware and software module has become one of the most widely used tools to capture, view, and process controls, instrumentation, and power system data both in academia and the industry [4].

In this paper, a simple and cost-effective measurement tool that is based on LabVIEW is presented. This tool measures three-phase voltages and currents using voltage

Peter Yakimov is with the Department of Electronics and Electronics Technologies, Faculty of Electronic Engineering and Technologies, Technical University - Sofia, 8 Kliment Ohridski blvd., 1000 Sofia, Bulgaria, e-mail: pij@tu-sofia.bg

Georgi Nikolov is with the Department of Electronics and Electronics Technologies, Faculty of Electronic Engineering and Technologies at Technical University of Sofia, 8 Kl. Ohridski Blvd, Sofia 1000, Bulgaria, E-mail: gnikolov@tu-sofia.bg. and current transducers and multifunctional data acquisition system. The software calculates all aspects of power such as active, reactive, apparent power, power factor, and phasors. The monitoring system allows performing not only standard analyses, required by a generic customer but also any advanced or specific analysis aimed to the research or to insight knowledge. The monitoring can be performed over long periods and the results of the analyses can also be post-processed to extract statistical information on the disturbances detected.

II. VIRTUAL SYSTEM DESIGN

The proposed virtual system is structured with the following hardware and software blocks: (a) Signal Conditioning, (b) Data Acquisition System (DAQ), (c) DAQmx drivers, (d) Waveform measurement functions, (e) LabVIEW Front panels. The system's block scheme is reported in Fig.1.

The advantage of such digital sampling system is that it is comparatively easy to calibrate, and that digital multiplication is precise and does not cause linearity problems that could occur in power meters based on analogue multiplication. Furthermore, it enables accurate power measurements in non-sinusoidal situations and makes it possible to calculate the power of the different harmonics.

Fig.1 Structural block diagram of the virtual system for power parameters measurement and monitoring.

A. Hardware Design

Signal Conditioning. The purpose of the analog front end is to normalize the signals in order to match the range of the analog-to-digital converter. There are three voltage and three current channels needed for the three phase (R-S-T-N) power measurement. The input ranges depend on the measuring transformers ratios and in this case the maximum values are 70Vrms for the voltage and 7Arms for the current. The range of the analog-to-digital converter is $\pm 10V$, so the circuits are designed to normalize the signals according to the ranges. The voltage signals are applied to voltage dividers. The first channel, corresponding to phase R is described on the Fig. 2. There are added protective Zener diodes. The signals are applied to the analog inputs AI0, AI2 and AI4 of the DAQ. For frequency measurement and for synchronization is provided square-wave signal using the comparator DA₂. The pulse signal is applied to the input PFI8 of the DAQ. It is required to be electrically isolated, so the optocoupler OC₁ is added.

Fig. 2 Signal conditioning circuit for first voltage channel

The input currents are converted to voltage by current transformers, connected to active compensated circuits. The first channel is explained on Fig. 3. The current transformer CT has two equal secondary windings with ratio 1:1000. The purpose of the circuit is to generate the same magnetic flux as the input current does. In this case the voltage over the secondary winding w_2 will be zero and the output current through the secondary winding w_3 will be 1000 times less than the input current. The voltage signal from the resistor R_3 is applied to the input of the DAQ. The three signals are connected to analog inputs AI1, AI3 and AI5 of the DAQ. In this circuit protective Zener diodes are added as well.

Fig.3 Current transducer for first current channel

Data Acquisition System. The second component of the designed virtual system is a modular DAQ. The multifunctional DAQ boards perform a variety of tasks, including analog measurements and generation, digital measurements, timing I/O and various types of analogue and digital synchronization techniques. For the measuring part of the virtual system reported here, the National Instruments' multifunctional DAQ USB-6251 is used. This device provides connection to sixteen analog input (AI) channels with 16 bit resolution and 1200 kS/s per channel.

For frequency measurement two 32-bit counters with 80 MHz sample clock are used. The connection between voltages, currents and DAQ is shown in Fig. 1.

B. Software Design

The Fig. 4 presents the overall graphical code or block diagram of the proposed method for synchronous measuring of three voltages and three current applications. As can be seen on the figure, there are a number of DAQmx functions that controlled measurement [6]. First one is Create Virtual Channel The instances of this polymorphic function correspond to the type of the channel, such as analog input, and range of the measured voltage. The second one is *Timing*, that configures the number of samples to acquire and creates a buffer. This function is responsible for exact integer number of periods measurements. Whatever measurement algorithm is used, an exact measurement of the power parameters of a stationary periodic signal requires that the measurement is made over an exact integer number of periods. This can be achieved by synchronizing the measuring circuit to the fundamental frequency of the signal. If the sampling frequency is much higher than the frequency of the signal, the number of samples can be adjusted such that the measurement is synchronized. In presented system the sampling rate is programmed to be 200 kS/s and 8000 finite number of samples are acquired. In such a way exactly two periods of measured signal are taken.

The next important actions that data acquisition board, controlled by DAQmx perform are producing a sample and starting a waveform acquisition. In order to ensure measurement of every voltage and current always to begin from one and the same reference point the digital triggering is used. Usually, digital trigger signals are connected to PFI pins of measurement device. In the presented virtual system for digital trigger the optoisolated signal PFI8 is used (Fig. 2). *Start Digital Edge* function configures the task to start acquiring on a rising edge of a digital signal. To treat all six channels consecutively the *for loop* with six iterations is used that provide all measurement waveform to be acquired at the same conditions.

In the bottom part of the Fig. 4 is shown the software code for frequency measurement. CI Period function creates a channel to measure the period of a digital signal. The input for period measurement is the same PFI8, that provides synchronization. The selected measurement method High Frequency with two is counters. accuracy Measurement increases with increased measurement time and with increased signal frequency.

The calculation of amplitudes and the phase angles of each voltages and current are made by various build in LabVIEW functions and algorithms which is discrete versions of transforms from time-domain to frequencydomain [5]. The two basic calculation methods that are used in this work to transform the sampled sequences of the signals into values of the desired quantities is the discrete integration and discrete Fourier transform. By means of discrete integration methods accurate values can be obtained of parameters such as root mean square values of voltage and current, apparent power and the phase angle between sinusoidal voltages and currents.

Fig. 4. Block diagram of software developed for measurement and synchronization.

Analysis functions for all of the fundamental power calculations discussed in this paper can be found in the Electrical Power Measurements (EPM) Palette for LabVIEW that is available online. These common functions include:

- Voltage and Current Phasor Calculation (RMS value pared with phase angle);
- Real Power (Watts);
- Apparent Power (VA);
- Reactive Power (VAR);
- Power Factor and
- Phasor Diagram.

In Fig. 5 is shown part of block diagram in which implementation of these functions can be seen. These functions are polymorphic and in this case the three phase application is selected.

Fig. 5 Block diagram of software for power calculation

To certify the measurements, it has been necessary to calibrate the signal conditioning circuit. The most practical method is to calibrate each transducer in one position only. The calibration procedure yields the use of a calibrated current and voltage directly connected to the virtual system. These voltages and currents are generated by electronic load and measured with 5 ½ digits multimeter HP 3478A. Calibrating coefficient for each voltage and current channel is calculated and implemented in software as is shown in Fig. 6.

Fig. 6 Implementation of calibrating coefficient

III. EXPERIMENTAL RESULTS

The images in Fig.7 and Fig.8 shows the Front Panel of the developed virtual system for power monitoring. To simplify the user interface and to make it more usable, the Front Panel is organized as a collection of pages grouping various subsections of correlated controls and indicators. The first section is DAQ setup section and is devoted to the basic requirements of running the proposed instrument (setting of DAQ gain, choice of the resolution, define input terminal configuration, sample rates, sample mode, sample per channel and so on). This section is designed to be not visible for an ordinary users. The second section (Fig.7) is the page of results where the proposed quality indices are displayed. In the left part RMS values and phasors of voltages and current are placed. Active, Apparent and Reactive Power are indicated in the right part of the page in conjunction with calculated Power Factor and measured Frequency.

😫 Power_Monitoring	g_G.vi	
Ele Edit View Projec	ct Operate Iools Window Help	S CON
	■ The construction of the construction of th	
<		2.:

Fig. 7.The base Front Panel of the virtual system

The third section is devoted to illustrate Phasor Diagram and can be seen in the Fig. 8. This graphical interpretation lets easy test for interaction between phases or between voltage and current. In the right part of the figure the scales of the voltage and current is positioned. For sake of brevity, the description of the other sections, useful to a characterization of power systems are omitted.

Fig. 8.Front panel of Phasor diagram

IV. CONCLUSION

A data acquisition USB Device has been designed, developed, realized and characterized to be used in power quality monitoring activities. The system simultaneously manage six data acquisition channels to allow acquisition on three phases plus neutral lines working at 4000 samples per 50 Hz period. This virtual power quality monitoring system allows analyzing almost all phenomena related to power quality. The monitoring system has been presented with reference to its modular architecture describing the several measurement substations that are based both on commercial and advanced high performance devices. The system is flexible and open to changes and improvements. The USB serial communication makes data acquisition software portable over many platforms, regardless development environment and programming language.

The realized USB Data Acquisition Device reduced the total costs of entire system and it has been proved to be competitive with actual data acquisition boards in terms of costs and performances. Finally it was implemented a calibration process to characterize the system and prove the matching performances with test data.

The developed data acquisition system is being used extensively to provide the students a hands-on laboratory experience related to electrical, electronics, and instrumentation.

ACKNOWLEDGEMENT

This investigation has been carried out in the framework of the research project 102ни199-3.

REFERENCES

[1] Fluke Corporation, Basic power quality methodology and common culprits, Application Note, 2004.

[2] G. Nikolov, P. Yakimov. Virtual Three Phase Power Transducer, ANNUAL JOURNAL OF ELECTRONICS, 2009, ISSN 1313-1842, pp.184 -187, Sofia 2009.

[3] John G. Webster, Electrical measurements, signal processing, and displays, ISBN 0-8493-1733-9, CRC Press LLC, 2004.

[4] R. Pecen, M. D. Salim, A. Zora A LabView Based Instrumentation System for a Wind-Solar Hybrid Power Station, Journal of Industrial Technology, Volume 20, Number 3 - June 2004 through August 2004.

[5] National Instruments. The Fundamentals of FFT-Based Signal Analysis and Measurement in LabVIEW and LabWindows/CVI, Tutorial, 2009.

[6] P. Blume. The LabVIEW Style Book, ISBN 0-13-145835-3, Pearson Education, 2007.

[7] M. Nicola, C. Pirlog, C. Nicola, A. Melinescu, P. Pistol, A. Marinescu, Data acouisition and processing system for smart neasurement of power in HV grids by optoelectronic means, Annals of the University of Craiova, Electrical Engineering series, No34, ISSN 1842-4805, 2010