
Journal of Communication and Computer 13 (2016) 11-18
doi:10.17265/1548-7709/2016.01.002

An Introductory Embedded Systems Teaching Using

Open-Source Hardware and Software Platforms

Peter Yakimov

Department of Electronics, Faculty of Electronic Engineering and Technologies, Technical University of Sofia, Sofia 1000, Bulgaria

Abstract: Embedded systems are used everywhere in human lives. They are in alarm clocks, automobiles, mobile phones, personal
digital assistants, home appliances and etc. The Faculty of Electronic Engineering and Technologies at Technical University of Sofia
decided after many iterations and discussions with the partners companies and employers organizations to accept a new curriculum
for Bachelor degree in Electronics. In order to prepare the students for the challenges of their future job in the new curriculum it was
emphasized on the practice and especially on obtaining skills in embedded systems programming. The laboratory classes in “Practice
on open source platforms programming” are intended to give the students basic knowledge and skills in this field. The open source
hardware and software platforms—Arduino development board and the software IDE, which are globally recognized as tools for
introductory education, are chosen for this purpose. In this paper it is proposed a practical approach for teaching the basics of
embedded systems hardware and software. The stress is on the program control of inputs and outputs to convince the students in the
flexibility and universality of the programmable devices. Also there are introduced the principles of the sensors and their application.
Some examples are presented.

Key words: Embedded systems, open-source platforms, Arduino, education.

1. Introduction

Embedded systems are used everywhere in humans

lives. In recent years, they are becoming increasingly

more important due to their widespread utilization in

every aspect of people’s lives [1]. Learning to design

and program embedded systems is a critical skill that

is necessary for many industry and scientific jobs [2].

At the level of today’s technology consumer, there

appears to be an increasing desire to interface the

technological power-machines to the real physical

world. This desire to connect may have been always

present, but there appears to be more of a push

towards closing the gaps between human and

technology, by leveraging technology in a more

personal, private and autonomous manner, under

control of the user [3]. The Faculty of Electronic

Engineering and Technologies at Technical University

of Sofia accepted a new curriculum for Bachelor

Corresponding author: Peter Yakimov, Dr. Eng., assoc.

prof., research fields: embedded systems in measurement and
control.

degree in Electronics in order to prepare the students

for the challenges of their future job. The curriculum

was created after many iterations and discussions with

the partners companies and employers organisations.

It was intended to give the students theoretical

knowledge about basic electronic circuits and devices

and practical skills for their program control. After

investigating a lot of curricula from many leading

universities it was accepted that the practical training

has to begin in the first semester in order to prepare

the students for the specialized courses in the next

years. For this purpose a brand new course entitled

“Practice on open source platforms programming”

with two hours laboratory work per week was

included in the first semester. As a development

environment was chosen the Arduino platform which

is open-source hardware, designed to make the

process of using electronics in multidisciplinary

projects more accessible. The hardware platform is a

simple open source design for the Arduino board with

an Atmel AVR processor and on-board I/O support.

D
DAVID PUBLISHING

An Introductory Embedded Systems Teaching Using Open-source Hardware and Software Platforms 12

The software consists of a standard programming

language and the boot loader that runs on the board.

Arduino hardware is programmed using a

Wiring-based language (syntax + libraries), similar to

C++ with some simplifications and modifications, and

a Processing-based IDE [4]. Another advantages of

Arduino are that it can run on Windows, Macintosh

and Linux, and the active community of users who

permanently contribute with new code examples for

the enlargement of the educational possibilities [5].

The open source hardware and software platforms —

Arduino development board and the software IDE are

globally recognized as effective tools for introductory

education in embedded systems.

The course has been performed for two academic

years and some considerations about its advantages

can be shared.

2. New Course Development

According to the philosophy of the new curriculum

a major part of the course is based on the usage of

Arduino. The development board OLIMEXINO-328

based on the microcontroller ATmega328P is the

hardware [4]. The aim of the course is to help the

students in understanding the relationship between

computer devices and the surrounding world with

appropriate examples. The experimental work

includes an application software design and

debugging, and measuring the response of controlled

peripheral circuits. Thus, students acquire practical

skills and obtain knowledge about basic electronic

circuits and devices, and the possibilities for their

program control. During the laboratory work

experiments on development boards are carried out.

Initially the given task is analysed and the algorithm is

drawn. Then a program is written and run. Thus the

students individually find possible errors and after

analysis the results conclusions are made and mistakes

are corrected. The topics are directly related to the

field of the next courses.

Except the development board the necessary

equipment is traditional for related to embedded

systems courses and includes a personal computer

with an installed IDE (integrated development

environment), a breadboard, some simple components

as resistors and LEDs, and USB cable.

The on-board user buttons and LEDs are used too

as it is shown in Figs. 1 and 2 [4]. They are enough for

introductory studying of the basic operations for

control of digital inputs and outputs. To use them, the

students have to know preliminary that the digital

input reads logic “0” from the pressed button, and to

light the LED a high level must be set from the digital

output.

To study the operation of the analog inputs and

outputs some additional components are needed. To set

the analog input voltage a potentiometer has to be

connected to the chosen analog input from Analog 0

to Analog 5 (pins from 23 to 28). Digital outputs

with numbers 3, 5, 6, 9, 10 and 11 can be used as analog

Fig. 1 User button with name BUT connected to
ATmega328P pin 32 (digital signal D2).

Fig. 2 Light emitting diodes connected to ATmega328P
pins 17 (LED1—digital signal D13) and 13 (LED2 —digital
signal D9).

An Introductory Embedded Systems Teaching Using Open-source Hardware and Software Platforms 13

outputs because of their ability to set a pseudo analog

voltage using PWM (pulse width modulation). To

observe the response of the analog outputs a digital

multimeter is necessary. Also off-board LEDs are

used for this purpose. This gives the students an

additional knowledge—to understand the analog

operation of the LED and the principle of colours

mixing.

The laboratory set-up is shown in Fig. 3. The

analog inputs A0, A1 and A2 are connected to the

wipers of three potentiometers with 10k value. The

voltages that are derived are set by the reference

voltage of the built-in analog-to-digital converter in

Fig. 3 Analog inputs and outputs connections for
RGB-LED control.

Fig. 4 Analog inputs connections for attachment of a
temperature sensor LM35.

order to be stable and also that the maximal code will

correspond to the maximal value of the input voltage.

Outputs D3, D5 and D6 are connected to the cathodes

of the RGB-LED with common anode organisation.

This laboratory set-up is used for studying the basics

of the analog-to-digital and the digital-to-analog

conversion. Also using the RGB-LED the students

will understand the difference between the digital and

the analog control of the brightness. They will realise

the principle of colours mixing too.

A very important part of the electronics is the

control of sensors. They convert the physical

quantities into electric signals—voltage, current and

etc. Sensors circuits mastering gives the students

useful skills for their future job.

The laboratory set-up is depicted in Fig. 4. It is

intended for temperature measurement using the

sensor LM35. Its transfer characteristic is linear with a

slope of 10 mV/°C.

To simplify the laboratory set-up is used the

specific feature of the sensor—i.e., its very little

current drain—less than 60 A. This allows the sensor

to be supplied from two pins (A0 and A2) determined

as outputs and set logic 1 from A0 and logic 0 from A2.

The output pin of the sensor is connected to the analog

input A1.

3. Experiments

Here will be given some examples from the

laboratory work that represent the practical approach

for introductory teaching in embedded systems

programming. Arduino development board and a

software IDE are used. The goal is that using simple

tasks the students will master the basic statements of

C language which is the most often used language in

the field of embedded systems. Also the students have

to learn the structure of the program and the possible

approaches in the software design. The exercises start

with very easy projects where the result is obvious and

the complexity slightly increases with the progress of

the course. Arduino IDE gives a lot of examples of

An Introductory Embedded Systems Teaching Using Open-source Hardware and Software Platforms 14

code that can be used for preparation and self study.

Learning the examples from the preloaded in the IDE

the students study the basic statements of the

programming language for control of digital inputs

and outputs. After understanding the given

programmes the students have to modify the code in

order to master the knowledge. The next code

examples which will be presented here are designed

by the teaching team and they can be used in the

process of learning.

3.1 Digital Inputs and Outputs Control

The first task is to control the alternative blinking of

the two LEDs on the development boards shown in

Fig. 2. It is intended to study the statements for digital

outputs control. The code is as follows:

int GreenLed = 13;//green LED is connected to D13

int YellowLed = 9;//yellow LED is connected to D9

void setup()

{

pinMode(13, OUTPUT); // D13 is set as output

pinMode(9, OUTPUT); // D9 is set as output

}

void loop()

{

digitalWrite(GreenLed, HIGH); // LED1 is on

digitalWrite(YellowLed, LOW); // LED2 is off

delay(1000); // delay one second

digitalWrite(GreenLed, LOW); // LED1 is off

digitalWrite(YellowLed, HIGH); // LED2 is on

delay(1000); // delay one second

}

The next step in programming is to study the

statements for reading the state of a digital input and

making decisions according to it using the statement

if…else. The following example of code illustrates

this:

int Button = 2; // button is connected to pin D2

int GreenLed = 13;

int YellowLed = 9;

int State = 0; // variable for the read value

void setup() {

pinMode(GreenLed, OUTPUT);

pinMode(YellowLed, OUTPUT);

pinMode(Button, INPUT); // D2 is set as input

}

void loop() {

// read the state of the pushbutton value:

State = digitalRead(Button);

// check if the pushbutton is pressed

// if it is, the State is LOW:

if (State == LOW) {

// turn LED1 on and LED2 off:

digitalWrite(GreenLed, HIGH);

digitalWrite(YellowLed, LOW);

}

else {

// turn LED1 off and LED2 on:

digitalWrite(GreenLed, LOW);

digitalWrite(YellowLed, HIGH);

}

}

3.2 Analog Inputs and Outputs Control

The built-in analog-to-digital converter has 10 bits

resolution. So the code returned after the conversion is

in the range from 0 to 1023. The digital-to-analog

conversion equals effectively to 8 bits resolution.

Then to match their ranges the input value has to be

divided by 4. To control analog inputs and outputs the

students have to learn the proper statements. They are

similar to those used for the digital ones. The

following example contains these statements. The

program reads the value of an analog input A0 and

using this value controls the brightness of a LED

connected to D9 which can be used as an analog

output too.

int YellowLed = 9;

int AnalogInput = 0; // potentiometer attached to A0

int Value; // Analog value

void setup () {} // there is no need of setup

void loop ()

An Introductory Embedded Systems Teaching Using Open-source Hardware and Software Platforms 15

{

// reading the analog value

Value = analogRead (AnalogInput);

// correspondence between input and output ranges

Value /= 4;

//setting analog output value

analogWrite (YellowLed, Value);

}

The above program can be made slightly harder if

the task is to control alternatively the brightness of

two LEDs according to the analog input value set by a

potentiometer. This will be useful for the students to

master the skills for analog inputs and outputs control.

The code example is:

int LED1 = 3; // LED1 connected to A3

int LED2 = 5; // LED2 connected to A5

int AnalogInput = 0; // potentiometer attached to A0

int Value; // Analog value

void setup () {} // there is no need of setup

void loop ()

{

Value = analogRead (AnalogInput);

Value = Value / 4;

analogWrite (LED1, Value); // LED1 control

analogWrite (LED2, 255 - Value); // LED2 control

}

3.3 RGB LED Control

To attract the attention of the students and to give

them an understanding about the modern information

technologies it is useful to show them the basic

principles of colours mixing. For this purpose a RGB

LED can be used as it is shown in Fig. 3. The

organisation of the LED is with common anode. Thus

the needed level to turn on the chosen LED is low.

The three built-in LEDs can be controlled using

digital or analog outputs. The students will recognise

the difference and will understand the two level digital

control and the multilevel analog control. The

following code example illustrates the colours mixing

using digital control.

int RedLed = 3;

int GreenLed = 5;

int BlueLed = 6;

int Button = 2;

int buttonState = 0;

int state = 0;

void setup()

{

pinMode(RedLed, OUTPUT);

pinMode(GreenLed, OUTPUT);

pinMode(BlueLed, OUTPUT);

pinMode(Button, INPUT);

//initially black colour

digitalWrite(RedLed, HIGH);

digitalWrite(GreenLed, HIGH);

digitalWrite(BlueLed, HIGH);

}

void loop()

{

buttonState = digitalRead(Button);

if (buttonState == LOW)

{

if (state == 0)

{

digitalWrite(RedLed, LOW); //red colour

digitalWrite(GreenLed, HIGH);

digitalWrite(BlueLed, HIGH);

state = 1;

}

else if (state == 1)

{

digitalWrite(RedLed, HIGH);

digitalWrite(GreenLed, LOW); //green colour

digitalWrite(BlueLed, HIGH);

state = 2;

}

else if (state == 2)

{

digitalWrite(RedLed, HIGH);

digitalWrite(GreenLed, HIGH);

digitalWrite(BlueLed, LOW); //blue colour

An Introductory Embedded Systems Teaching Using Open-source Hardware and Software Platforms 16

state = 3;

}

else if (state == 3)

{

digitalWrite(RedLed, LOW); //yellow colour

digitalWrite(GreenLed, LOW);

digitalWrite(BlueLed, HIGH);

state = 4;

}

else if (state == 4)

{

digitalWrite(RedLed, LOW); //magenta colour

digitalWrite(GreenLed, HIGH);

digitalWrite(BlueLed, LOW);

state = 5;

}

else if (state == 5)

{

digitalWrite(RedLed, HIGH); //cyan colour

digitalWrite(GreenLed, LOW);

digitalWrite(BlueLed, LOW);

state = 6;

}

else if (state == 6)

{

digitalWrite(RedLed, LOW); //white colour

digitalWrite(GreenLed, LOW);

digitalWrite(BlueLed, LOW);

state = 7;

}

else if (state == 7)

{

digitalWrite(RedLed, HIGH); //black colour

digitalWrite(GreenLed, HIGH);

digitalWrite(BlueLed, HIGH);

state = 0;

}

delay(1000);

}

}

The possible colours are red, green, blue, yellow,

magenta, cyan, white and black. They are changed

after pressing the button connected to D2. The mixing

of the colours is shown in Fig. 5.

To apply analog control for the colours mixing

every LED from the RGB must be controlled with

output voltage that can be set within the range 0-255

levels as it is shown in Fig. 6.

The following code example illustrates the control.

The laboratory set-up is shown in Fig. 3. This program

also shows the possibilities of the serial monitor and

the command Serial.print. It is used to visualize on the

display strings and values. In this case are visualized

the values for the red, green and blue colours and they

can be compared with those from the RGB colour

wheel which is depicted in Fig. 6.

int RedLed = 3;

int GreenLed = 5;

int BlueLed = 6;

Fig. 5 Colours mixing using RGB-LED with digital
control.

Fig. 6 Colours mixing using RGB-LED with analog
control.

An Introductory Embedded Systems Teaching Using Open-source Hardware and Software Platforms 17

int AnalogInput1 = 0;//potentiometer attached to A0

int AnalogInput2 = 1;//potentiometer attached to A1

int AnalogInput3 = 2;//potentiometer attached to A2

int Value1; // Analog value1 for Red colour

int Value2; // Analog value2 for Green colour

int Value3; // Analog value3 for Blue colour

void setup () {

// initialize serial communications at 9600 bps:

Serial.begin(9600);

}

void loop ()

{

Value1 = analogRead (AnalogInput1);

Value1 = Value1 / 4;

Value2 = analogRead (AnalogInput2);

Value2 = Value2 / 4;

Value3 = analogRead (AnalogInput3);

Value3 = Value3 / 4;

analogWrite (RedLed, 255 - Value1);

analogWrite (GreenLed, 255 - Value2);

analogWrite (BlueLed, 255 - Value3);

Serial.print("R = ");

Serial.print(Value1);

Serial.print("\t G = ");

Serial.print(Value2);

Serial.print("\t B = ");

Serial.println(Value3);

delay(1000);

}

3.4 Temperature Measurement

Temperature measurement is one of the most

common performed operations in the applied

electronics. The obtained result is used not only for

visualization but as an input for various control and

signalization systems too. The next code example

shows the sequence of operations in temperature

measurement as follows: reading the code of the

sensor’s voltage from the analog-to-digital converter;

determining the sensor’s voltage in milivolts;

determining the temperature in Celsius degrees;

determining the temperature in Fahrenheit degrees. In

addition it represents the relation between Celsius and

Fahrenheit scales. The results are visualized using the

serial monitor and the information is refreshed every

second. From there can be observed the sensor’s

voltage in milivolts, the temperature in Celsius

degrees and the temperature in Fahrenheit degrees.

const int analogInPin = A1;

// Analog input pin that the sensor is attached to

long analogIn = 0; // digital code

float sensorValue = 0;

// sensor analog output voltage value

float temperatureValue_C = 0;

// temperature value Celsius

float temperatureValue_F = 0;

// temperature value Fahrenheit

void setup() {

// sensor power supply on:

pinMode(A0, OUTPUT);

pinMode(A2, OUTPUT);

digitalWrite(A0, HIGH); // sensor (+5V) on

digitalWrite(A2, LOW); // sensor (GND) on

// initialize serial communications at 9600 bps:

Serial.begin(9600);

}

void loop() {

// reading the code of the sensor’s voltage:

analogIn = analogRead(analogInPin);

// calculates the sensor output voltage in milivolts:

sensorValue = analogIn * 5000 / 1024;

// calculates the temperature:

temperatureValue_C = sensorValue / 10;

temperatureValue_F=temperatureValue_C*9/5+32;

// print the results to the serial monitor:

Serial.print("sensor, mV = ");

Serial.print(sensorValue);

Serial.print("\t temperature, C = ");

Serial.print(temperatureValue_C);

Serial.print("\t temperature, F = ");

Serial.println(temperatureValue_F);

delay(1000);

An Introductory Embedded Systems Teaching Using Open-source Hardware and Software Platforms 18

}

4. Results

After completing the laboratory work dedicated to

programming using Arduino board the students obtain

experience in working with programmable devices.

Basic skills in C programming language are mastered.

The students realise the philosophy of the embedded

systems and their application in all fields of the human

activities and especially in the technical area. Also

they are given knowledge about the most popular

indicator and sensor elements, and basic skills to work

with them. The initial explanation of the principles of

data conversion and colours mixing introduce the

students in the world of the modern information

technologies. After the first approbation it was

considered that most of the students solved the

problems successfully and the tasks were made

harder—sensors control and the related with it

approaches were added.

5. Conclusion

In this paper a part of the course program in

“Practice on open source platforms programming”

from the new curriculum for Bachelor degree in

Electronics at the Technical university of Sofia has

been presented. The course gives the students

theoretical knowledge about embedded systems

programming and practical skills in this field. The

practical approach is useful for the beginners. With

emphasizing on the practice rather than on the

academic theory they accept the material easier. The

open source hardware and software—Arduino

development board and the software IDE are very

useful for the introductory education. They offer

friendly environment for beginners and give them

experience for the further courses.

References

[1] Wong, S., and Cotofana, S. “On Teaching Embedded

Systems Design to Electrical Engineering Students.”

Available:http://www.researchgate.net/publication/22840

8026_.On_Teaching_Embedded_Systems_Design_to_Ele

ctrical Engineering_Students.

[2] http://cse.unl.edu/~carrick/courses/2012/236/236_2012_s

pring_embedded_systems.pdf.

[3] Lamers, M. H., Verbeek, F. J., and Putten, P. W. H. V.

2013. “Tinkering in Scientific Education.” In

Proceedings of 10th International Conference on

Advances in Computer Entertainment Technology (ACE

2013), LNCS 8253, 568-71.

[4] OLIMEX Ltd. 2011. “OLIMEXINO-328 development

board. Users Manual.”

[5] Banzi, М. 2011. Getting Started with Arduino. O’Reilly

Media, Inc., ISBN: 978-1-449-309879.

