Use of MSA (Measurement statistical analysis) for evaluation of measuring systems for quality control of an automatic production line

Valentin Tsenev College of Energy and Electronics TU Sofia Botevgrad, Bulgaria vtsenev@tu-sofia.bg Uliana Georgieva Asenova Faculty of Engineering and Pedagogy TU Sofia Sofia, Bulgaria asenova_uliana_94@abv.bg

Abstract—The MSA (Measurement statistical analysis) method was used to evaluate the measuring systems for quality assessment in the production of connectors (electromechanics) for the automotive industry on an automatic production line. Based on the collected data, an analysis of the capabilities of the measuring system was performed using QSTATLAB. A conclusion was made on the basis of the obtained results with conclusions regarding the admissibility of the process and its improvement.

Keywords— *quality, measurement, control, repeatability and reproducibility*

I. INTRODUCTION

In fast automatic production processes, secure measuring and control modules are used, which must be properly set up and verified. A modern method for evaluation and verification of such modules is MSA [1], which examines the impact of equipment, method, materials, operator and environment [2] and ensures their proper use. Many software products [3, 4] are used for the application of MSA, in which there is a built-in module for MSA assessment. The evaluation parameter is R&R, which is a measure of the repeatability and reproducibility of the measuring system. Based on statistics and correlations, the limits of R&D [5] are determined, at which measuring systems can be used or need to be improved.

The procedure for conducting an MSA includes the following steps:

1) Sampling of controlled objects (volume $n \Rightarrow 10$);

2) Measurement of individual objects by several controllers several times;

3) Processing of the obtained results and determination of the components of the full variation;

4) Comparison of the result with the admissible values and assessment of the measuring system.

The main components of the complete variation of the measuring system are:

- Deviation;
- Repeatability;
- Reproducibility;
- Stability;
- Linearity.

Deviations of these components are caused by various problems - wear standard or error in the standard, worn components of the device, poorly designed device or incorrect application, wrong measuring method or calculation, incorrect calibration of the tool, environmental impact, the tool is used inappropriately or incorrectly by other operators. The obtained data are then suitable for application and development of new processes that need to be tested.

II. EXPERIMENTS

The test product is shown on fig. 1.

Fig.1. g8680x connector

Automatic production is done in several steps:

- Injection molded plastic body;

- Automatic assembly of metal terminals (CuSn6) in the plastic body;

- Automatic 100% product control for functionalitycritical features;

- Automatic packaging in roll packaging (strap with separate slots for each product).

In fig. 2. the automatic production line for conectors assembly with the control stations is shown.

Fig. 2. The studied automatic production line

The critical controlled parameters of the g8680x connector product are rendered on fig. 3.

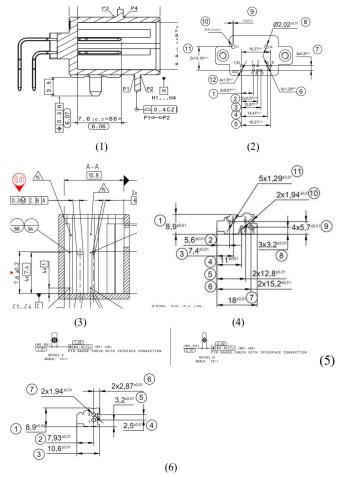


Fig. 3. Critical dimensions

The control stations are:

- 24 V control for missing terminal, short or long terminal on the interface side and distorted terminal interface or PCB side fig.3.(1),(3), (5), (6);
- pattern board distorted terminal on the PCB side fig.3.(2), (5);
- pattern interface distorted output on the interface side fig.3.(3), (4);
- 1000V control for short circuit from inclusions and contaminants using a tester AC/DC Withstand Voltage / IR / GB.

Next is a packaging station, which is also a stamp for a suitable product. Non-compliant products are automatically separated in a special red box.

The control stations work on the principle of using patterns and electrical measurements for the presence or absence of contact and circuit.

III. RESULTS

The results and analysis were made for each type of control using the MSA method by collecting and processing data for analysis of the measuring system. For this purpose, reference samples were used, which were pre-measured to the appropriate dimensions with a precision measuring instrument model CNC Quick Scope QS-250 - Mitutoyo. The results were obtained using the software product QSTATLAB, which has a built-in MSA method.

A. HEIGHT OF THE TERMINALS OF THE INTERFACE

a) The height of the contact terminals is checked by measuring a size of 7.6 ± 0.2 mm, which is shown in fig. 3 (1). The size tolerances are determined according to ISO 2768-m. This defect will result in improper connector assembly during the next manufacturing operation. The required reference standard samples of this station are OK and NOK with different values close to the limit 7.4mm / 7.8mm. Tables 1, 2 and 3 show the measurement of reference samples, with the help of which an R&R analysis is made by qualitative characteristics - check for the presence of short or long leads.

TABLE I.

OK sample						
7.785		0.185				
7.528		-0.072				
7.616		0.016				
7.547		-0.053				
7.54		-0.06				
7.547		-0.053				
7.514		-0.086				
7.487		-0.113				
7.509		-0.091				
	7.785 7.528 7.616 7.547 7.547 7.544 7.547 7.514 7.487	7.785 7.528 7.616 7.547 7.54 7.547 7.547 7.547 7.547 7.547				

TABLE 2.

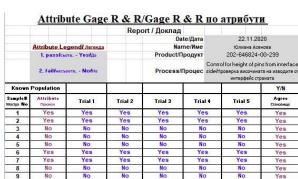

NOK sample – short leads						
Pin1 Int 2	7.601		0.001			
Pin3 Int 2	7.542		-0.058			
Pin1 Int 1	7.506		-0.094			
Pin2 Int 1	7.479		-0.121			
Pin5 Int 1	7.37		-0.23			
Pin6 Int 1	7.427		-0.173			
Pin7 Int 1	7.575		-0.025			
Pin8 Int 1	7.425		-0.175			
Pin9 Int 1	7.435		-0.165			

TABLE 3.

NOK sample – long leads							
Pin1 Int 2	7.773	0.173					
Pin3 Int 2	7.536	-0.064					
Pin1 Int 1	7.613	0.013					
Pin2 Int 1	7.849	0.249					
Pin5 Int 1	7.849	0.249					
Pin6 Int 1	7.853	0.253					
Pin7 Int 1	7.673	0.073					
Pin8 Int 1	7.473	-0.127					
Pin9 Int 1	7.489	-0.111					

The R&R analysis was performed by checking with 20 samples - suitable and unsuitable for the respective indicator. The "Sign" column records the result to be given by the relevant sample during the inspection. The samples are placed at the station five times and a result is reported. The data are a total of 100. The result is shown in Table 4.

TABLE 4.

10	Yes	Yes	Yes	Yes	Yes	Yes	Yes
11	Yes	Yes	Yes	Yes	Yes	Yes	Yes
12	No	No	No	No	No	No	Yes
13	Yes	Yes	Yes	Yes	Yes	Yes	Yes
14	No	No	No	No	No	No	Yes
15	Yes	Yes	Yes	Yes	Yes	Yes	Yes
16	No	No	No	No	No	No	Yes
17	Yes	Yes	Yes	Yes	Yes	Yes	Yes
18	No	No	No	No	No	No	Yes
19	No	No	No	No	No	No	Yes
20	Yes	Yes	Yes	Yes	Yes	Yes	Yes
tation Nº	4 according to	o drawing 6468	245-01/17.09.2	019.	nterface side w ците от интерф		

B. CURVED OUTPUT ON THE SIDE INTERFACE

The curved terminal of the interface side is checked by measuring the size 0 + 0.3 / -0mm, which is shown in fig. 3. (3), (4). Tables 5 and 6 show the measurement of reference samples, with the help of which R&R analysis is performed by qualitative features - check for the presence of curved terminals on the interface site.

	cv.1/Part 1		Ĩ	cv.5/Part 1				
Num pin	Otklonenie po Y #17.02 (±0,2)	Otklonenie po X #13.01 (±0,15)	Number pins	Otklonenie po Y #17.02 (±0.2)	Otklonenie po X #13.01 (±0.15)			
Pin Interfa	0.002	-0.087	Pin 1 Interface 2	0.031	-0.132			
Pin Interfa	0.042	-0.034	Pin 3 Interface 2	-0.005	-0.022			
Num pin	Otklonenie po Y #10.01 (±0.2)	Otklonenie po X #8.07 (±0.15)	Number pins	Otklonenie po Y #10.01 (±0,2)	Otklonenie po X #8.07 (±0,15)			
Pin Interfa	-0.065	-0.167	Pin 1 Interface 1	0.063	0.143			
Pin	0.119	0.057	Pin 7 Interface 1	0.002	0.001			
Numi	Otklonenie po Y #11.05 (±0,275)	Otklonenie po X #8.01 (±0,275)	Number pins	Otklonenie po Y #11.05 (±0,275)	Otklonenie po X #8.01 (±0,275)			
Pin Interfa	-0.233	-0.003	Pin 2 Interface 1	0.280	0.071			
Pin	-0.251	-0.145	Pin 5 Interface 1	-0.070	-0.116			
Pin	-0.331	-0.003	Pin 6 Interface 1	0.054	-0.063			
Pin	0.265	-0.069	Pin 8 Interface 1	-0.012	-0.093			
Pin	0.214	-0.215	Pin 9 Interface 1	-0.024	-0.146			

In fig. 4. NOK and OK samples are shown.

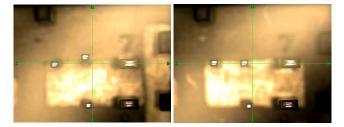


Fig. 4. NOK and OK samples

The test was performed with 20 samples and the result is shown in a table 7.

TABLE 7.

Attribute Gage R & R/Gage R & R по атрибути

			Repo	ort / Доклад				
				Date	е/Дата	22.11.20	20	
	Attribute Le	gendi Легенда		Nam	е/Име	Юлиана Асенова		
1	1. pass	słсьота YesłДa		Product/Пр	одукт	202-646824-	00-299	
2	2 2. fail/weckoers No/H			Process/N		heck pins position fro / Проверка позицията интерфейс с	на изводите о	
Known F	opulation					1	Y/N	
Sample# Mocrpa NO	Attribute Призная	Trial 1	Trial 2	Trial 3	Trial 4	F Trial 5	Agree Становище	
1	No	No	No	No	No	No	Yes	
2	No	No	No	No	No	No	Yes	
3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
4	No	No	No	No	No	No	Yes	
5	No	No	No	No	No	No	Yes	
6	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
7	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
8	No	No	No	No	No	No	Yes	
9	No	No	No	No	No	No	Yes	
10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
11	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
12	No	No	No	No	No	No	Yes	
13	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
14	No	No	No	No	No	No	Yes	
15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
16	No	No	No	No	No	No	Yes	
17	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
18	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
40	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
19	No	No	No	No	No	No th EOL 0200188 - w	Yes	

C. CURVED OUTPUT ON THE PCB SIDE

A curved terminal on the PCB side is checked by measuring a size of 0 + 0.6 / -0mm, which is shown in fig. 3.(2), (5).

Tables 7 and 8 show the measurement of reference samples, with the help of which an R&R analysis is made by qualitative features - check for the presence of curved terminals of the site for the printed circuit board.

TABLE 8

TABLE 9

		cv.2/Part	2				cv.8/Part	1	
Position x 2 0,6 r-r 1.02	Pins Position PCB	Otklonenie po X	Otklonenie po Y	Number pins	Position x 2 0,6 r-r 1.02	Pins Position PCB	Otklonenie po X	Otklonenie po Y	Number pins
0.506	0.253	-0.080	-0.240	Pin 1 Interface 2	0.513	0.257	0.167	-0.195	Pin 1 Interface 2
0.000	0.000			Pin 3 Interface 2	0.197	0.098	0.021	-0.096	Pin 3 Interface 2
0.625	0.313	-0.141	-0.279	Pin 1 Interface 1	0.284	0.142	0.037	-0.137	Pin 1 Interface 1
0.000	0.000			Pin 7 Interface 1	0.327	0.163	0.011	-0.163	Pin 7 Interface 1
Position x 2 0,6 r-r 2.02	Pins Position PCB	Otklonenie po X	Otklonenie po Y	Number pins	Position x 2 0,6 r-r 2.02	Pins Position PCB	Otklonenie po X	Otklonenie po Y	Number
0.397	0.199	0.185	0.072	Pin 2 Interface 1	0.088	0.044	-0.024	-0.037	Pin 2
0.439	0.219	-0.173	0.135	Pin 5 Interface 1	0.273	0.136	-0.117	0.070	Interface 1 Pin 5 Interface 1
0.240	0.120	-0.003	-0.120	Pin 6 Interface 1	0.596	0.298	-0.285	0.087	Pin 6 Interface 1
0.347	0.173	-0.059	0.163	Pin 8 Interface 1	0.282	0.141	-0.126	-0.063	Pin 8 Interface 1
0.425	0.213	-0.182	0.110	Pin 9 Interface 1	0.562	0.281	-0.244	-0.139	Pin 9 Interface 1

The test was performed with 20 samples and the result is shown in a table 10.

TABLE 10.

			Repo	ort / Доклад			
				Da	te/Дата	22.11.20	20
	Attribute Le	gendi Легенда		Na	те/Име	Юлиана Асе	нова
	1. passice	та YesłДа		Ргодист/Продукт 202-646824-00-295			00-299
	2. fail/necsoers No/He			Process/		Check pins position f Проверка позицията страна на пла	на изводите от
Known P	opulation						Y/N
Sample# Mocrpa No	Attribute Признак	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Agree Становище
1	Yes	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	Yes	Yes	Yes
3	No	No	No	No	No	No	Yes
4	No	No	No	No	No	No	Yes
5	No	No	No	No	No	No	Yes
6	Yes	Yes	Yes	Yes	Yes	Yes	Yes
7	Yes	Yes	Yes	Yes	Yes	Yes	Yes
8	No	No	No	No	No	No	Yes
9	No	No	No	No	No	No	Yes
10	Yes	Yes	Yes	Yes	Yes	Yes	Yes
11	Yes	Yes	Yes	Yes	Yes	Yes	Yes
12	No	No	No	No	No	No	Yes
13	Yes	Yes	Yes	Yes	Yes	Yes	Yes
14	No	No	No	No	No	No	Yes
15	Yes	Yes	Yes	Yes	Yes	Yes	Yes
16	No	No	No	No	No	No	Yes
17	Yes	Yes	Yes	Yes	Yes	Yes	Yes
18	No	No	No	No	No	No	Yes
19	No	No	No	No	No	No	Yes
20	Yes	Yes	Yes	Yes	Yes	Yes	Yes

D. 1000 V LEAK TEST

The inspection was performed with 20 samples, which are shown on fig. 5.

Fig. 5. Leak check samples at 1000 V

Table 11. shows R&R analysis by qualitative characteristics - high voltage test - 1000V.

TABLE 11.

			Repo	ort / Доклад			
					Дата	23.11.20	20
	Attribute Leg	endl Легенда		Name	Име	Юлиана Ас	енова
	1. passicions YesiДa			Product/Про	одукт	202-646824-	00-299
	2. fail/neco	ora NofHe		Process/Пр	оцес	Short circuit cintrol vi Тест високо напрежи	
Known F	opulation				-		Y/N
Sample# Mocrpa No	Attribute Признак	Trial 1	Trial 2	Trial 3	Trial	4 Trial 5	Agree Становищ
1	No	No	No	No	No	No	Yes
2	No	No	No	No	No	No	Yes
3	Yes	Yes	Yes	Yes	Yes	Yes	Yes
4	No	No	No	No	No	No	Yes
5	No	No	No	No	No	No	Yes
6	Yes	Yes	Yes	Yes	Yes	Yes	Yes
7	Yes	Yes	Yes	Yes	Yes	Yes	Yes
8	No	No	No	No	No	No	Yes
9	No	No	No	No	No	No	Yes
10	Yes	Yes	Yes	Yes	Yes	Yes	Yes
11	Yes	Yes	Yes	Yes	Yes	Yes	Yes
12	No	No	No	No	No	No	Yes
13	Yes	Yes	Yes	Yes	Yes	Yes	Yes
14	No	No	No	No	No	No	Yes
15	Yes	Yes	Yes	Yes	Yes	Yes	Yes
16	No	No	No	No	No	No	Yes
17	Yes	Yes	Yes	Yes	Yes		Yes
18	Yes	Yes	Yes	Yes	Yes	17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Yes
19	Yes	Yes	Yes	Yes	Yes	and the second second	Yes
20	No	No	No	No	No	No	Yes

IV. CONCLUSION

After many measurements and analysis of the obtained results, we can assume that the described method is a necessary tool for validation, as well as a method for localization and proof of incorrect control.

In the course of the research work, many improvements were made on the basis of the statistical information obtained and analyzed from the experiments. By correlation, the control parameters were set with optimal limits, which allowed real-time control of the product and a significant reduction in re-testing.

By preparing FMEA (risk analysis) can be organized predictive maintenance of samples, which will significantly reduce the risk of using worn-out samples and will improve their functionality, will increase their reliability.

The tested procedure and equipment can also be used for measurements of samples from experimental production and processes.

ACKNOWLEDGMENT

The authors is grateful to MIKROAK Ltd for the resources they have provided in conducting the experimental work.

The authors would like to thank the Research and Development Sector at the Technical University of Sofia for the financial support.

References

- [1] MSA, Fourth edition, 2010.
- [2] Measurement System Variability Cause and Effect Diagram, MSA, Fourth edition,pp.17.
- [3] Minitab 17, 2016.
- [4] QSTATLAB 6, 2012.
- [5] MIKROAK MSA instruction, 2020.