
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Towards a common platform simulator for

European armored combat vehicles using a modular

software architecture

Abstract—In this paper we present a novel approach for

building a common software platform for simulating armored

combat vehicles. We use Unreal Engine 4 as our simulation

software. The presented approach is an attempt towards

integrating different combat vehicle modules into a simulated

environment. The presented simulator architecture can be

used in various training combat scenarios, such as

reconnaissance, coordinated firing on targets, different

cooperation scenarios, etc.

Keywords—training simulator, game engines, armored

vehicles, serious games

I. INTRODUCTION

Training simulators are a vital part of modern warfare.
They are an effective means for preparing young cadets for
the realities of the battlefield. The virtual experience those
simulators provide are comparable to those of the real world.
Training simulators are a part of a larger family, called
serious games. Those games are intended and focused
primarily on education and skill building rather than
entertainment [1]. The military are the first institutions to
adopt the strategy for preparing their soldiers using simulated
experiences [2], [3]. There are good reasons for using
simulators for military training: they save human life and
reduce training costs. Teaching young soldiers on mocked-up
models of military machines – airplanes, battle tanks,
armored vehicles, etc., is safer than the alternative - to let
them deal with the real equipment on their first day. As we
well know, flying simulators are a mandatory step in all
cadet training programs. That virtual experience will later on
make the future pilot more confident and less stressed when
entering and piloting the real airplane. In addition, there are
several scenarios that are impossible or very dangerous to be
performed in a real airplane or helicopters, such as engine
failures, being shot at, autorotation emergency landings,
landing on a frozen surface, etc.

 The other advantage of using simulators is that their

production and maintenance costs are far less than those of

their real-world counterparts. For instance, the production,

operational and maintenance costs of a fighter jet are far

greater [4] than those for a simulator [5]. That statement

holds true for armored ground vehicles – such as main battle

tanks (MBT) and light-armored vehicles (LAV). There are

currently efforts to research and create a common European

vehicle combat platform (Figure 1), as part of the PESCO

(Permanent Structured Cooperation) project [6] of the

European Council. The PESCO project will “assure the

combat vehicles would be based on a common platform and

would support fast deployment maneuver, reconnaissance,

combat support, logistics support, command and control,

and medical support”. There are additional initiatives in that

direction, particularly the European Defence Industrial

Development Programme (EDIDP) by the European

Defense Agency (EDA). The common platform will

strengthen the Common Security and Defence Policy

(CSPD) ensuring, at the same time, the interoperability

among European armies. The same statement holds true for

the simulators of this common vehicle platform – a vital and

important part of this endeavor.

Figure 1: A concept main ground combat system. [7]

In this paper we propose an approach for building the
software counter-part of the common vehicle platform. We
will present and discuss an approach that uses novel
distributed software architecture for building serious games
[8]. That architecture allows us to use separate modules to
represent different functional units. We discuss the essential
in our opinion modules that need to be developed and
integrated in such a simulation platform. We also choose and
motivate the use of game engines as an effective means for
such development.

II. PREVIOUS WORK

There are numerous examples of using simulators for

combat training and study scenarios. One of the first combat

training serious games for the US military is America’s

Army [9] and was used for recruiting soldiers for the US

army. Another such example is the simulator TC3Sim [10].

In it, soldiers are trained how to provide emergency aid on

the battlefield while under fire. This simulator trains

physical skills, as well as psychological response in the

cadets. The game is developed with the help of the game

engine Unity 3D and is available to play via a web browser.

Other work in this field focuses on feasibility studies of

possible real-world scenarios and the evaluation of new

machinery. For instance, McHugh et al. studied the

feasibility of slowing aerial descent of the M1 by utilizing

the energy impulse, generated by its main cannon [11]. This

is an important study, since the conditions described in the

paper are hard to set-up in the real world. Other scientists

focus on studying the effects and projectile paths of shells.

Such an example is the work of Magier and Merda [12] who

explore how the projectile velocities of battle tank and

mortar shells change with regards to air drag. For their

study, the researchers use numerical simulations with a

custom-built analytics software in order to create a

computational fluid dynamics mathematical model. Their

findings help test and evaluate the projectile characteristics

of newly developed mortar rounds. This study saves

production resources and time for building real-world

models and performing the experiments and measurements.

Other authors have shown how to easily build an M1A2

main battle tank simulator while keeping the development

costs low [13]. Their research helps evaluate external

projectile ballistics and generate various scenarios for

troop’s exercises.

But why is the use game engines so widely spread among

scientists and what are the benefits for the development and

simulation process? First, game engines provide an easy to

use framework that already has built-in, simulation-ready

subsystems, such as physics engine, sound engine, artificial

intelligence, 3D model interaction and visualization. One

such example of using physics model and Unreal Engine 4

is the work of [14], who simulate the movement of

underwater cables, attached to remotely operated vehicles.

The benefits in this case are the out-of-the-box physics

simulation model of the cable that would otherwise take a

considerable amount of time to be implemented and

visualized. Another example for using game engines is the

game America’s Army [9], which also employs Unreal

Engine as its physics and rendering environment. On the

other hand, SanTrain [15] and TC3Sim [10] both use Unity

3D – another popular game engine these days. There are,

however, still scientists who prefer to build custom

simulation solutions for their research.

III. SIMULATOR REQUIREMENTS AND SCENARIOS

Our approach includes the following phases. First, we
describe an overview of the whole software platform and
analyze the specific system requirements. After that, we
choose a software architecture that will best fit those
requirements. Then, we describe the selected modules that
will be created – weapon systems, drivetrain / hull, turret
station, sensors, etc. Then we describe each module
individually and how it would be integrated into the whole
system simulator.

Let’s start by explaining what a common base vehicle
platform is. When there is a joint cross-country military
operation, each country provides its own military equipment.
In the case of armored ground forces, Germany will
participate with the Leopard 2 – its main battle tank, while
France will deploy its Leclerc. Other countries, such as those
from Eastern Europe, will deploy old Russian tanks, mainly
T-72 models (Czech Republic, Bulgaria, Hungary, Poland)
or T-55 (Romania). Other European countries have only
light-armored vehicles (Estonia - Infantry fighting vehicles,
IFVs, Lithuania – Armored fighting vehicles, AFVs). This
diversity of combat vehicles creates several problems,
mainly due to logistics and maintenance. Instead of
supporting only one type of platform, the military command
has to spread its resources to support all those types of
platforms and vehicles, each moving with its own propellant.
The same statement goes true for the training and combat
readiness of troops. It is far more cost effective to build and
support one common type of vehicle simulator and load it
with specific task modules than a large variety of software
training systems. An additional advantage is the

interoperability – cadets that trained on a common vehicle
platform simulator in one country can easily train to operate
other vehicles from the joint task force. For such a training
system to be built the requirements need to be defined. One
of those is using the same technology. It makes sense to use
the same software and one way to achieve it is by using
game engines. Game engines, such as Unity 3D or Unreal
Engine 4 have the added benefit that can be compiled for
different operating systems, without re-writing the source
code. If one army has the policy to use Windows OS, and
another – to use a Linux distribution (Debian or Cent OS, for
instance), the simulation software can be compiled for all
those platforms, without added development costs.

Since the common European vehicle platform is still in
development, we cannot directly describe the necessary
requirements. However, a company - General Dynamics has
a working vehicle platform called ASCOD (Figure 2) that is
developed specifically for the European market [16]. The
modular design architecture offers adaptability and
scalability and is remarkably cost-efficient for maintenance.
It is a one platform for all combat roles, which is the
intention of the common European vehicle platform, as
defined by PESCO. That is why we will use the ASCOD
platform to analyze the requirements towards designing a
common vehicle platform simulator for training.

Figure 2: The ASCOD vehicle platform, loaded into a scene in Unreal
Engine 4. With the press of a button, the platform changes configuration,
transforming its role from a troop transport into a battle tank.

Reading through the PESCO project description and
studying the already developed ASCOD, we can identify the
following roles, required to be performed by the common
vehicle platform:

• IFV – infantry vehicles

• RECCE – reconnaissance, military scouting

• APC – armored personnel carrier

• Repair and recovery

• Bridge layer scenarios

• Mortar operations

• Artillery

In order to fulfill all those roles and scenarios, the
common platform should support the mounting of some
modules. The modules themselves can be developed as 3D

models with embedded functionalities, as suggested by the
R.A.G.E. [17] initiative, which can facilitate further the
interoperability between member countries.

Analyzing the above requirements, we can define the
following main system modules: base platform or hull;
weapon systems; accessories; game manager. Another
requirement is to easily change vehicle role. That
requirement can be integrated into the management module.
An example of this functionality is illustrated in Figure 2.

A. Base platform

We cannot have a common vehicle platform without a
standard base, also known as a hull. This is the part of the
vehicle that holds the soldiers, the ammunition, where the
driver is located and to which the drivetrain and other
accessories are attached. There are two types of most widely
used drivetrains – tracked and wheeled. The corresponding
module needs to be designed in such a way, as to except both
drivetrain configurations. In this paper we consider the
tracked drivetrain however, a similar analysis can be
performed on the wheeled one.

In addition, the driving and physical simulation
components of those platforms need to be an integral part of
the 3D asset. In Figure 2 we can see an example of such a
component and its integration onto the game engine (Unreal
4).

B. Weapon systems

The offensive capabilities of a combat vehicle are
essential for its effectiveness in battle. The same holds true
for simulating those weapon systems. The match between the
real-world and the virtual experience and way of operation
should be so similar that even in some scenarios are required
to be indistinguishable. [5]. The reason for that is
experiences in a simulated virtual environment can be as
vivid and effective as the real ones. However, such systems
should have a response time of 6 to 20 milliseconds [18].
That makes designing such virtual systems a challenge by
itself.

It is important to note that weapon systems are not
required in all scenarios. For instance, in a search and rescue
scenario the movability and vehicle speed take priority. For
those scenarios that do require the mounting of a weapon
system, there are several options available [6], [16]:

• RWS – remote weapon systems

• Small caliber RCWS: remote controlled weapons
station

• Direct fire – large caliber artillery

• A rotating turret station

• Several multi-caliber machine guns

• Loading and firing the appropriate ammunitions

The above mentioned weapon systems can be represented
as sub-modules, each packed with its own functionality.
Again, it should be possible to easily change and swap
weapon systems per training scenario.

C. Accessories

Building a common vehicle platform simulator will
require several accessories or add-ons to be included into the
simulator design. Those can be: defensive vehicle

capabilities, such as smoke grenade launchers; thermal
vision, night vision, radar, dozer blade, AVLB (armored
vehicle-launched bridge), modular armor, etc. Those add-ons
can be installed, removed, turned off and on depending on
the combat scenario and current configuration role that is
being simulated. For instance, in a bridge layer scenario, the
AVLB will be turned on. Or, if the scenario requires a land
mines clearance, then a dozer blade add-on will be turned on.
Another possible use of the sub-modules is loading different
parts of the modular armor and observing how the added
weight reflects the change in maneuverability and stress on
the suspension. Experimenting with different loadouts and
configurations in-game can reduce actual configuration times
in the hangar. In addition, the optimal configuration strategy
per training scenario can easily be tested in the simulator.

D. Game manager

It is a common practice that training simulators include a
game manager. The game manager module is responsible for
defining and loading different training scenarios, starting,
recording and re-playing training sessions. Usually, there is
one person in charge of the game manager that directs the
simulation, sets goals and evaluates performance. That
person is the tutor, also known as instructor. Typical for such
simulators, training sessions should be recorded and replayed
for performance analysis, hence the need of a training
session sub-module. In addition, the tutor should be able to
initiate a new simulation or live replay from a certain point
of already played scenario. That level of re-play is achieved
by actively recording every input action and decision of
every player at every game update. Examples of such are role
exist in several commercially available military simulators
[19], [20].

IV. A MODULAR SOFTWARE ARCHITECTURE FOR SERIOUS

GAMES

Analyzing the requirements, we can summarize, that the
proposed software simulator should consist of several
modules, such as the ones presented in the previous section.
That fact points us to use a modular architecture to build our
simulator. The architecture that we consider for our
prototype is called DiAS [8]. A quick overview is presented
in Figure 3.

Figure 3: DiAS – a distributed modular software architecture for creating
serious games and simulators.

The architecture is independent of its input controls,
which allows us to use various input devices – such as
commercial-off-the-shelf (COTS) H.O.T.A.S. (Figure 4), or
some custom controller. The latter can be a pure hardware
controller, such as the one described in Figure 4 (left). Or it
can be one that uses a natural user interface [21] for

recognizing natural human gestures and translating them into
movement and fire controls.

Figure 4: Different controller options: Hands on throttle and stick
(H.O.T.A.S.) controller (top right); Custom controller, created for the M1A2
Abrams tank simulator (top left); Gesture NUI controller (bottom)

That diversity is possible since DiAS supports various
input interfaces. On the other hand, that architecture allows
convenient replacement of output devices. A desktop game
can quickly be transformed into a VR game. An additional
benefit of using DiAS is that the architecture allows loading
of resources via a computer network. Furthermore, the
architectural approach is compatible with modern game
engines. That will facilitate the effortless cross-compilation
of the simulator code to various operating systems (Linux,
Windows, macOS) without further overhead. The DiAS is a
modular and distributed architecture, which means that
different software components can be situated in different
locations. For instance, the gunner battle station can run on
one computer, the commander’s station – on another.
Communication is achieved in real time via a local area
network. There are simulators which employ a similar
concept, mainly VBS4 [19].

DiAS also supports dynamic loading of resources that
makes it suitable for loading various modules on demand.
The modules can be organized in different packages. That
approach decouples the core simulation and input logic from
the level (training scenarios) and module logic. Once the
simulator is compiled and deployed, new modules can be
added and old modules can be updated without the need to
re-compile the simulator core. A proposed system design is
presented in Figure 5.

Figure 5: Common vehicle platform simulator design proposal.

As we can see, the proposed system design puts the game
manager module in charge of the simulation process. The
game manager, being directly controlled by an instructor, is
responsible for loading different vehicle modules – the main
hull, weapon systems, and accessories. In addition, at the
start of each training scenario, it creates a new instance of a

session manager - a sub-module, that records and monitors
players’ inputs and can instantly replay the simulation from
any given point of the training exercise. As we mentioned in
section III that is achieved by constantly writing the game
world state, the players’ input commands and the current
timestamp to a database. For optimization purposes, the write
operation does not need to be performed at each game
update. Our empirical trials show that writing the game state
once per second is sufficient.

In our proposed architecture, each module may contain
various sub-modules which can be loaded dynamically into
the simulation during runtime. That reconfiguration of
modules allows for rapid prototyping and changing of the
training conditions on the fly. For instance, the instructor in
charge of the game manager will have the power to swap a
battle tank turret with a RCWS to train remote-controlled
operations. That action is dictated by the fact that in recent
years more effort is spent to promote the use of self-
propelled and autonomous vehicles [6].

V. CONCLUSION

In this paper we have presented a possible approach to
designing and implementing a common software architecture
for European ground combat vehicles simulators. The
proposed approach could be useful for future studies in this
area, since EDA is moving steadily and surely in this
direction. We have shown that using game engines is a major
trend when it comes to building military training simulators.
The required scenarios and operational roles for the common
European vehicle platform can be summarized and achieved
by employing a distributed and modular approach, such as
DiAS. Last but not the least, we have discussed possible
ways of communication between the different software
modules and their interoperability on various operating
systems and hardware.

ACKNOWLEDGMENT

This research is partially funded by the “Symbiosis
between mathematics and computer science” initiative by the
Faculty of Mathematics and Informatics of the Plovdiv
University. The authors would like to thank the Research and
Development Sector at the Technical University of Sofia for
the financial support.

REFERENCES

[1] M. Zyda, A. Mayberry, J. Mccree, and M. Davis, “From viz-sim to vr
to games: how we built a hit game-based simulation,” Organizational
Simulation Rouse/ Organizational, pp. 553–590, 2005.

[2] J. F. Dunnigan, “The complete wargames handbook: how to play,
design, and find them,” Subsequent edition, December 1, 1992, ISBN:
978-0688103682

[3] P. P. Perla, “The art of wargaming: a guide for professionals and
hobbyists,” US Naval Institute Press, March 16, 1990, ISBN: 978-
0870210501

[4] https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104505/f-
16-fighting-falcon, retrieved 01.02.2021.

[5] “Airline pilots fly anywhere in the world – without leaving the
ground”. Popular Mechanics. Hearst Magazines, p. 87, September
1954.

[6] L. Brozic, “PESCO – More security for Europe, contemporary
military challenges,” pp. 9-11, 2018,
10.33179/BSV.99.SVI.11.CMC.20.3.00.

[7] Rheinmetall group annual report,
https://ir.rheinmetall.com/download/companies/rheinmetall/Annual%
20Reports/DE0007030009-JA-2018-EQ-E-00.pdf , retreived on
09.02.2021.

https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104505/f-16-fighting-falcon
https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104505/f-16-fighting-falcon
https://ir.rheinmetall.com/download/companies/rheinmetall/Annual%20Reports/DE0007030009-JA-2018-EQ-E-00.pdf
https://ir.rheinmetall.com/download/companies/rheinmetall/Annual%20Reports/DE0007030009-JA-2018-EQ-E-00.pdf

[8] S. Stavrev, T. Terzieva, and A. Golev, “Concepts for distributed input
independent architecture for serious games,” CBU International
Conference Proceedings: Innovations in Science and Education,
Prague, Czech Republic, September 2018.

[9] America's Army. Available at: http://www.americasarmy.com,
retrieved: 01.02.2021.

[10] T.S. Hussain and S.L. Coleman, “Design and development of training
games,” Cambridge: Cambridge University Press, pp.1-5, 2014.

[11] M. McHugh, A. West, J. Blake, and R. Hall, “Using high velocity
rounds to slow aerial descent,” Journal of Physics Special Topics,
October 2011.

[12] M. Magier and T. Merda, “Comparison analysis of drag coefficients
for supersonic mortar projectiles”, Problemy Techniki Uzbrojenia,
vol. 140(4), pp 21-28, 2017.

[13] S. Stavrev and D. Ginchev, “A low-cost battle tank simulator using
Unreal Engine 4 and open-hardware microcontrollers,” IEEE Xplore,
Proc. XXIX International Scientific Conference Electronics -
ET2020, September 16 - 18, 2020.

[14] O. Ganoni, R. Mukundan, and R. Green, “Visually realistic graphical
simulation of underwater cable,” 26th International Conference in
Central Europe on Computer Graphics, Visualization and Computer

Vision (WSCG 2018), Plzen, Czech Republic, 28 May - 1 June, 2018,
ISSN: 1213-6972

[15] A. Dobrovsky, U.M. Borghoff, and M. Hofmann, “Applying and
augmenting deep reinforcement learning in serious games through
interaction,” Periodica Polytechnica Electrical Engineering and
Computer Science, 61(2), p.198, 2017.

[16] https://www.gdels.com/ascod.php, retrieved: 01.02.2021.

[17] W. Der Vegt, W. Westera, E. Nyamsuren, A. Georgiev, and I.M.
Ortiz, “RAGE architecture for reusable serious gaming technology
components,” International Journal of Computer Games Technology,
vol 2016, Article ID 5680526, 10 pages, 2016.

[18] S. Kudrle, M. Proulx, P. Carrieres, M. Lopez, “Fingerprinting for
solving a/v synchronization issues within broadcast environments,”
SMPTE Motion Imaging Journal. Vol 120 (5), pp. 36–46, July 2011.

[19] VBS4, Available at: https://vbs4.com/, retrieved: 01.02.2021.

[20] https://www.kongsberg.com/digital/products/maritime-simulation,
retrieved: 01.02.2021.

[21] S. Stavrev, “Natural user interface for education in virtual
environments,” REPLAY, Polish Journal of Game Studies 03, pp.67-
80, 2016.

http://www.americasarmy.com/
https://www.gdels.com/ascod.php
https://vbs4.com/
https://www.kongsberg.com/digital/products/maritime-simulation

