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Abstract — The main purpose of this paper is to propose an 

improved memristor-based synaptic scheme, containing a re-

sistor-memristor current divider and a differential amplifier 

with Metal Oxide Semiconductor (MOS) transistors. The 

memristor is made of tantalum oxide, doped by oxygen vacan-

cies. The synaptic circuit contains only one memristor and 

produces positive, zero and negative weights. The applied tan-

talum oxide memristor model is based on the classical Hewlett-

Packard model with several modifications and simplifications. 

Owing to the applied optimizations, the considered memristor 

model is faster than the corresponding original model. The 

synaptic weights of the considered memristor scheme, applied 

in a neural network are adjusted by voltage pulses and its op-

eration is analyzed in LTSPICE environment. 

Keywords — tantalum oxide memristor, simplified memristor 

model, memristor-based synapse, differential amplifier 

I. INTRODUCTION 

In the last 10 years the memristor element predicted by 
Chua [1] and first realized in the Hewlett-Packard research 
labs by Williams [2] is an object of intensive investigations 
[3], [4], [5], [6]. It is a two-terminal element, which conduct-
ance depends on the time integral of the voltage [2], [6]. It 
has a memory effect – retaining the value of its conductance 
after switching the sources off [1], [2], [7]. The observed 
resistance switching effect is related to the change of 
memristor’s state owing to an applied external voltage signal 
[3]. Due to their useful properties, as switching and memory 
effect, the memristors could be applied in many electronic 
schemes and devices of different kind – nonvolatile memo-
ries [7], reconfigurable devices [8], neural networks [9], [10] 
and others [4], [6]. The memristors are mainly based on tran-
sition metal oxides, as TiO2 [2], [3], HfO2 [3] and Ta2O5 [5], 
[11]. In the recent several years the tantalum oxide is under 
intensive investigations as a perspective material for creating 
memristors owing to its stable switching properties [5], [11]. 
For simulation of memristor schemes appropriate models 
must be available [11]. Several enhancements of the original 
Ta2O5 memristor model [11] are made [12], [13], [14], [15]. 

According to the application of memristors in synaptic 
schemes, minimization of the number of the used memristors 
per synapse and realization of positive, zero and negative 
weights are very important tasks [9], [10], [16]. Several basic 
realizations of memristor synapses exist in the scientific 
literature [10], [16], [17], [18], [19]. The partial absence of 
simplified memristor synapses with minimal number of 
memristors and capable to realize positive, zero and negative 
weights is the main motivation for the paper. The improved 
memristor model [15] is applied for analysis of a neural net-
work with memristor synapses. Paper [19] presents a unified 
and LTSPICE memristor models’ library which is freely 
available at https://github.com/mladenovvaleri/Advanced-
Memristor-Modeling-in-LTSpise [19]. The applied memris-
tor model is available in the considered library [19].  

The proposed synaptic device [19] contains a memristor, 
a resistor and a differential amplifier with Metal Oxide Sem-

iconductor (MOS) transistors. It is applied and successfully 
tested in a simple neural network [20] for estimation of sev-
eral risk factors affecting the COVID-19 illness [21], [22] for 
potential patients, and the results are presented in [20]. The 
considered synapse realizes positive, zero and negative 
weights with a memristor per synapse. The applied differen-
tial amplifier ensures scaling of the synaptic weights. 

The rest of the paper is organized as follows. Section 2 
briefly represents the basic tantalum oxide memristor mod-
els, the applied in the work modified model and its LTSPICE 
equivalent schematic. In Section 3 the considered memristor-
based synapse and its LTSPICE realization are presented. 
The tuning of the weights of the considered memristor-based 
neural synapse and its application in a neural network are 
discussed in Section 4. The conclusion is shown in Section 5. 

II. BACKGROUND OF Ta2O5 MEMRISTOR MODELS, THE 

CONSIDERED MODEL AND ITS LTSPICE REALIZATION 

Brief information about the main existing Ta2O5 memris-
tor models [11], [12], [13] and the applied modified model 
[15], [19] is first given for better understanding and com-
pleteness of the presentation. The Ta2O5 memristor contains 
two terminals – top electrode and bottom electrode, respec-
tively [11]. Several parallel-oriented conducting channels 
exist in its nanostructure [11], [12]. The peripheral region is 
made of stochiometric Ta2O5. The central channel is based 
on a solid solution of oxygen atoms in tantalum. An addi-
tional channel of doped tantalum oxide is formed between 
these two regions [11]. The state variable x is expressed as a 
ratio between the area of the conducting region and those of 
the entire memristor’s intersection [11]. 

A. The Standard Hewlett Packard Memristor Model [11] 

 The maximal memductance is denoted by Gmax and has a 
value of 0.025 S [11]. The conductance of the doped region 
is described by the Frenkel–Poole relationship [8], [9], [10], 
[11]. According to the standard Hewlett-Packard model for 
tantalum oxide memristors [11], the i-v relation is: 

 ( ) ( ) maxexp 1 =  =    − +  
  eqi G v a b v x G x v          (1) 

where a and b are fitting coefficients, Geq is the equivalent 
conductance. The state equation of the memristor is [11]: 
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where B, A, σOFF, σON, σP, β, xON, and xOFF are coefficients for 
adjustment of the model [11]. The included in equation (2) 
Heaviside step function stp(.) is [11], [12], [13]: 
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 The classical memristor model [11] is completely de-
scribed by (1) and (2). It has a good precision and properly 
describes the behavior of Ta2O5 memristors in electronic 
schemes and devices [11], [12]. Its main drawbacks accord-
ing to SPICE realization are the inclusions of non-smooth 
step function and a non-differentiable modulus function [11]. 

B. Improvements of HP Ta2O5 Memristor Model [12], [13] 

 The basic improvement in [12] is the replacement of the 
modulus expression and the Heaviside function by their 
smooth analogues [12]. The step-like smooth function used 
in the enhanced memristor models [12], [13] is: 
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where k is a coefficient with a negative value of -100 [9]. An 
alternative of the non-differential modulus expression used in 
[11] is the following modulus-like function [12], [13]: 
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where ρ is a fitting coefficient with a suitable value of 1000 
[12], [13]. The main improvement in these models is the lack 
of convergence problems [12], [13]. A disadvantage of these 
modified models is their comparatively high complexity. 

C. A discussion on the applied Ta2O5 memristor model [15] 

 The applied modified model contains several main re-
placements [15], [19]. The Heaviside function stp(v) in (2) is 
substituted by a smooth step-like alternative s(v) [15], [23]: 
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where m = 0.001 is a coefficient for fitting the steepness of 
the function in the region of switching [23]. The following 
term F(v)=a.exp(b.sqrt(|v|)) in (1) is approximated by a low-
order polynomial in MATLAB environment [24]: 
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where h1, h2 and h3 are fitting parameters [15]. A simple 
smooth window function f(x,i) dependent on the state varia-
ble x and on the current i is applied. It is founded on the Bi-
olek window [25] and on the logistic function (6) [15], [23]: 

   ( ) ( ) 2, 1winf x i s i x= − − −          (8) 

 The state equation of the memristor is [15], [19]: 
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where k1 and k2 are tuning parameters. The current-voltage 
relationship of the Ta2O5 memristor element is [15], [19]: 
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where the parameters for adjustment are: h1 = 9.897.10-5; h2 
= 0.0006531; h3 = 2.88.10-5 [15], [19]. The applied model is 
fully described by (9) and (10) [15]. 

D. Tuning the applied memristor model [15], [19] 

The modified model applied in the paper and described 
by (9) and (10) has several parameters for adjustment [15]. It 
is tuned according to experimental i-v characteristics by 
change the parameters till approaching a minimum of the 
RMS error [15, 17]. A procedure for extraction of the param-
eters is realized in MATLAB [24], [26], [27]. The derived 
model’s coefficients are: k1 = 0.0002359, k2 = 0.0002121; h1= 
9.897.10-5, h2 = 0.0006531, h3 = 2.88.10-5, A = 1.05•10-10, B = 
0.98.10-4, σp = 3.7•10-5, σoff = 1.9•10-2, σon = 4.5•10-1, Gmax = 
2.51•10-2, xoff = 0.41, xon = 6•10-2, a = 7.2•10-6, β = 523, b = 
4.7, x0 = 0.105, p = 5, m = 0.0001. Due to the simplifications 
in [15] its functioning is faster than the existing models. 

E. LTSPICE schematic of the improved memristor model 

 LTSPICE [17] model of the considered memristor is 
created in accordance with the improved mathematical mod-
el (9) and (10). For realization of the respective mathematical 
operations, the standard functions in LTSPICE are used [19], 
[24], [25]. The equivalent schematic of the considered model 
is presented in Fig. 1 for clarification of its operation. The 
state variable x is expressed as a voltage drop across the 
capacitor C1, which current is proportional to the time de-
rivative of x. The memristor current is expressed by G1 [15]. 

 

Fig. 1 An equivalent LTSPICE schematic of the considered model 

 The obtained LTSPICE memristor model is successfully 
analyzed for several sinusoidal voltage signals with different 
frequencies and amplitudes. The derived current-voltage 
relationships are presented in Fig. 2 to illustrate the correct 
functioning of the applied memristor model. Its proper opera-
tion is confirmed by the observed shrinking of the pinched i-
v hysteresis loop with increasing the frequency of the volt-
age. The considered model is also analyzed for pulse voltage 
signals and convergence problems are not observed. 

 

Fig. 2 Current-voltage relations of the memristor model for sinusoidal sig-
nals with different frequencies (5 Hz, 5 kHz, 5 MHz) and amplitude of 0.5 V 



III. THE MEMRISTOR-BASED SYNAPTIC CIRCUIT AND ITS 

LTSPICE REALIZATION 

The proposed synaptic scheme is presented in Fig. 3 for 
better understanding and explanation of its functioning [19]. 
It is based on a current divider and a differential amplifier 
with two MOS transistors – T1 and T2. The differential ampli-
fier contains two branches, which are connected in parallel. 
The first branch contains a memristor element M and the 
resistor R4. The second branch of the differential amplifier is 
made of two resistors, connected in series - R1 and R5. The 
flowing currents are denoted by i1 and i2, correspondingly. 
The input voltage signal is denoted by v1. The voltage drops 
across the resistors R4 and R5 are proportional to the currents 
i1 and i2. They are denoted by v2 and v3, respectively:  
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 The output voltage signal of the synaptic device is denot-
ed by v4 and it is calculated as follows: 
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where kv = 10 is the coefficient of voltage amplification of 
the considered differential amplifier. The values of the re-
sistances are: R1 = 300 Ω, R4 = R5 = 1 kΩ. The synaptic 
weight w(M) of the considered circuit as a function of the 
memristance M is expressed as follows: 
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Fig. 3 A schematic of the considered memristor synapse 

 The memristance M(x,v) is a function of the state variable 
x and the applied voltage v. It is expressed according to equa-
tion (9) of the applied memristor model [15], [19]: 
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 The resistance of the memristor M and the corresponding 
synaptic weight w are changed by external voltage pulses 
and the corresponding alteration the memristor state variable 
x. After simple transformation of (14) and having in mind 
that R4 = R5, it is derived that if R1 = M, then w = 0. Positive 
synaptic values are obtained when M > R1. If M < R1 then w 
< 0. By the change of the operating points of the MOS tran-
sistors and the respective coefficient of voltage amplification 
kv it is possible to scale the synaptic weights. The resistors R2 

= 300 Ω and R3 = 300 Ω are used for limitation the drain 
currents of the MOS transistors. The resistor R6 is connected 
between the source electrodes of the transistors T1 and T2 and 
the ground. This resistor R6 is used for realization of negative 
voltage feedback. 
 The LTSPICE netlist of the considered synaptic circuit is 
correspondent to the schematic presented in Fig. 3: 

* LTSPICE code of the memristor synapse 
XU1 N003 N005 N007 A10 
R1 N004 N003 300 
R2 0 N007 10G 
V1 N003 0 PWL(0 0 1m 0.7 2m 0.7) 
M1 N002 N004 N008 N008 Si4836DY 
M3 N006 N005 N008 N008 Si4836DY 
R3 N008 0 100 
R4 N001 N002 200 
R5 N001 N006 200 
V2 N001 0 2 
R6 N004 0 150 
R7 N005 0 150 
R8 N002 N006 10k 
.model NMOS NMOS 
.model PMOS PMOS 
.lib C:\Users\PC-Admin\Documents\LTspiceXVII\ 
lib\cmp\standard.mos 
.tran 0 2 0 1u 
.lib C:\Users\PC-Admin\Modified Memristor  
Models\Modified model A10 
.backanno 
.end 

IV. TUNING OF THE MEMRISTOR-BASED SYNAPSE 

The memristor state and the corresponding weight are 
changed when external voltage pulses with a level higher 
than 0.15 V are applied to the synapse [12]. The alteration of 
synaptic weight Δw as a function of the memristance M is: 
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where ΔM is the change of the memristance. If a voltage with 
a positive polarity is applied to the input of the synaptic cir-
cuit, then the memristance M decreases. This leads to in-
creasing of the synaptic weight w. After the conducted anal-
yses of the synapse, it was established that voltages lower 
than the threshold of 0.15 V do not affect the memristor state 
and the synaptic weight does not change. The weight adjust-
ment by voltage pulses is presented in Fig. 4 a) and Fig. 4 b) 
for describing the tuning process of the synapse. 

 

Fig. 4 a) Time diagram of the voltage v, applied to the synapse; b) diagram 
of the corresponding synaptic weight w, c) zoomed time diagrams of the 
voltage and the corresponding synaptic weight between 60 µs and 100 µs 



The voltage signal shown in Fig. 4 a) is a sequence of 
packages of positive and negative pulses with an amplitude 
of 0.52 V. The duration of a pulse is 1 µs. A detailed diagram 
of the voltage and the weight are shown in Fig. 4 c). An ap-
plied pulse causes altering the synaptic weight by 0.02. The 
corresponding change of the state variable x is 0.021 and the 
respective alteration of the memristance M is about 6.2 Ω. 
When the needed change of the weight w is higher, then a 
package of impulses with the same polarity must be applied. 
Increasing the synaptic weight w and the respective decreas-
ing of the state variable x are realized by a sequence of nega-
tive voltage pulses. The considered synapse is applied in a 
neural network for evaluation the risk factors for potential 
patients with COVID-19 illness [20]. The level of the input 
signals applied during the pauses is lower than 0.15 V, and 
the state variable of the memristors and the corresponding 
synaptic weights do not change. By decreasing of pulse level 
or its duration, the change of the weight is also decreased. 

V. CONCLUSION 

 In the present work a modified synaptic circuit based on 
memristor is applied and analyzed. It is founded on a current 
divider and a differential amplifier with MOS transistors. 
The current divider contains a memristor element and a resis-
tor. The LTSPICE code of the synapse is presented. An ad-
vantage of the proposed circuit is its ability to ensure posi-
tive, zero and negative synaptic weights. Another advantage 
of the offered synaptic device is the minimal number of 
memristors per synapse. The considered synaptic scheme is 
successfully analyzed, using an improved model of the ap-
plied tantalum oxide memristor. It is successfully applied in 
a neural network for evaluation several risk factors affecting 
potential patients with COVID-19 syndrome. The conducted 
analyses confirm the proper operation of the applied memris-
tor model and the memristor-based synapse. 
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