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1. Introduction 

Stability of a vehicle concerns itself with the tendency of a 

vehicle to return to its original direction when disturbed (rotated) 

away from that original direction. 

The goal of this work is research of vehicles directional 

stability. The situation is described by three different mechanical-

mathematical models around to the axes Oy and Oz.  

During the research we make the following considerations: 

 The car and his models are symmetrical to the axe Ox 

 The dynamical process (displacement around to the axes 

Oz) isn’t exanimated 

 The main factor of cars stability is the wheels slip angle. 

 Working in the zone of pure rolling motion (the slip angle 

for the wheels was zero). Figure 1 shows the general 

relationship between the lateral force a tire Fy and the slip 

angle of the tire δy. 

 

Fig. 1 Relationship between the lateral force a tire Fy and the slip angle 

of the tire δy 

 

Mechanical-mathematical model examine only the lateral 

elasticity 

The behavior of the car is described using mechanical-

mathematical model. Scheme of the model is shown to Figure 2 and 

the suspended masses include the masses of the elements of the car, 

passengers and load.. If we consider that the slip angle for the 

wheels was zero we could examine the car as a mass witch point 1, 

2, 3 and 4 around to the axe Oy are bending.  

The motion of system is exanimated as function to the 

displacements are around the axes Oy and the angular displacement 

around the axes Oz. 

In the center of gravity is fixed local coordinate system attached 

O0x0y0z0. All displacements of local coordinate systems are given to 

the absolute coordinate system OAxAyAzA. In the equilibrium 

position the axis of all coordinate systems are parallel. 

 

Fig. 2 Mechanical-mathematical model, examined the zone of 

directional stability 

To find the lows motion to the absolute coordinate system 

OAxAyAzA is necessary to define the transition matrices of each 

local coordinate systems to the absolute. 

For generalized coordinate systems are assumed: 

 у0 – linear displacement of the local coordinate 

system O0x0y0z0 to absolute OАxАyАzА around axis 

Oу; 

 ψ0 – angular displacement of the coordinate system 

O0x0y0z0 to absolute OАxАyАzА around axis Oz; 

Matrix of transition from O0x0y0z0 to OAxAyAzA to the system 

is: 
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x0 and z0 are zero (we consider only linear displacement around 

axis Oy, i.e. only laterally). 

The matrix of transition 

A

oT
 can be simplified with the 

assuming that ψ0 is small witch leads to the linearization of 

trigonometrically functions (sinψ0≈ ψ0 and cosψ0≈ 1): 
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Radius vector of the point gravity: 
 Tmo y 1,0,,0 0

 

Radius vector of the point 1: 
 Tba 1,0,,1
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Radius vector of the point 2: 
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Radius vector of the point 3: 
 Tba 1,0,,2
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Radius vector of the point 4: 
 Tba 1,0,,2
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The components of the angular velocity of the system are set in 

advance:  
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Kinetic energie of the systems is 
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Potential energie of the systems is  

       202022

2

02021

2

01012

2

01011
2

1
 aycaycaycaycП yyyy 

 

Appling Lagrange's equation of 2nd kind  
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The differentials equations of the system are 
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For the differentials equations describing the system from figure 

2 are valid:   
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, където 

[M] is the matrix of inertia witch is symmetrical to the main 

diagonal, with dimension 2х2 and has the following form: 
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[C] is the matrix of elasticity  which is also symmetric to the 

main diagonal and has dimension 2х2: 
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[В] is the matrix of dissipative forces, showing the influence of 

damper. Also symmetric with dimension 2х2, in our case [В] = 0. 

The generalized coordinates and their derivatives are: 
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To obtain natural frequencies of  the system, the  equations are 

represented in Cauchys’ normal form: y+Ly = 0, where  L has the 

following form: 
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The output parameters of the system – displacement, velocity 

and acceleration are obtained from the equations: y+Ly = У, where 

У is: 
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All solutions to the definite time interval are obtained after 

integration of the system using the method of Runge - Kutta. 

Plane model examine only the slip angle 

Figure 3 shows the schema of the model exanimating the car 

stability with reporting the wheel slip angel.  The model is known 

as Rocards model.  

 

Fig. 3 Plane model describing only the slip angle 

The initial conditions were assumed for modeling: 

 The point 1, 2, 3 and 4 to the fig.3 are the projection 

of the wheels; 

 Considering that the wheels are undeformables and 

can ignore their lateral elasticity around to the axis 

Oy. 

 The car is shown at the angle ψ to the axis Ox.  

From fig. 4 the slip angles are δ1, δ2, δ3, δ4 can be determinate 

by coordinate y, so we have: 

 

Fig. 4 Slip angle 
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If the vehicle moved with a pure rolling motion (the slip angle 

for the wheels were all zero) then the displacements of the point of 

contact of the wheels with the ground would be the same as the 



displacement of the center of gravity C in any interval δt: 

dx=dx1=dx2=dx3=dx4=V.dt, where V is the speed of the vehicle in 

direction Ox. 

The equations of motion are: 
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Substituting for δ1, δ2, δ3, δ4 we obtain: 
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Taking Fy, Mψ to be zero, I=m.ρ2 and after substituting these 

values to the equations of motion, we are searching the solutions in 

the form y=Aept and ψ=Bept. To have a solution the equations 

system is necessary the matrix from the coefficient in front of the A 

and B to be equal to zero. So, we have: 
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After matrix development is obtained: 
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This may be divides by р2: 
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The analysis of stability is made with the criteria of Raus-

Kurvits by creating a square matrix from the characteristic 

equation
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 In our case а0 > 0, so to have a cars stability motion is 

necessary the moment of intertie of front wheels to be smaller than 

that of rear wheels. 

For the vehicles speed is obtained:  
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Plane model examine lateral elasticity and slip angle 

The initial conditions for this case of modeling were the same as 

those from fig.3. But this time the lateral elasticity of the wheel is 

added (fig.5). 

 

Fig. 5 Plane model about lateral elasticity and slip angle 

Appling the models initial condition for the differentials 

equations describing the system are valid:  
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Substituting for δ1, δ2, δ3, δ4 we obtain: 
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1. Computer Simulation 

All vehicles models permit by variable of the input information 

to explore the influence of some construction parameters into the 

directional stability. 

Vehicle characteristics and parameters’ numerical values were 

taken directly from the literature. 

To solve the equations was made a program with MATLAB 

software. It simulates the behavior of car with different speed, with 

different position of center of gravity and variable characteristic of 

wheels. The investigations were made in two parts – without and 

with disturbing force. This force works only for a few seconds. 

 

 

 

 

 

 

2. Results 

Simulation results of the first model - displacements around the 

axes Oy and the angular displacement around the axes Oz when the 

center of gravity changes the position and for different value of 

lateral elasticity are given in table 1. 

 

 

 

 

 

 

 

 

 

 

 

m Vehicle mass 1 500 kg 

a Distance from CG to front axel 1 m 

b Distance from CG to rear axel 1,5 m 

Iz0 Moment of inertia to axe Oz 2 500 Kgm2 

cy Lateral stiffness of each tire to 

axe Оу 

57 000 N/m 



cу, kN/m 

Front/rear wheel 

Distance from CG to front axel а1, m 

1 1,2 1,25 1,3 1,5 

50/50 Displacement around Оу, m 0,008714 0,008624 0,008658 0,008632 0,008694 

Angular displacement around Оz, grad 0,3924 0,3116 0,008931 0,2995 0,3895 

60/60 Displacement around Оу, m 0,00796 0,007885 0,007903 0,007869 0,007943 

Angular displacement around Оz, grad 0,3586 0,2845 0,008154 0,2734 0,3556 

70/70 Displacement around Оу, m 0,007391 0,007312 0,007311 0,007286 0,007354 

Angular displacement around Оz, grad 0,3321 0,2634 0,007553 0,2531 0,3288 

80/80 Displacement around Оу, m 0,006928 0,006847 0,006843 0,006841 0,006898 

Angular displacement around Оz, grad 0,3105 0,2463 0,007066 0,2363 0,3076 

90/90 Displacement around Оу, m 0,006534 0,006458 0,006454 0,006452 0,006487 

Angular displacement around Оz, grad 0,2921 0,2323 0,006661 0,2232 0,2902 

50/60 Displacement around Оу, m 0,00831 0,008249 0,008232 0,008243 0,008256 

Angular displacement around Оz, grad 0,37 0,3661 0,3519 0,3111 0,3537 

60/70 Displacement around Оу, m 0,007809 0,007592 0,007594 0,007583 0,007582 

Angular displacement around Оz, grad 0,3459 0,3331 0,3181 0,2553 0,3329 

70/80 Displacement around Оу, m 0,007264 0,007076 0,007071 0,007067 0,00706 

Angular displacement around Оz, grad 0,3221 0,3101 0,2896 0,202 0,3084 

80/90 Displacement around Оу, m 0,006807 0,06661 0,006646 0,006642 0,006637 

Angular displacement around Оz, grad 0,3009 0,2881 0,2655 0,1515 0,2936 

90/100 Displacement around Оу, m 0,006364 0,006292 0,006287 0,006284 0,006312 

Angular displacement around Оz, grad 0,2859 0,27 0,2443 0,1057 0,2784 

60/50 Displacement around Оу, m 0,008287 0,008219 0,008218 0,008231 0,008253 

Angular displacement around Оz, grad 0,3611 0,3021 0,3479 0,3599 0,3657 

70/60 Displacement around Оу, m 0,007619 0,007577 0,007578 0,007573 0,007756 

Angular displacement around Оz, grad 0,3365 0,2442 0,3127 0,3307 0,345 

80/70 Displacement around Оу, m 0,00708 0,007063 0,007061 0,00706 0,007225 

Angular displacement around Оz, grad 0,3154 0,19 0,2832 0,3052 0,322 

90/80 Displacement around Оу, m 0,006658 0,006639 0,006637 0,006637 0,006774 

Angular displacement around Оz, grad 0,2976 0,1393 0,2576 0,2851 0,3008 

100/90 Displacement around Оу, m 0,006332 0,006282 0,00628 0,00628 0,006332 

Angular displacement around Оz, grad 0,2815 0,09346 0,2376 0,2675 0,2844 

 

Simulations results of the second model shown in fig. 6…9 

demonstrate the displacements are around the axes Oy and the 

angular displacement around the axes Oz  as function of coordinate 

of center of gravity, the steering force characteristics for the front k1 

and rear tires k2 and vehicles speed.  

 

fig. 6 Displacements are around the axes Oy and the Angular 
displacement around the axes Oz  Distance from CG to front axel а1 = 1.2, 

Vcr = 0 km / h 

 

fig. 7 Displacements are around the axes Oy and the Angular 

displacement around the axes Oz  Distance from CG to front axel а1 = 1.2, 
Vcr = 0 km / h 

 

fig. 8 Displacements are around the axes Oy and the Angular 

displacement around the axes Oz  Distance from CG to front 

axel а1 = 1.3, Vcr = 294 km / h 

 

fig. 9 Displacements are around the axes Oy and the Angular 

displacement around the axes Oz  Distance from CG to front 

axel а1 = 1.3, Vcr = 294 km / h 

Simulations results of the third model shown in fig. 10…17 

demonstrate the displacements are around the axes Oy and the 

angular displacement around the axes Oz  as function of coordinate 

of center of gravity, the steering force characteristics for the front k1 

and rear tires k2 and vehicles speed.  



 

fig. 10 Displacements are around the axes Oy and the Angular 

displacement around the axes Oz  Distance from CG to front axel а1 = 

1.2, Vcr = 0 km / h 

 

fig. 11 Displacements are around the axes Oy and the Angular 

displacement around the axes Oz  Distance from CG to front axel а1 = 

1.2, Vcr = 0 km / h 

 

fig. 12 Displacements are around the axes Oy and the Angular 

displacement around the axes Oz  Distance from CG to front axel а1 = 

1.2, Vcr = 0 km / h 

 

fig. 13 Displacements are around the axes Oy and the Angular 

displacement around the axes Oz  Distance from CG to front axel а1 = 

1.2, Vcr = 0 km / h 

 

fig. 14 Displacements are around the axes Oy and the Angular 

displacement around the axes Oz  Distance from CG to front axel а1 = 

1.3, Vcr = 294 km / h 

 

fig. 15 Displacements are around the axes Oy and the Angular 

displacement around the axes Oz  Distance from CG to front axel а1 = 

1.3, Vcr = 294 km / h 

 

fig. 16 Displacements are around the axes Oy and the Angular 

displacement around the axes Oz  Distance from CG to front axel а1 = 

1.3, Vcr = 294 km / h 

 

fig. 17 Displacements are around the axes Oy and the Angular 

displacement around the axes Oz  Distance from CG to front axel а1 = 

1.3, Vcr = 294 km / h 

3. Conclusions  

The   analysis   in   this   paper   shows   the influence of some 

construction parameters into the directional stability as coordinate 

of center of gravity, cars speed, the steering force characteristic. 
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