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Abstract – The aim of the study was to investigate the 

possibility of using infrared thermography (IRT) as a tool for 

thermal monitoring of intelligent grassland via drone. A low 

resolution sensor was used. Real experiments were performed. 

Several typical cases of grass observation from two distances 

have been considered. Statistical processing of the results was 

performed. 
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I. INTRODUCTION 

 

 Permanent productive meadows, high mountain pastures 

and grasslands with low productive potential occupy 

significant agricultural areas in Bulgaria. They occupy the 

largest share in the Western and Central Stara Planina, 

Vitosha, Rila, Pirin, Western Rhodopes, as well as in some 

higher parts of Southwestern Bulgaria. 

 Permanent grasslands are the only land use that can both 

contribute to biodiversity conservation and reduce the carbon 

footprint of agricultural production, as required by the EU's 

2030 Biodiversity Strategy [1]. 

 In addition to providing fodder for livestock, permanent 

grasslands perform various functions and ecosystem services 

that make them extremely important. The most important are 

carbon conservation, biodiversity, water purification, 

erosion control and landscape conservation. Keeping them in 

good agricultural and ecological condition is extremely 

important for animal husbandry - animal products are low 

cost, pure and have good taste. The traditional low-intensity 

agricultural practices in this direction are grazing and 

haymaking, as well as surface measures with low levels of 

fertilizers and pesticides. In line with the concept of 

sustainable development, biodiversity and landscape 

protection requires moderate, distributed exploitation [2-5]. 

 In this regard, these areas are provided for interventions in 

climate and environmental schemes, which will be included 

in the Strategic Plan for Agricultural and Rural Development 

for the period 2021 - 2027. 

 Pastures and meadows are "high nature value" ecosystems 

that provide natural food (green mass and hay) to pasture 

animals.  

 The composition of meadows and pastures in Bulgaria 

includes plant species from different botanical families with 

different nutritional value. The quality and quantity of the 

plant mass are directly dependent on the geographical 

location, the natural conditions, the ratio between the 

different species and the way of land exploitation. Pastures 

and meadows are the main source of fodder, which is why 

they are the subject of constant research on productivity, 

botanical composition, development of grassland, presence 

of pests and pollution, nutritional value, effect on productive 

and reproductive indicators in animals and others.  

 The productivity and quality of pasture biomass can be 

assessed using both conventional methods and remote 

sensing technology. 

 Conventional methods for assessing pasture productivity 

and quality are subjective, time-consuming and feasible (or 

applicable) only for assessing and monitoring pastures on a 

small scale. 

 In recent years, a number of methods have been developed 

to assess pasture productivity, based on data from satellite 

remote sensing. In some of the pasture monitoring 

publications, data from a multispectral scanner in the air 

were used to map the leaf area index, and in others hyper 

spectral images were used. 

 The methodologies for estimating pasture biomass can be 

categorized into three groups: 1) using vegetation indices, 2) 

biophysical simulation models and 3) machine learning 

algorithms. 

 According to the Industry 4.0 concept, the basic basis for 

improving the quality of crops are intelligent systems that 

support the automated management of technological and 

management processes. With the help of artificial 

intelligence, it is possible to analyze the various parameters 

of the field, refine the necessary care activities, monitor 

weather conditions, predict the quantity and quality of yield 

and more [6-15]. 

 

 

II. HARDWARE REALIZATION 

 

 The Lora WiFi v2 board is used for the realization of the 

device. It is based on the ESP32 microcontroller, has a built-

in display and a battery charging module. The presence of a 

module for charging and using batteries allows the battery to 

be connected directly to the board without the need for an 

additional module to convert the voltage from the battery to 

what is needed to power the board. The presence of a display 

allows the relevant error information to be displayed on the 

display in the event of an error when starting the device. The 

Lora module allows real-time image sending on request 

(Fig.1). 



 

Fig. 1. DJI Phantom 3 drone with mounted boards with Melexis 

MLX90640 sensor during the flight 

 A Melexis MLX90640 sensor is used, which is connected 

to the microcontroller via an I2C interface. A module for 

reading and writing micro SD cards is connected to the 

microcontroller via SPI interface. The data received from the 

sensor is recorded directly on the micro SD card. To ensure 

synchronization, the relative time at which it is taken is 

recorded at the beginning of each report. The relative time is 

taken into account from the moment the circuit is switched 

on. An LED is provided for the circuit to fall within the field 

of view of the drone camera. The moment the LED flashes, 

it is recorded at the beginning of the file and this allows the 

two videos taken by the IR camera and the drone camera, 

respectively, to be synchronized in time (Fig.2). 

  

 

Fig. 2. DJI Phantom 3 drone with mounted boards with Melexis 

MLX90640 sensor close look 

 In case of connecting the circuit to a computer, the data 

will be transmitted in real time via the serial port and they 

will be able to be viewed on the computer screen. For this 

purpose, Matlab software is written, which takes the data and 

visualizes them after pre-processing. 

 The part where the image can be transmitted in almost real 

time on request via the Lora interface is also planned for 

completion. This function will be useful if you need to 

monitor the condition in a specific, pre-known location. The 

use of Lora interface is preferred to Bluetooth or Wi-Fi, due 

to its significantly larger range. Image transmission will only 

be on request, as Lora's data rate is limited and does not allow 

real-time continuous transmission. 

 

III. NUMERICAL INVESTIGATION AND PROCESSING OF THE 

RESULTS 

 

   For the initial processing of the results, two approaches 

were chosen - visual and analytical. In the first case, a visual 

representation of the captured thermographic images from 

the infrared sensor can be obtained, as seen in Fig. 3. 

 

 
A 

 

 
B 

Fig. 3. Visual representation of the captured thermographic images 

of Ex1 (A) and Ex2 (B) 

 

   In the study we photographed three different species of 

plants, which we will call Ex1, Ex2 and Ex3. 

   In order to be able to evaluate the obtained results, we 

performed a histogram analysis of the extracted data. 

  The studied objects were photographed under the same 

conditions from a distance of 0.5 and 1 meter, and the aim of 

this experiment was to evaluate the effective distance for 

extracting a high-quality thermographic image. Fig. 4 and 

Fig. 5 show the results of the histogram analysis of the 

obtained experimental images at distances of 0.5 and 1 

meter. 

  It can be said that at a distance of 0.5 meters we have a more 

accurate recognition of the various objects of study than at a 

distance of 1 meter, which is evident from the results 

obtained. At 0.5 meters, the objects can be clearly 

distinguished, and their histograms can be used to identify 

the various objects studied. While at 1 meter there is a 

merging of the histograms due to the influence of thermal 

radiation from the air and so it is not possible to give a clear 

recognition of the individual objects. 



  From this we come to the conclusion that in order to 

recognize the studied objects it is appropriate to study them 

from a distance of 0.5 meters. 

 

 

Fig. 4. Histogram analysis of the studied objects at a distance  

of 0.5 m 

 

 
 

Fig. 5. Histogram analysis of the studied objects at a distance  

of 1  m 

  After evaluating the effective shooting distance of the 

studied objects, we made a series of surveys of the three 

objects and after processing the results we can say that we 

have a clear recognition of the three objects. This can be seen 

from the histogram analyzes of FIG. 6, FIG. 7 and FIG. 8. 

As can be seen in Ex1 we have a peak around 44-46 

degrees of temperature, in Ex2 we have a relatively equal 

distribution in a larger temperature range from 39 to 47 

degrees, and in Ex3 we have peaks in high temperatures 

around 48-49 degrees. 

 

 

Fig. 6. Histogram analysis of the studied object Ex1 at a distance 

of 0.5 m 

 

Fig. 7. Histogram analysis of the studied object Ex2 at a distance 

of 0.5 m 

 

Fig. 7. Histogram analysis of the studied object Ex3 at a distance 

of 0.5 m 

 

IV. CONCLUSIONS 
 

  An essential factor for the analysis is the extraction of 

knowledge per unit of agricultural area and the application 

of intelligent means for their cultivation.  

From the derived results it can be said that this method is 

suitable both for research and for recognition of different 

objects in relation to their thermal radiation. 

This is possible due to the possibility of automated 

monitoring, most often with the help of computer vision, 

collection of sufficient data and the application of 

appropriate machine learning algorithms on them, in order to 

take appropriate action. 
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