XVII-th International Symposium on Electrical Apparatus and Technologies

SIELA 2012

PROCEEDINGS

Volume I

28-30 May 2012
Bourgas, Bulgaria
XVII-th International Symposium on Electrical Apparatus and Technologies

SIELA 2012

PROCEEDINGS

Volume I

28-30 May 2012
Bourgas, Bulgaria

ISSN 1314-6297
Tony DRAGOMIROV, Nikolay STOEV and Todor KOKOV
Diverter switch with vacuum interrupters for RSV12 voltage tap changer ... 113

Elissaveta GADJEVA, Georgi VALKOV
Bulgaria
Computer modeling of RF MEMS inductors using VHDL AMS language ... 120

Konstantin GERASIMOVIĆ, Yoncho KAMENOV
and Krum GERASIMOVIĆ
Bulgaria
Application of μ-synthesis for tuning single channel PSS
with input from synchronous generator rotor speed .. 127

Dejana HERCEG, Miroslav PRŠA, Karolina KASAŠ-LAŽETIĆ
and Raluca Teodora OGLEJAN
Serbia, Romania
Magnetic characteristics of ferromagnetic shielding material ... 139

Saša S. ILIČ, Mirjana T. PERIĆ, Slavoljub R. ALEKSIC and
Nebojša B. RAČIĆEVIĆ
Serbia
Quasi TEM analysis of 2D symmetrically coupled strip
lines with infinite grounded plane using HBEM ... 147

Bernd JAEKEL
Germany
Principles and challenges in the standardization related to
electromagnetic compatibility ... 155

Vesna JAVOR
Serbia
On the attenuation factor in engineering models
for lightning electromagnetic field computation ... 163

Karolina KASAŠ-LAŽETIĆ, Miroslav PRŠA,
Dejana HERCEG and Nikola ĐURIĆ
Serbia
Determination of magnetic parameters of ACSR steel core .. 171

Georgi KUNOV
Bulgaria
Matlab simulation of three-phase to single-phase matrix
converter with sinusoidal PWM .. 179

Andon LAZAROV, Dimitar MINCHEV
Bulgaria
Fourier transform in complex SAR image reconstruction
and interferometric generation .. 187

Dian MALAMOV, Hyusein SARMALI
Bulgaria
Influence of the pole air gap with a shading ring
over the characteristics of an electromagnet for alternative voltage .. 194
COMPUTER MODELING OF RF MEMS INDUCTORS USING VHDL AMS LANGUAGE

Elissaveta GADJEVA*, Georgi VALKOV **

* Technical University of Sofia, Department of Electronics, 1156 Sofia, Bulgaria, E-mail: egadjeva@tu-sofia.bg
** Technical University of Sofia, Department of Electronics, 1156 Sofia, Bulgaria. E-mail: gvalkov@abv.bg

Abstract. On-chip inductors are important elements for the design of integrated RF circuits. A number of micromachining technologies, implemented in microelectromechanical systems (MEMS), are applied in RF applications. In the present paper, computer models are developed for RF MEMS inductors, using the standard VHDL-AMS language. They are simulated and verified in the Dolphin Integration SMASH simulation environment. Parameterized inductor macromodels are developed taking into account the frequency dependence of the series resistance due to the skin-effect.

Keywords: Behavioral computer models, equivalent circuits, RF MEMS inductors, VHDL-AMS language.

INTRODUCTION

The MEMS technology allows the production of micromachined inductors in which the parasitic capacitance and lossy substrate effects are alleviated. These inductors have enhanced Q-factor, increased selfresonant frequency, lower energy dissipation and lower phase noise in comparison to CMOS inductors [1-5]. With the development of instruments for Analog Behavioral Modeling (ABM) and simulation, it is possible to combine models defined in different standard languages and abstraction levels into a single project, in order to verify the behavior of the entire system. In the present paper, parameterized computer models for RF MEMS inductors are realized in the standard VHDL-AMS language. The models are simulated in the mixed-language, multi-domain environment provided by Dolphin SMASH [7].

RF MEMS INDUCTOR MODELS

Air suspended RF MEMS inductor model

The Π- RF physical planar inductor model shown in Fig. 1 [1, 5, 6] describes the performance of an air suspended RF MEMS inductor [1]. The model has been used extensively and has been proven to fit with Y- and S-parameter measurements of planar inductors. L_S is the low frequency inductance, C_S is the capacitance between the
windings of the inductor, C_1 and C_2 are the capacitances in the oxide (or polyamide) layer between the coil and the silicon (or GaAs) substrate, C_{p1} and C_{p2} are the capacitances between the coil and the ground through the silicon substrate, and R_{p1} and R_{p2} represent the eddy current losses in the substrate, R_s is the series resistance of the coil [1].

![Figure 1](image1.png)

Figure 1. Air suspended RF MEMS inductor.

The frequency dependence of R_s due to the skin-effect is represented by expression (1), where the value of f is in GHz:

\[R_s(f) = A\sqrt{f} . \]

(1)

Simplified RF MEMS inductor model

In general R_{p1} and R_{p2} from Fig. 1 can be neglected and C_1 and C_{p1} are lumped together in one capacitance C_{p1}, the same applies to C_2 and C_{p2} [1], producing a simplified variant of the model, as shown in Fig. 2.

![Figure 2](image2.png)

Figure 2. Simplified RF MEMS inductor model.

The series resistance R_s is assumed constant up to frequency f_0 and then increases as \sqrt{f} to model the skin-effect [1]:

\[R_s(f) = A\sqrt{f} . \]
\[R_s(f) = \begin{cases} R_{so} & \text{for } f < f_o \\ R_{so} \sqrt{\frac{f}{f_o}} & \text{for } f \geq f_o \\ \end{cases} \]

VHDL-AMS REALIZATION OF MEMS INDUCTOR MODELS

Air suspended RF MEMS inductor model

The VHDL-AMS code presented in Fig. 3 implements the model of air suspended RF MEMS inductor from Fig. 1, where the frequency dependence of \(R_s \) is implemented as a function, as shown in Fig. 4.

```vhdl
library IEEE;
use IEEE.electrical_systems.all;
use IEEE.math_real.all;
entity inductor_mems_pi is
  generic (  
    Cs : capacitance:= 1.14e-15;  
    Ls : inductance := 1.34e-9;  
    C1 : capacitance:= 11.6e-15;  
    C2 : capacitance:= 90.5e-15;  
    Cp1 : capacitance:= 1.0e-15;  
    Cp2 : capacitance:= 10.2e-15;  
    Rp1 : resistance :=275.0;  
    Rp2 : resistance :=332.0;  
    A : resistance := 0.27  
  );
  port(terminal n1, n2 : electrical);
end entity inductor_mems_pi;
architecture ideal of inductor_mems_pi is
  terminal n_s1, n_s2 : electrical;
  quantity U across Ics through n2 to n1;
  quantity Ics across Ics through n_2 to n_1;
  quantity Uc1 across Ic1 through n_1 to n_s1;
  quantity Uc2 across Ic2 through n_2 to n_s2;
  quantity Up1 across Ip1 through n_s1 to electrical_ref;
  quantity Up2 across Ip2 through n_s2 to electrical_ref;
begin
  U  =  Ls *dIls/dt + IIs*Rs(frequency);
  Ics = Cs *dU/dt;
  Ic1 = C1 *dUc1/dt;
  Ic2 = C2 *dUc2/dt;
  Ip1 = Cp1*Up1' + Up1/Rp1;
  Ip2 = Cp2*Up2' + Up2/Rp2;
end architecture;
```

Figure 3. VHDL-AMS code of the air suspended MEMS inductor model.

```vhdl
function Rs(freq: real) return real is begin
  return A*sqrt(freq*1.0e-9);
end function;
```

Figure 4. VHDL-AMS implementation of the frequency dependence of \(R_s \) due to skin effect.

To verify the model, four sample inductors defined in Table 1 are simulated and compared to measurement data from [4]. The simulation results are shown in Fig. 5.

Table 1. Lumped-element parameters of fabricated inductors
A comparison between measured and simulated data for Q_2 is shown in Fig. 6. The average relative error is 2.6%.

Figure 6. Comparison between measured and simulated data for Q_2.

Simplified RF MEMS inductor model
The VHDL-AMS code presented in Fig. 7 implements the simplified model of MEMS inductor from Fig. 2, where the frequency dependence of R_S (2) is implemented as a function, as shown in Fig. 8.

```
library IEEE;
use IEEE.electrical_systems.all;
use IEEE.math_real.all;

entity inductor_mems_simple is
  generic (
    LS : inductance := 5.0e-9;
    CS : capacitance := 9.0e-15;
    Cp1 : capacitance := 75.0e-15;
    Cp2 : capacitance := 75.0e-15;
    Rso : resistance := 6.3;
    fo : real := 2.0e+9
  );
  port (terminal n1, n2 : electrical);
end entity inductor_mems_simple;

architecture ideal of inductor_mems_simple is
  quantity U across Ics through n2 to n1;
  quantity Ils through n2 to n1;
  quantity Upl across Ip1 through n1 to electrical_ref;
  quantity Up2 through n2 to electrical_ref;
begin
  U = LS * Ils'dot + Ils * Rso * (frequency);
  Ics = CS * U'dot;
  Ip1 = Cp1 * Upl'dot;
  Ip2 = Cp2 * Up2'dot;
end architecture;
```

Figure 7. VHDL-AMS code of the simplified RF MEMS inductor model.

```
function Rs(freq: real) return real is
begin
  if(freq < fo) then return Rso;
  else return Rso * sqrt(freq/fo);
end if;
end function;
```

Figure 8. VHDL-AMS implementation of the frequency dependence of R_S due to skin effect.

Fig. 9 presents the simulated quality factor Q for $L_S = 5$ nH, $R_{SO} = 6.3$ Ω, $C_{P1} = C_{P2} = 75$ fF, $C_S = 9$ fF. The effect of the series resistance on the Q is shown in Fig. 10. The effect of the substrate capacitance on the Q is shown in Fig. 11.

![Figure 9. Simulated Q for the simplified RF MEMS inductor.](image_url)

124
Figure 10. Effect of the series resistance on Q for simplified RF MEMS inductor.

Figure 11. Effect of the substrate capacitance on Q for simplified RF MEMS inductor.

A comparison between measured and simulated data for Q is shown in Fig. 12. The average relative error is 3.5%.

Figure 12. Comparison between measured and simulated data for Q.

CONCLUSIONS

Parameterized behavioral computer models for RF MEMS inductors have been developed using the standard VHDL-AMS language. The frequency dependence of the series resistance due to the skin-effect is taken into account. The simulation results are
in agreement with the measurement data. The average relative error is 2.6% for the air suspended RF MEMS inductor model and 3.5% for the simplified RF MEMS model.

ACKNOWLEDGEMENT
The investigations are supported by the project №122PD0026-03.

REFERENCES