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Abstract. The purpose of this article is to describe parametrically all nontrivial solutions of the diophantine equation in the title.
One parameter family of elliptic curves is naturally associated with the equation, for which family we apply ”complete 2-descend”

algorithm to obtain a parametric description of all possible values of parameter k ∈ Z, for which nontrivial solutions exist. The
article is a natural continuation of [1].

We consider the diophantine equation x4 + y4 + kx2y2 = z2, where k ∈ Z is a parameter. Our aim is to determine the
integers k for which the equation has a solution in positive integers (x, y, z) and to describe parametrically all solutions.
Each diophantine equation can be considered as an equation that defines affine variety in the corresponding affine
space, or after homogenization, projective variety in the corresponding projective space. Thus the initial equation
defines affine surface in a three dimensional affine space over algebraic closure of Q, denoted by

Tk = {(x, y, z) ∈ A3(Q) | x4 + y4 + kx2y2 = z2} or Tk : x4 + y4 + kx2y2 = z2,

and for the corresponding projective case, after homogenization with introducing a new variable t, the notation is:

Tk = {[x, y, z, t] ∈ P3(Q) | x4 + y4 + kx2y2 = z2t2} or Tk : x4 + y4 + kx2y2 = z2t2

For convenience, we will use affine equations, but with the comprehension that we work with projective varieties
(curves and surfaces). The difference is at the points at infinity, given by intersection of projective variety with the
hyperplane at infinity H∞ : t = 0.
Basic objects of consideration are smooth projective curves and surfaces, and the main apparatus is related to algebraic
and analytic invariants of elliptic curves.

In this section are given definitions of affine and projective spaces, elliptic curves over an arbitrary field, and the
structure preserving maps between elliptic curves. The following definitions are necessary ([4],[8],[9],[13]).

Definition 1 Affine n-space over Q is the set An(Q) = {(x1, x2, . . . , xn) | xi ∈ Q}.
The zero point of An is OAn = (0, . . . , 0), and if A, B are sets then A − B means the set-theoretical subtraction.

Definition 2 Projective n-space over Q, denoted by Pn, is the quotient space (An+1(Q) − OAn+1 )/ ∼, where the
factorization by ∼ means that the points (x0, . . . , xn), (y0, . . . , yn) ∈ An+1(Q) − OAn+1 are equivalent, if there exists

λ ∈ Q∗, such that y0 = λx0, . . . , yn = λxn. An equivalence class {(λx0, . . . , λxn) | λ ∈ Q∗} is denoted by [x0, . . . , xn],
and the individual x0, . . . , xn are called homogeneous coordinates for the corresponding point of Pn.
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Thus, the projective space consists of lines through the origin in affine space, with one dimension higher.

Definition 3 Elliptic curve over Q is a smooth projective curve with affine equation

y2 = x3 + ax2 + bx + c, (1)

where a, b, c ∈ Q. In general, elliptic curve E over field k is denoted by E/k.

The smoothness condition is equivalent to the condition that the polynomial x3 + ax2 + bx + c has distinct roots. The
unique point at infinity that lies on the elliptic curve is denoted by O = [0, 1, 0]. The discriminant of E/k : y2 = f (x)
given by (1) is defined as ΔE = 16Δ f = 16(−4a3c + a2b2 + 18abc − 4b3 − 27c2).

Let E/Q be an elliptic curve given by equation (1). Therefore E ⊂ P2(Q) consists of the points P = (x, y)

satisfying the equation (1), together with the point at infinity O = [0, 1, 0]. Let l ⊂ P2(Q) be a line, then by Bezout’s
theorem, the number of points of intersection for l∩ E, taken with multiplicities, is exactly 3, say P,Q,R (need not be
distinct). The definition of composition law ⊕ on elliptic curve E is as follows:

Definition 4 The composition law E × E −→ E (P,Q) 
−→ −R, is denoted by P ⊕ Q := −R, where the map
E −→ E P = (x, y) 
−→ −P = (x,−y) is an orthogonal symmetry with respect to the coordinate axis.

Remark 1 The composition law is in fact a group law, i.e. makes E into an abelian group, with O = [0, 1, 0] as
neutral element for the group operation, and each element P has inverse −P. By the definition above, it follows that
three points on E have zero sum, if and only if they lie on the same line.

As notation : E = E(Q) = {(x, y) ∈ A2(Q) | y2 = x3 + ax2 + bx+ c} ∪ {O}, and for every subfield k ⊂ Q denote by E(k)
the set of k-rational points on E:

E(k) = {(x, y) ∈ A2(k) | y2 = x3 + ax2 + bx + c} ∪ {O}. (2)

For elliptic curve E/k, the set E(k) is a group, E(k) � E(Q), in particular let k = Q:

Definition 5 The group E(Q) is called the Mordell-Weil group of rational points on E.

Elliptic curves have an algebraic structure as abelian groups and a geometric structure as smooth projective
curves. The structure preserving maps between elliptic curves are called isogenies. Let k be a field and E/k be an
elliptic curve, given by equation f (x, y, z) = x3 + ax2z + bxz2 + cz3 − y2z = 0.

Definition 6 The f unction f ield k(E) of elliptic curve E/k consists of rational functions g
h , where

1) g, h ∈ k[x, y, z] are homogeneous polynomials of the same degree,
2) h � ( f ), i.e. h is not divisible by f ,
3) g1

h1
and g2

h2
are considered equivalent whenever g1h2 − g2h1 ∈ ( f ).

Definition 7 Let E1/k and E2/k be elliptic curves. A rational map ϕ : E1 −→ E2 is a projective triple ϕ =
[ϕ1, ϕ2, ϕ3] ∈ P2(k(E1)), such that for every point P ∈ E1(k), where ϕ1(P), ϕ2(P), ϕ3(P) are defined, are not all zero
and the projective point [ϕ1(P), ϕ2(P), ϕ3(P)] lies in E2(k). The map ϕ is regular at P if there exists λ ∈ k(E1)∗, such
that λϕ1, λϕ2, λϕ3 are defined at P and are not all zero at P. Everywhere regular rational map is called a morphism.

Remark 2 Every rational map between elliptic curves is a morphism and every morphism between smooth pro-
jective curves is either constant or surjective.

110002-2



Let E1/k and E2/k be elliptic curves.

Definition 8 An isogeny ϕ : E1 −→ E2 is a surjective morphism of curves that induces a group homomorphism
E1(k) −→ E2(k). The elliptic curves E1 and E2 are then said to be isogenous.

Example 1 For m ∈ N denote by [m]P := P⊕P⊕· · ·⊕P (m - times addition). The map [m] : E −→ E P 
−→ [m]P
is an isogeny. Denote its kernel by⊕E[m]. The elements of E[m] are called m-torsion points of E. For E/k with
char k = 0 holds that E[m] � Z/mZ Z/mZ.

Remark 3 Let ϕ : E1 −→ E2 be an isogeny. Then there exists a unique isogeny ϕ̃ : E2 −→ E1 satisfying
ϕ̃ ◦ ϕ = [m] and ϕ ◦ ϕ̃ = [m], for appropriate positive integer m. The isogeny ϕ̃ is called dual isogeny for ϕ, and the
integer m is called degree of ϕ.

Let E/Q be an elliptic curve.

Theorem 1 The Mordell-Weil group E(Q) is finitely generated and abelian.

Theorem 2 Every finitely generated abelian group A is a direct sum of a free subgroup and a torsion subgroup,
i.e. A = Af ree

⊕
Atorsion � Zr

⊕
Atorsion, where the integer r ≥ 0 is called rank of A and is denoted by rank A = r.

Remark 4 From the theorems above it follows that E(Q) � Zr
⊕

E(Q)tor.

The torsion group E(Q)tor is finite and effectively computable by algorithms as Lutz-Nagell theorem, the reduction
theorem and the general theorem of Mazur. The necessary definitions for Qp, Zp, Fp and the reduction map modulo
p are given in the Appendix.

Theorem 3 (Lutz-Nagell) Let E : y2 = x3+ax2+bx+c be an elliptic curve with integer coefficients and P = (x, y)
be a torsion point of E. Then x and y are integers, and either y = 0 or y2 is a divisor of the discriminant Δ of polynomial
f (x) = x3 + ax2 + bx + c. (Δ f = −4a3c + a2b2 + 18abc − 4b3 − 27c2)

Theorem 4 (Reduction) Let p be a prime number, m be a positive integer not divisible by p, and E/Qp be an
elliptic curve. If the reduction modulo p E/Qp −→ Ẽ/Fp gives a nonsingular curve Ẽ/Fp, then the reduction map
E(Qp)[m] −→ Ẽ(Fp) is an injective homomorphism of groups.

Theorem 5 (Mazur) Let E/Q be an elliptic curve. Then the torsion group E(Q)tor is isomorphic to one of the
following fifteen groups:

Z/nZ, 1 ≤ n ≤ 10 or n = 12,

Z/2Z ⊕ Z/2nZ, 1 ≤ n ≤ 4.

In general, an effective algorithm for determining the rank of every elliptic curve over Q, for finite amount of time, is
not known. In the case, when all two-torsions for E/Q are rational, i.e. E[2] = E(Q)[2], one rank searching algorithm
is the Complete 2-Descent ([8]), formulated as two theorems with common assumptions:

Theorem 6 (Complete 2-Descent) Let E/Q : y2 = (x − e1)(x − e2)(x − e3), e1, e2, e3 ∈ Q be an elliptic curve. Let
S be a finite set of primes, including 2,∞ and all primes that divide the discriminant of E.
Let Q(S , 2) = {b ∈ Q∗/(Q∗)2 | ordp(b) ≡ 0 mod 2 ∀p � S }. Then there is injective group homomorphism

E(Q)/2E(Q) −→ Q(S , 2) × Q(S , 2),
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defined by

P = (x, y) 
−→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x − e1, x − e2) , x � e1, e2

(
e1−e3

e1−e2
, e1 − e2

)
, x = e1

(
e2 − e1,

e2−e3

e2−e1

)
, x = e2

(1, 1), P = O

Theorem 7 (Complete 2-Descent) Let (b1, b2) ∈ Q(S , 2) × Q(S , 2) be a pair that is not an image of any of the
points O, (e1, 0), (e2, 0), (e3, 0). Then (b1, b2) is the image of a point P = (x, y) ∈ E(Q)/2E(Q) if and only if, the
equations

b1z2
1 − b2z2

2 = e2 − e1, b1z2
1 − b1b2z2

3 = e3 − e1,

have a solution (z1, z2, z3) ∈ Q∗ × Q∗ × Q∗. If such a solution exists, then

P = (x, y) = (b1z2
1 + e1, b1b2z1z2z3).

Remark 5 Complete 2-Descent algorithm has a geometric interpretation: the two equations in theorem 7 define
quadric surfaces in P3, which intersect in smooth quartic curve in P3, called a homogeneous space for E/Q.
In the case when E[2] � E(Q)[2], the general algorithm for determining the rank of an elliptic curve uses Selmer and
Shafarevich-Tate groups ([6],[8]).

Theorem 8 The rank is invariant under isogeny maps, hence isogenous elliptic curves have the same rank.

Let Ek, E′k and Hk be the curves with affine equations:

Ek : Y2 = X(X − k + 2)(X − k − 2),

E′k : y′2 = x′(x′2 + kx′ + 1),

Hk : v2 = u4 + ku2 + 1.

Determining the solutions of the initial diophantine equation means to determine integral points on surface Tk :
x4 + y4 + kx2y2 − z2 = 0. Finding integral points on quartic surface Tk is equivalent to finding rational points on quartic
curve Hk, which is contained in Tk. The map Tk −→ Hk (x, y, z) 
−→ (u, v), defined by u = x

y , v = z
y2 , transforms the

equation x4 + y4 + kx2y2 = z2 to v2 = u4 + ku2 + 1. For k � ±2 the family of curves Hk is nonsingular and contains
a rational point, for example (0,±1), therefore for fixed k � ±2, Hk is birational equivalent to an elliptic curve Ek,
hence the map

Hk −→ Ek (u, v) 
−→ (X,Y) defined by X = 2u2 + 2v + k, Y = 2u(2u2 + 2v + k),

is an isomorphism, with inverse

Ek −→ Hk (X,Y) 
−→ (u, v), defined by u =
Y

2X
, v =

X − k
2
−
( Y
2X

)2
.

The map Ek −→ E′k (X,Y) 
−→ (x′, y′), defined by x′ =
(

Y
2X

)2
, y′ = Y(k2−4−X2)

8X2 is an isogeny,

and the dual isogeny E′k −→ Ek (x′, y′) 
−→ (X,Y), is defined by X =
(

y′

x′

)2
, Y =

y′(1 − x′2)

x′2
.
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Let S k = {(x, y, z) ∈ N3 | x4 + y4 + kx2y2 = z2, gcd(x, y, z) = 1, xy > 1} be the set of nontrivial solutions. Using the
map Tk −→ Hk, the isomorphism Hk −→ Ek and the isogenies Ek −→ E′k −→ Ek, we obtain for the cardinality of S k:

|S k | ≥ 1⇔
∣∣∣∣∣∣∣∣∣

x′ =
(

x
y

)2
y′ = ± x

y .
z
y2

(x, y, z) ∈ S k

⇔
∣∣∣∣∣∣∣∣∣

x = y
√

x′

y = y, z = y′y2

√
x′

(x′, y′) ∈ E′k(Q) − E′k(Q)tor

⇔ rank E′k(Q) ≥ 1,

where E′k(Q) and E′k(Q)tor are respectively Mordell-Weil group of rational points and its torsion subgroup for E′k.
Consequently, the initial equation has a solution in S k, if and only if the rank of E′k(Q) is at least 1 (as noted in [2]):

{k ∈ Z | card S k ≥ 1} = {k ∈ Z | rank E′k(Q) ≥ 1}.
The rational torsion points of E′k generate only the trivial solutions x = y = 1, with k in the form k = n2 − 2, which are
not included in S k. In what follows, the above statements are formulated as lemmas with their proofs.

Lemma 1 The rational torsion points of E′k generate only the trivial solutions x = y = 1, with k in the form
k = n2 − 2, which are not included in S k.

Proof 1 Let P = (x′, y′) ∈ E′k and denote [m]P = (x′m, y′m), where (x′, y′) = (x′1, y
′
1). Then by the group law of E′k,

(using duplication formula [8]) one obtains

x′2 =
(x′2 − 1)2

(2y′)2
, y′2 =

(x′2 − 1)(x′4 + 2kx′3 + 6x′2 + 2kx′ + 1)

(2y′)3
(3)

Assume that P ∈ E′k(Q)[m], i.e. P ∈ E′k(Q) with [m]P = O. Then, by theorem 3, it follows that x′m and y′m are integers.
By theorem 5, it follows 1 ≤ m ≤ 12 and m � 11.

case 1: m = 2. Then [2]P = O ⇐⇒ P = −P ⇐⇒ (x′, y′) = (x′,−y′) ⇐⇒ y′ = 0. Consequently x′ = 0 or
x′2 + kx′ + 1 = 0 which is equivalent to x′ = 0 or k2 − 4 is a perfect square, i.e. k = ±2. Therefore the only point of
order 2 is P = (0, 0).

case 2: m = 4. So [4]P = O ⇐⇒ [2]P = −[2]P ⇐⇒ (x′2, y
′
2) = (x′2,−y′2) ⇐⇒ y′2 = 0. Consequently x′2 = 0 and by

(3) we obtain x′2 − 1 = 0, i.e. x′ = ±1. Therefore every rational torsion of order 4 must be of the type: P(1, n) with k
necessarily in the form k = n2 − 2, n � 0, 2, or P(−1, n) with k necessarily in the form k = n2 + 2, n � 0. Therefore
there are no rational torsion points of order 4, if k � n2 ± 2.

case 3: m = 8. So [8]P = O ⇐⇒ [4]P = −[4]P ⇐⇒ (x′4, y
′
4) = (x′4,−y′4) ⇐⇒ y′4 = 0. Consequently [4]P is

a two-torsion point and [2]P must be a four-torsion. Then by cases 1 and 2, it follows that, x′4 = y′4 = 0 and
x′2 = ±1, y′2 = n, k = n2 ∓ 2. We obtain [4]P = (0, 0), [2]P = (±1, n) and by (3), it follows that (x′2−1)2

4(x′3+kx′2+x′) = ±1

which have no solutions in integers x′. Therefore rational torsion points of order 8 do not exist.

case 4: m = 3. Then [3]P = O⇐⇒ [2]P = −P⇐⇒ (x′2, y
′
2) = (x′,−y′)⇐⇒ x′2 = x′. Consequently (x′2−1)2

4(x′3+kx′2+x′) = ±x′

which has no solutions in integers x′. Therefore rational torsion points of order 3 do not exist which means that
E′k(Q)tors has no subgroups of order 3. Consequently rational torsion points of order 6, 9 and 12 do not exist.

case 5: m = 5. So [5]P = O ⇐⇒ [4]P = −P ⇐⇒ (x′4, y
′
4) = (x′,−y′) ⇐⇒ x′4 = x′. Let us denote f (x) = (x2−1)2

4(x3+kx2+x)
.

Then x′2 = f (x′) and x′4 = f (x′2) = f ( f (x′)). Consequently f ( f (x′)) = x′ which has no solutions in integers x′. Indeed,
let us write the rational function f ( f (x)) − x as a quotient of two polynomials: f ( f (x)) − x = P(x)

Q(x)
. Then P(0) = 1,

therefore from P(x′) = 0 it follows that x′ = ±1, which is impossible. Therefore rational torsion points of order 5 do
not exist, which means that E′k(Q)tors has no subgroups of order 5. The latter implies that rational torsion points of
order 10 do not exist.

case 6: m = 7. Then [7]P = O ⇐⇒ [8]P = P ⇐⇒ (x′8, y
′
8) = (x′, y′) ⇐⇒ x′8 = x′. We obtain the equation

x′1 = f ( f ( f (x′))) which has no solutions in integers x′ with the same arguments as in case 5. Therefore rational
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torsion points of order 7 do not exist.

Summarizing the results: E′k(Q)tors �
{
Z/4Z, k = n2 ± 2
Z/2Z, k � n2 ± 2

Lemma 2 The rational torsion points of Ek generate only the trivial solutions x = y = 1, with k in the form
k = n2 − 2 which are not included in S k.

Proof 2 Similar to the proof of lemma 1. Some considerations may be reduced by using theorem 4. Since Ek and
E′k are isogenous under isogeny E′k −→ Ek with kernel of order 2 (kernel = {O, (0, 0)}), then odd torsion subgroups of
that curves are isomorphic (and hence trivial by lemma 1), but even torsion subgroups are not the same:

Ek(Q)tors �
{
Z/2Z ⊕ Z/4Z, k = n2 − 2
Z/2Z ⊕ Z/2Z, k � n2 − 2

, i.e.

Ek(Q)tors =

{
{O, (0, 0), (n2 − 4, 0), (n2, 0), (n2 ± 2n, 2ε(n2 ± 2n))}, k = n2 − 2

{O, (0, 0), (k − 2, 0), (k + 2, 0)}, k � n2 − 2

with ε = ±1.

Lemma 3 {k ∈ Z | card S k ≥ 1} = {k ∈ Z | rank E′k(Q) ≥ 1}.

Proof 3 From a direct application of lemma 1 and the calculations above: if (x, y, z) ∈ S k, then the point
P(x′, y′) ∈ E′k with coordinates x′ = (x/y)2 , y′ = ± xz/y3 is rational and by lemma 1 that point is nontorsion, since
x′ = (x/y)2 � 0,±1. Thus rank E′k(Q) ≥ 1.

Let assume that rank E′k(Q) ≥ 1 and let P(x′, y′) ∈ E′k is a rational nontorsion point. Let x′ = x1/x2, y′ =
y1/y2, gcd(x1, x2) = gcd(y1, y2) = 1 and let substitute in the equation of E′k:

x3
2y2

1 = y2
2x1(x2

1 + kx1x2 + x2
2), (4)

so x3
2
= ±y2

2, therefore x2 = ±s2, y2 = s3 and y2
1 = ±x1(x2

1 ± kx1s2 + s4). From gcd(x1, s) = 1, one obtains gcd(x1, x2
1 ±

kx1s2 + s4) = 1. Then x1 = t2, y1 = tw and consequently w2 = ±(t4 ± kt2s2 + s4). Then every nontorsion point on
E′k(Q) has the type (x′, y′) =

(
± t2

s2 ,
t
s .

w
s2

)
with t2 � s2 and ts � 0. If the sign is +, then (t, s,w) ∈ S k. Otherwise, if

P = (x′, y′) =
(
− t2

s2 ,
t
s .

w
s2

)
, then [2]P = (x′2, y

′
2) such that

x′2 =
(

t4 − s4

2stw

)2
, y′2 =

(t4 − s4)[(t4 + s4)2 + 4t4s4 − 2kt2s2(t4 + s4)]

(2stw)3
. (5)

Therefore
( |t4−s4 |

d ,
2stw

d ,
|w4−(k2−4)t4 s4 |

d2

)
∈ S k, where gcd(t4 − s4, 2stw) = d.

Remark 6 In the case k = ±2 the surface Tk is degenerate: T−2 consists of two hyperbolic paraboloids, since
T−2 : (x2 − y2 + z)(x2 − y2 − z) = 0; T+2 consists of two elliptic paraboloids: T+2 : (x2 + y2 + z)(x2 + y2 − z) = 0. The
corresponding positive integral solutions are (a, b, |a2− b2|), (a, b, a2+ b2), a � b.

In this subsection is given a complete parametric description of the non-trivial solutions, an example of higher rank
curves in the elliptic family Ek, motivation and a description via matrix equations of theorem 9. Our main result is the
following.
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Theorem 9 The equation x4+y4+kx2y2 = z2 has a non trivial solution, i.e. solution in S k, if and only if k satisfies
at least one of the following systems:

∣∣∣∣∣∣∣∣∣∣∣∣∣

x1, x2, y1, y2 − odd
βy2

2 − αy2
1 = x2

1

δy2
2 − γy2

1 = x2
2

αδ − βγ = 1
k = 4αδ − 2

∣∣∣∣∣∣∣∣∣∣∣∣∣

y1, y2 − odd
βy2

2 − αy2
1 = 4x2

1

δy2
2 − γy2

1 = 4x2
2

αδ − βγ = 4
k = αδ − 2

∣∣∣∣∣∣∣∣∣∣∣∣∣

x1, x2, y1, y2 − odd
βy2

2 − αy2
1 = 2x2

1

δy2
2 − γy2

1 = 2x2
2

αδ − βγ = 4
k = αδ − 2,

where α, β, γ, δ, x1, x2, y1, y2 are nonzero integers satisfying the conditions gcd(x1, x2) = gcd(y1, y2) =

gcd(x1x2, y1y2) = 1, x1x2y1y2 > 1, (with equality x1x2y1y2 = 1 only possible for the second system of equations).
Solutions of the equation for the corresponding three cases are:

∣∣∣∣∣∣∣∣
x = x1x2

y = y1y2

z =
∣∣∣βδy4

2 − αγy4
1

∣∣∣

∣∣∣∣∣∣∣∣∣∣
x = 2x1x2

y = y1y2

z =

∣∣∣βδy4
2
−αγy4

1

∣∣∣
4

∣∣∣∣∣∣∣∣∣∣
x = x1x2

y = y1y2

z =

∣∣∣βδy4
2
−αγy4

1

∣∣∣
4

Proof 4 Ek and E′k are isogenous, then by theorem 8 it follows that rank Ek = rank E′k. Lemma 3 gives card S k ≥ 1
if and only if rank Ek ≥ 1. For Ek we may apply complete 2 descent algorithm, since all two-torsions of Ek are rational,
i.e. Ek[2] = Ek(Q)[2] = {O, (0, 0), (k − 2, 0), (k + 2, 0)}.
Assume that k has the form k = εαδ− 2 = εβγ + 2, ε = 1 or ε = 4, with (α, β, γ, δ, x1, x2, y1, y2) as in the theorem.
Then, one could check directly that the triple (x, y, z) corresponding to k (as in the theorem) is a nontrivial solution,
and by lemma 3 that solution comes from a rational nontorsion point of E. Thus rank Ek ≥ 1.
Assume that rank Ek ≥ 1. We are going to prove that k has the form k = εαδ− 2 = εβγ+ 2. Applying theorems 6 and 7
to Ek, with e1 = 0, e2 = k − 2, e3 = k + 2, we obtain the following: there exist a square-free integers b1, b2 ∈ Q(S , 2),
such that the system of equations

b1z2
1 − b2z2

2 = k − 2, b1z2
1 − b1b2z2

3 = k + 2, (6)

has a solution (z1, z2, z3) ∈ Q∗×Q∗×Q∗ and P = (b1z2
1, b1b2z1z2z3) is a nontorsion point. The condition b1, b2 ∈ Q(S , 2)

is equivalent to:

• 16(k2 − 4) = ΔEk ≡ 0 mod bi for i = 1, 2
• p2 � b1, p2 � b2 for all primes p.

The proof will be accomplished in several steps, formulated belows as lemmas.

Lemma 4 System (6) with the condition gcd(b1, b2) = 1 is equivalent to the union of the following four systems:

b1Z2
1 ± Z2

2 = (k − 2)Z2, b1Z2
1 ± b1Z2

3 = (k + 2)Z2; (7)

b1Z2
1 ± 2Z2

2 = (k − 2)Z2, b1Z2
1 ± 2b1Z2

3 = (k + 2)Z2; (8)

where Z,Z1,Z2,Z3 are positive integers, satisfying gcd(Z,Zi) = gcd(Z, b1) = 1, i = 1, 2, 3 and k + 2 ≡ 0 mod b1.

Lemma 4 states that b2 = ±1 or b2 = ±2, and if zi =
Zi
Zii
, gcd(Zi,Zii) = 1, i = 1, 2, 3, then Z11 = Z22 = Z33 (we set

them equal to Z). Now we prove that statement for all four cases. System (6) is equivalent to

b1Z2
1Z2

22 − b2Z2
2Z2

11 = (k − 2)Z2
11Z2

22, b1Z2
1Z2

33 − b1b2Z2
3Z2

11 = (k + 2)Z2
11Z2

33. (9)

From the first equation one obtains b1Z2
22 ≡ 0 mod Z2

11 and b2Z2
11 ≡ 0 mod Z2

22. Then by the square-free property
of b1, b2, it follows that Z11 and Z22 have the same set of prime divisors and the same powers for each prime in
the product decomposition, so Z11 = Z22. From the second equation of (9), one could imply that Z11 = Z33. Thus
Z11 = Z22 = Z33 (= Z) and dividing by Z2 in (9), we obtain:

b1Z2
1 − b2Z2

2 = (k − 2)Z2, b1Z2
1 − b1b2Z2

3 = (k + 2)Z2. (10)
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If gcd(b1,Z) = d1, then by the first equation of (10), we will get b2Z2
2 ≡ 0 mod d1. Thus Z2

2 ≡ 0 mod d1 and
gcd(Z,Z2) ≡ 0 mod d1. Since gcd(Z,Z2) = 1, then d1 = 1 and by the second equation of (10), we will have that
k + 2 ≡ 0 mod b1. Subtracting the equations of (10), we obtain b2(Z2

2 − b1Z2
3) = 4Z2. Therefore 4 ≡ 0 mod b2, since

gcd(b1, b2) = 1 and gcd(Z, b2) = 1. This means that b2 = ±1 or b2 = ±2 which completes the proof of lemma 4.

A generalization of lemma 4 is:

Lemma 5 Let gcd(b1, b2) = d. System (6) is equivalent to the union of the following four systems:

d(eZ2
1 ± Z2

2) = (k − 2)Z2, e(dZ2
1 ± Z2

3) = (k + 2)Z2; (11)

d(eZ2
1 ± 2Z2

2) = (k − 2)Z2, e(dZ2
1 ± 2Z2

3) = (k + 2)Z2; (12)

where Z,Z1,Z2,Z3 are positive integers, satisfying gcd(Z,Zi) = gcd(Z, e) = gcd(e, d)
= 1, i = 1, 2, 3 and k + 2 ≡ 0 mod e, k − 2 ≡ 0 mod d, and p2 � de for all primes p.

If b1 = de, b2 = d f , then gcd(d, e) = gcd(d, f ) = gcd(e, f ) = 1 and d, e, f are square-free. As in lemma 4, we
obtain Z11 = Z22 = Z and (6) is equivalent to:

b1Z2
1 − b2Z2

2 = (k − 2)Z2, b1Z2
1Z2

33 − b1b2Z2
3Z2 = (k + 2)Z2

33Z2. (13)

From the second equation of (13), one obtains b1Z2
33 ≡ 0 mod Z2 and b1b2Z2 ≡ 0 mod Z2

33. Then by the square-free
property of b1, b2, there exists divisor d1 of d such that Z33 = d1Z. Thus (13) is equivalent to

b1Z2
1 − b2Z2

2 = (k − 2)Z2, b1Z2
1 − e f

(
d
d1

)2
Z2

3 = (k + 2)Z2. (14)

Subtracting the equations of (14), we obtain

b2Z2
2 − e f

(
d
d1

)2
Z2

3 = 4Z2, (15)

Therefore 4Z2 ≡ 0 mod d
d1

and 4Z2 ≡ 0 mod f . By the second equation of (14), gcd( f , Z) = gcd(d/d1, Z) = 1 which
implies that the square-free integers d/d1 and f are divisors of 4. Hence d/d1 = 1 or 2, f = ±1 or ±2. There are
four cases:

• (d/d1, f ) = (1,±1). Then (14) is equivalent to (11),
• (d/d1, f ) = (1,±2). Then (14) is equivalent to (12),
• (d/d1, f ) = (2,±1). Then (14) is equivalent to a subsystem of (11),
• (d/d1, f ) = (2,±2). Then (14) is equivalent to a subsystem of (12).

It is straightforward that gcd(e, Z) = gcd(d, Z) = 1 which implies k + 2 ≡ 0 mod e and k − 2 ≡ 0 mod d. This
completes the proof of lemma 5.

By using lemma 5, equation (11) gives us

eZ2
1 −

k − 2

d
Z2 = ∓Z2

2 , dZ2
1 −

k + 2

e
Z2 = ∓Z2

3 . (16)

There are three cases:

case 1: Z1,Z2,Z3-even, Z-odd. Then k ≡ 2 mod 4 and Zi = 2Z′i , i = 1, 2, 3 and Z′i are odd. If the sign in (16) is minus,
then we have

(α, β, γ, δ) =

(
e,

k − 2

4d
, d,

k + 2

4e

)
and (x1, x2, y1, y2) = (Z′2,Z

′
3,Z

′
1,Z).

Otherwise, if the sign is plus, then we have

(α, β, γ, δ) =

(
k + 2

4e
, d,

k − 2

4d
, e
)

and (x1, x2, y1, y2) = (Z′3,Z
′
2,Z,Z

′
1).
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Therefore k = 4αδ − 2 = 4βγ + 2 and we obtain the first system of theorem 9.

In case 1, it is impossible to have Z = Z′1 = Z′2 = Z′3 = 1 since the point P = (b1z2
1, b1b2z1z2z3) is a torsion.

Indeed, by lemma 2 and the calculations above

z1 = z2 = 2, z3 =
2

d
, k = (2d ± 2)2 − 2, b1 = d2 ± d, b2 = ±d,

P = (4(d2 ± d), 8(d2 ± d)) ∈ Ek(Q)tor.

case 2: Z and Z1 are odd, Z2 and Z3 are even. Hence Z2 = 2Z′2, Z3 = 2Z′3 and gcd(Z′2, Z′3) = 1. If the sign in (16) is
minus, then we have

(α, β, γ, δ) =

(
e,

k − 2

d
, d,

k + 2

e

)
and (x1, x2, y1, y2) = (Z′2,Z

′
3,Z1,Z).

Otherwise, if the sign is plus, then we have

(α, β, γ, δ) =

(
k + 2

e
, d,

k − 2

d
, e
)

and (x1, x2, y1, y2) = (Z′3,Z
′
2,Z,Z1).

It is possible to have Z = Z1 = Z′2 = Z′3 = 1

since the point P = (b1z2
1, b1b2z1z2z3) in this case is not a torsion. Indeed, by lemma 2 and the calculations above, we

obtain

z1 = 1, z2 = 2, z3 =
2

d
, k = d2 ± 5d − 2, b1 = d2 ± d, b2 = ±d,

P = (d2 ± d, 4(d2 ± d)) � Ek(Q)tor.

Therefore k = αδ − 2 = βγ + 2 and we obtain the second system of theorem 9.

By using lemma 5, equation (12), we obtain

eZ2
1 −

k − 2

d
Z2 = ∓2Z2

2 , dZ2
1 −

k + 2

e
Z2 = ∓2Z2

3 . (17)

case 3: k ≡ 1 mod 2 and Z,Zi are odd. Hence d ≡ e ≡ 1 mod 2. If the sign in (17) is minus, then we have

(α, β, γ, δ) =

(
e,

k − 2

d
, d,

k + 2

e

)
and (x1, x2, y1, y2) = (Z2,Z3,Z1,Z).

Otherwise, if the sign is plus, we have

(α, β, γ, δ) =

(
k + 2

e
, d,

k − 2

d
, e
)

and (x1, x2, y1, y2) = (Z3,Z2,Z,Z1).

Consequently k = αδ − 2 = βγ + 2 and we obtain the third system of theorem 9.

For case 3, it is impossible to have Z = Z1 = Z2 = Z3 = 1 since the point P = (b1z2
1, b1b2z1z2z3) is a torsion.

Indeed, by lemma 2 and the calculations above

z1 = z2 = 1, z3 =
1

d
, k = (d ± 2)2 − 2, b1 = d2 ± 2d, b2 = ±2d,

P = (d2 ± 2d, 2(d2 ± 2d)) ∈ Ek(Q)tor.

All the other possibilities for the parity of Z and Zi lead to the same results, as already obtained above, which completes
the proof of the theorem.
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Remark 7 Theorem 9 allows compact description by matrix equations. Let M2(Z) be the set of 2 × 2 matrices
with integral elements and for convenience, let us introduce the following definition: two 2-dimensional vectors X and
Y are called perfect pair if their coordinates are integral, perfect squares and pairwise coprime, with product greater
than 1. Then theorem 9 states that all values of k come from such matrix g ∈ M2(Z), with nonzero elements, for which
the equation

g ◦ Y = εX (18)

has a solution (X,Y) which is a perfect pair. In correspondence with the notations above, let

g =
( −α β
−γ δ

)
, X =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x2

1

x2
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
y2

1

y2
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , ε ∈ {1, 2, 4}. (19)

There are three cases that correspond to the three systems of equations in the theorem:

case 1: det(g) = −1, ε = 1, k = 4αδ − 2,
case 2: det(g) = −4, ε = 4, k = αδ − 2,
case 3: det(g) = −4, ε = 2, k = αδ − 2.

Case 1 gives all solutions (x, y, z), with x, y odd, z even, and k even.
Case 2 gives all (x, y, z), with x even, y, z odd, and k can be even or odd.
Case 3 gives all solutions (x, y, z), with x, y, z odd, and k odd.

Remark 8 To every generator P of the Mordell-Weil group Ek(Q), corresponds a unique matrix gP ∈ M2(Z) given
by following short non-exact sequence:

0 −→ Ek(Q)/2Ek(Q) −→ Q(S , 2) × Q(S , 2) −→M2(Z)

P = (x, y) 
−→ (b1, b2) 
−→ gP =

( −α β
−γ δ

)
.

The middle map is an injective group homomorphism, defined in theorem 6 where S = {p− prime | ΔEk ≡ 0 mod p}∪
{±1}. The third map is defined as follows. Let d = gcd(b1, b2). Set ρ = 4, when k ≡ 2 mod 4 and x = r/s, r-even,
s-odd; and ρ = 1 otherwise. There are two cases that correspond to sign(b2) = −1 and sign(b2) = +1:

gP =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
− b1

d
k−2
ρd

−d (k+2)d
ρb1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , gP =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
− (k+2)d
ρb1

d

− k−2
ρd

b1

d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Example 2 Using remark 7 and the Magma software ([12]), we obtain higher rank curves in the elliptic family
Ek, with solutions of the general equation that correspond to generators of the Mordell-Weil group for these curves.
Consider the matrix gi ∈ M2(Z)

g1 =

( −2 102
−287 14639

)
, g2 =

( −2 4182
−7 14639

)
,

g3 =

( −29278 1394
−21 1

)
, g4 =

( −2 6
−4879 14639

)
.

The following equalities are satisfied, i.e. solutions of the equation (18) gi ◦ Y = 4X:

g1 ◦
(

72

12

)
= 4

(
12

122

)
, g2 ◦

(
5032

112

)
= 4

(
12

82

)
,

g3 ◦
(

52

232

)
= 4

(
372

12

)
, g4 ◦

(
192

112

)
= 4

(
12

502

)
.
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Since det(gi) = −4, ε = 4, then case 2 of theorem 9 states that k = αiδi − 2 = 29 276 and the solutions of the general
equation are (xi, yi, zi), such that

(x1, y1, z1) = (24, 7, 28 751), (x2, y2, z2) = (16, 5533, 34 156 471),

(x3, y3, z3) = (74, 115, 1 456 151), (x4, y4, z4) = (100, 209, 3 576 319).

By remark 8, gi corresponds to a generator Pi ∈ E29 276(Q) for i = 1, 2, 3, 4. Then (xi, yi, zi) correspond to generators
of E29 276(Q) and rank E29 276(Q) ≥ 4. It can be shown that rank E29 276(Q) = 4 (see Table 1).

Example 3 Another rank four elliptic curve from the elliptic family Ek is given by k = 70 808. As in example 2,
the calculation of matrix generators g′1, g

′
2, g
′
3, g
′
4 corresponding to generators of E70 808(Q) is as follows: consider the

matrix g′i ∈ M2(Z) :

g′1 =
( −6 70810
−1 11801

)
, g′2 =

( −73 11801
−6 970

)
,

g′3 =
( −14162 70806
−1 5

)
, g′4 =

( −2 70806
−1 35405

)
.

The following equalities are satisfied, i.e. solutions of the equation (18) gi ◦ Y = 4X:
( −6 70810

1 11801

) (
1012

12

)
= 4

(
492

202

)
,

( −73 11801
−6 970

) (
892

72

)
= 4

(
22

12

)
.

( −14162 70806
−1 5

) (
1992

892

)
= 4

(
792

12

)
,

( −2 70806
−1 35405

) (
1792

12

)
= 4

(
412

292

)
.

Since det(g′i) = −4, ε = 4, then case 2 of theorem 9 states that k = αiδi − 2 = 70 808 and the solutions of the general
equation are (xi, yi, zi), such that

(x1, y1, z1) = (1960, 101, 52 816 601), (x2, y2, z2) = (4, 623, 768 353),

(x3, y3, z3) = (158, 17711, 808 004 167), (x4, y4, z4) = (2378, 179, 113 408 767).

By remark 8, g′i corresponds to a generator Pi ∈ E70 808(Q) for i = 1, 2, 3, 4. Then (xi, yi, zi) correspond to generators
of E70 808(Q) and rank E70 808(Q) ≥ 4. It can be shown that rank E70 808(Q) = 4 (Table 1).

Ek

k x y z rank Ek generators

29 276 24 7 28 751 4 g1

16 5 533 34 156 471 g2

74 115 1 456 151 g3

100 209 3 576 319 g4

70 808 1960 101 52 816 601 4 g′1
4 623 768 353 g′2

158 17 711 808 004 167 g′3
2378 179 113 408 767 g′4
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Example 4 There are infinitely many integers k for which the main considered equation has a solution (x, y, z) in
distinct odd prime numbers. It is a necessary and sufficient condition that k is in the form

k = ±2 + n(2p2 ± 2q2 + np2q2), (20)

where p, q and |p2 ± q2 + np2q2| are primes, for some n ∈ Z.

Proof: When p and q are distinct odd primes, the arithmetic progression {p2 ± q2 + np2q2}n∈Z contains in-
finitely many primes, by the Dirichlet theorem. When k has the form (20), then a solution in prime numbers
is

(x, y, z) = (p, q, |p2 ± q2 + np2q2|).
If (x, y, z) = (p, q, r) is a solution in primes, then by theorem 9, case 3 of remark 7 and the following identities

( −(2 + np2) 2p2 + 2q2 + np2q2

−n 2 + nq2

) (
q2

1

)
= 2

(
p2

1

)
,

( −n 2 + nq2

−(np2 − 2) 2p2 − 2q2 + np2q2

) (
q2

1

)
= 2

(
1
p2

)
,

it follows that r = |p2 ± q2 + np2q2| for some n ∈ Z and k has the form (20).

Remark 9 The motivation for theorem 9 is the following observation concerning the possible values of k:

k =
z2 − x4 − y4

x2y2
=

1

y2

(
(z − y2)(z + y2)

x2
− x2

)
, (21)

where (x, y, z) ∈ S k and we may assume that y is odd since gcd(x, y, z) = 1. There are two cases:

case 1: z ≡ 0 mod 2. Then x is odd and gcd(z − y2, z + y2) = 1. From (21), one could see that (z − y2)(z + y2)/x2 is an
integer. Therefore there exist odd integers x1, x2, t1, t2 such that:

z − y2 = t1x2
1, z + y2 = t2x2

2, x = x1x2, gcd(t1x1, t2x2) = 1. (22)

We obtain k = (t1t2 − x2
1x2

2)/y2 and 2y2 = t2x2
2 − t1x2

1. Consequently,

t1t2 ≡ x2
1x2

2 mod y2, t1x2
1 ≡ t2x2

2 mod y2, (23)

where gcd(y, t1t2x1x2) = 1 and t1t2
2 ≡ t2(x1x2)2 ≡ x2

1(t2x2
2) ≡ t1x4

1 mod y2. Thus (t2 − x2
1)(t2 + x2

1) ≡ 0 mod y2 and
similarly (t1 − x2

2)(t1 + x2
2) ≡ 0 mod y2. In addition, there exist nonzero even integers A, B,C,D such that:

t2 − x2
1 = Ay2

1, t2 + x2
1 = By2

2, t1 − x2
2 = Cy2

1, t1 + x2
2 = Dy2

2, y = y1y2, (24)

where gcd(y1, y2) = 1. Solving the equations (24), we obtain

t1 = (Cy2
1 + Dy2

2)/2, t2 = (Ay2
1 + By2

2)/2, (25)

x2
1 = (By2

2 − Ay2
1)/2, x2

2 = (Dy2
2 −Cy2

1)/2. (26)

Finally, k = (t1t2 − x2
1x2

2)/y2 = (AD + BC)/2 and 2y2 = t2x2
2 − t1x2

1 = (AD − BC)y2/2. Therefore AD = k + 2 and
BC = k − 2. Let (α, β, γ, δ) = (A/2, B/2,C/2,D/2). Then case 1 is equivalent to the existence of nonzero integers
α, β, γ, δ, such that:

x2
1 = βy

2
2 − αy2

1, x2
2 = δy

2
2 − γy2

1, αδ = (k + 2)/4, βγ = (k − 2)/4. (27)

Hence, we obtain the first system for k in theorem 9.

110002-12



case 2: z ≡ 1 mod 2. Then gcd(
z−y2

2
, z+y2

2
) = 1. There are two cases for the parity of x.

case 2.1: x ≡ 0 mod 2. Then x = 2x1x2, gcd(x1, x2) = 1. Similarly as in case 1, we obtain

z − y2 = 2t1x2
1, z + y2 = 2t2x2

2, gcd(t1x1, t2x2) = 1. (28)

There exist nonzero integers A, B,C,D such that:

t2 − 2x2
1 = Ay2

1, t2 + 2x2
1 = By2

2, t1 − 2x2
2 = Cy2

1, t1 + 2x2
2 = Dy2

2, y = y1y2, (29)

where gcd(y1, y2) = 1, A ≡ B mod 4 and C ≡ D mod 4, A −C ≡ 1 mod 2.

t1 = (Cy2
1 + Dy2

2)/2, t2 = (Ay2
1 + By2

2)/2, (30)

x2
1 = (By2

2 − Ay2
1)/4, x2

2 = (Dy2
2 −Cy2

1)/4. (31)

Finally, k = (t1t2 − 4x2
1x2

2)/y2 = (AD + BC)/2 and y2 = t2x2
2 − t1x2

1 = (AD − BC)y2/4. Therefore AD = k + 2 and
BC = k − 2. Let (α, β, γ, δ) = (A, B,C,D). Then case 2.1 is equivalent to the existence of nonzero integers α, β, γ, δ,
such that:

(2x1)2 = βy2
2 − αy2

1, (2x2)2 = δy2
2 − γy2

1, αδ = k + 2, βγ = k − 2 (32)

Therefore, we obtain the second system for k in theorem 9.

case 2.2: x ≡ 1 mod 2. Then x = x1x2, gcd(x1, x2) = 1. Similarly to the previous cases, we obtain

z − y2 = 2t1x2
1, z + y2 = 2t2x2

2, gcd(t1x1, t2x2) = 1, t1 − t2 ≡ 1 mod 2. (33)

There exist nonzero integers A, B,C,D such that:

2t2 − x2
1 = Ay2

1, 2t2 + x2
1 = By2

2, 2t1 − x2
2 = Cy2

1, 2t1 + x2
2 = Dy2

2, y = y1y2, (34)

where gcd(y1, y2) = 1, A + B ≡ C + D ≡ A +C ≡ B + D ≡ 0 mod 4. Therefore:

t1 = (Cy2
1 + Dy2

2)/4, t2 = (Ay2
1 + By2

2)/4, (35)

x2
1 = (By2

2 − Ay2
1)/2, x2

2 = (Dy2
2 −Cy2

1)/2. (36)

Finally, k = (4t1t2 − x2
1x2

2)/y2 = (AD + BC)/2 and y2 = t2x2
2 − t1x2

1 = (AD − BC)y2/4. Consequently, AD = k + 2
and BC = k − 2. Let (α, β, γ, δ) = (A, B,C,D). Then case 2.2 is equivalent to the existence of nonzero odd integers
α, β, γ, δ, such that:

2x2
1 = βy

2
2 − αy2

1, 2x2
2 = δy

2
2 − γy2

1, αδ = k + 2, βγ = k − 2 (37)

Hence, we obtain the third system for k in theorem 9 which completes the survey.1.

In this section are given definitions of Zp, Qp and the reduction map modulo p. Let p be a prime number, E/Q be an

elliptic curve over Q, and Fp = Z/pZ be a finite field with p elements. Let us denote by

∞∏
n=1

Z/pnZ, ρn : Z/pn+1Z −→ Z/pnZ a + pn+1Z 
−→ a + pnZ

the direct product of the rings Z/pnZ, n = 1, 2, ... and the cannonical projections.

1Important results for considered diophantine problem are obtained in [2],[3],[5],[7],[10],[11]
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Definition 9 The ring Zp of p-adic integers is defined by

Zp = {(xn) ∈
∞∏

n=1

Z/pnZ | ρn(xn+1) = xn},

with operations given by componentwise addition and multiplication.

Remark 10 The map Z −→ Zp n 
−→ (n+pZ, n+p2Z, . . . , n+pnZ, . . .) is inclusion, therefore Z can be considered
as subring of Zp.

Definition 10 The field Qp of the p-adic rational numbers is defined as a field of fractions for Zp.

Remark 11 The map Q −→ Qp a 
−→ a is inclusion, thus Q can be considered as subfield of Qp.

Remark 12 The map Zp −→ Fp a 
−→ a + pZ is surjective ring homomorphism with kernel pZp. Therefore

Zp/pZp � Fp.

Remark 13 E/Q : y2 = x3 + ax2 + bx + c can be transformed to an elliptic curve with integral coefficients: let
u be the least common multiplier of the denominators of the coefficients a, b, c. The change (x, y) 
−→ (X, Y) defined
by X = u2x, Y = u3y transforms the equation to the equation Y2 = X3 + au2X2 + bu4X + cu6 which has integral
coefficients.

Remark 14 Let E/Qp be an elliptic curve over Qp. With a modification of the above remark, we may assume that
E/Qp has coefficients in Zp. By reduction of the coefficients of E modulo pZp, we obtain a curve Ẽ with coefficients
in Zp/pZp � Fp. The map E/Qp −→ Ẽ/Fp is called reduction.
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