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Abstract - This paper presents optimization method for 

synthesis of generalized microwave filters with arbitrary 
topology. The method utilizes Nelder-Mead local optimizer for 
coupling matrix determination. The synthesis procedure 
converges very fast as for a initial point is used a vector based on 
the Chebyshev all pole filter for the same degree of the filter. To 
validate the proposed synthesis method two numerical examples 
for resonant filters are computed. The frequency responses from 
the synthesis procedure and the theoretical responses show 
excellent agreement. 
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I. INTRODUCTION 

Microwave coupled resonator filters play important role in 
the modern communication systems. The constraint 
RF/microwave spectrum requires high attenuation in the stop 
band and low insertion loss in the passband of the filters. 
These requirements can be met only by cross-coupled 
microwave filters, realizing attenuation poles on finite 
frequencies. More over cross coupled filters can exhibit flat 
group delay, when realizing complex conjugate transmission 
zeroes. Cross-coupled resonator filters allow using various 
topologies with variety of frequency responses.  

The microwave filter modelling is very important for the 
fast and accurate design. 

In the early 1970�s started the development of the theory of 
cross-coupled resonator filters by Atia and Williams in their 
basic paper [1]. Cameron extended the theory to general 
cross-coupled Chebyshev filtering functions synthesis in the 
papers [2, 3].  The synthesis procedure continues with 
deriving the transversal coupling matrix from the Chebyshev 
polynomials. Key point in the obtaining of the coupling 
matrix corresponding to the practical filter topology is to 
convert transversal form to folded form using matrix rotations. 
Folded form of the coupling matrix is starting point for matrix 
rotation sequences to derive the final coupling matrix. Most of 
the matrix rotation sequences are given in [4]. It is noticed 
that this method for synthesis suffers from generality, because 
the matrix rotations cannot be derived for every one practical 
filter topology. Some of the matrix rotation sequences cannot 
converge in order to find the coupling matrix. Some of the 
disadvantages in this method are solved if arrow form of the 
coupling matrix is used [5] or Pfitzenmeir method is used [6]. 
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In many practical cases, it is necessary to define the filter 
topology in order to satisfy some manufacturing or space 
requirements. In this case, the exact solution is hard to be 
found with the conventional synthesis methods.  

Many commercially available design packages offer direct 
optimization of the physical dimensions of the filter topology. 
This method for synthesis cannot converge in the general 
case, because there is no �general� optimization method that 
is suitable for the optimization problem.  If a local minimum 
is found, the sensitivity of this point is unknown. Starting 
from different points, the optimization process can lead us to 
different local minimum of the cost function. One of the 
solutions may be a global minimum, but there is no a priori 
guarantee for finding it. Some of the solutions may have very 
big sensitivities toward the manufacturing tolerances, 
temperature, or could not be realized in the practice. 
Therefore, the direct synthesis over the geometrical 
dimensions of the filter is not a good decision for general 
design method. 

One possible general solution to the filter design for 
arbitrary topology is to apply direct local optimization over 
the coupling matrix with successive starting point. In the basic 
papers proposed optimization method for coupling matrix 
synthesis [7, 8], the starting vector is set to arbitrary values. 
This makes the local optimization very unstable method for 
cost function minimization. Another method is to use global 
optimization method for finding the coupling matrix for 
certain filter topology. They perform robust optimization, no 
matter about the starting point. Unfortunately the global 
optimizers such as genetic or stochastic have very slow 
convergence to the cost function minimum.  

This paper presents optimization method for synthesis of 
microwave filters with arbitrary topology. The method uses 
Nelder-Mead local optimizer for coupling matrix 
determination. The synthesis procedure converges very fast as 
for a initial point is used a vector based on the Chebyshev all 
pole filter for the same degree of the filter. The cost function 
is based on amplitude of the transmission and reflection 
coefficient zeros and their values at the cut-off frequencies. 
To validate the proposed synthesis method two resonant filters 
are designed with asymmetrical responses. The frequency 
responses from the synthesis procedure and the theoretical 
responses show excellent agreement.  

II. RESONATOR FILTER CHARACTERISTICS 

The synthesis procedure starts with the low-pass prototype 
with normalized angular frequency of passband 1 . The 
transfer and reflection coefficients may be expressed as a ratio 
of two N-th degree polynomials as follows: 

 

167 



 

21
N

N

P
S

E
, 

 11
N

N

D
S

E
, (1) 

where  is real angular frequency and 
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prescribed value of the return loss in dB, in the passband of 
the filter. It is assumed that all polynomials are normalized to 
their highest degree coefficient. The reflection and the transfer 
coefficients must satisfy the unitary conditions of the 
scattering matrix. 
 . (2) * *
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It can be easily found that the transfer coefficient may be 

expressed in the following way: 
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is the filtering function. For 
general Chebyshev characteristics, the filtering function is in 
the form: 
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x , where n  is the angular frequency of 

the prescribed transmission zero. 
In order to obtain the coupling matrix, it is necessary to 

consider the equivalent circuit of general coupled resonator 
filter shown on Fig.1. 
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Fig.1. General coupled resonator filter 

The equivalent circuit consists of N series coupled 
resonators with frequency independent couplings ijM ( i j ), 
between the i-th and j-th resonators. The circuit is driven by 
voltage source E with internal normalized resistance 

and loaded to normalized impedance 1 1R 2 1R . There 
exists coupling between the Source and Load to perform all N 
finite frequency transmission zeroes. The resonant frequency 
of each resonator 0if  is represented by the self-coupling 
coefficient iiM  and the center frequency of the filter.  They 
must satisfy the equation:  
 . (5) 2

0 0 0 0 0i ii if M f f f

The transmission and reflection coefficients of a lossless 
filter of N-th order depend only of the coupling matrix  
(7): 
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matrix, which elements are zeroes except . 

W  is a 2 2N N

11

 matrix, where the main diagonal 
elements are unity except W W . All remaining 

elements of 
2, 2N N 0

W  are zeroes. M  is the coupling matrix, 
symmetrical around the main diagonal. 

III. SYNTHESIS OF MICROWAVE FILTER WITH 
COUPLING MATRIX OPTIMIZATION 

The cost function used in the optimization process is based 
on the zeroes and poles of the filtering function , assuming 
that the number of poles is P and zeroes N [8]: 
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This cost function requires less computational efforts than 
using the theoretically derived  and for pattern search. 21S 11S

In this way it is possible to formulate the local optimization 
problem for obtaining the coupling matrix.  

The advantages of this method for synthesis are: 
1. Design of filter with prescribed transmission zeros with 

symmetric or asymmetric response. 
2. Design of filter with arbitrary topology, even or odd 

order. 
3. Possibility of constraints for the magnitude and sign of 

the coupling coefficients if a given realization is 
intended. 

4. Elimination of the similarity transformations for the 
coupling matrix and the extraction technique. There is 
no possibility for calculation errors or round off errors. 

The main disadvantages for the optimization method are: 
1. Exact solution is not guaranteed, especially for great 

number of variables.  
2. The filter topology must be able to realize the desired 

filter response. Then a local minimum is reached by the 
optimization process.  

3. If the initial guess is arbitrary, the global minimum 
cannot be reached in every filter design. 

4. Some of the elements of the coupling matrix, derived 
in the optimization process may be impossible to 
realize. 

The initial guess for the coupling matrix is very important 
for the reaching of the global minimum of the cost function 
(7). Having on mind that a local optimizer is used, the 
starting vector should be close to the target value in order to 
assure a fast convergence of the method. One of the 
possible starting coupling matrices is to set all self-coupling 
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couplings to zero ( ) and all direct couplings to 1. 
The cross-coupling coefficients are all set to zero. 

0iiM

The second possible starting coupling matrix is to use 
classical Chebyshev filter from the same order. All self- 
and cross-couplings are set to zero. In order to find out 
which starting point is more computational efficient some 
numerical designs are investigated. 

 
III. NUMERICAL RESULTS 

For verification of the optimization method presented in 
this paper, it is applied to an asymmetric resonator filters.  

A. Asymmetric Three Resonator Passband Filter 

This filter is of Chebyshev type and it has return loss more 
than 20dB in the passband and rejection in the higher 
stopband better than -15dB. The transmission coefficient zero 
is placed on normalized frequency 1.6p . The coupling 
scheme of the filter is shown on Fig.2. 
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Fig.2. Coupling scheme of an asymmetric three pole filter 

The reflection and transmission zeroes calculated and 
summarized in Table 1.   

Table 1. Poles and zeros of asymmetric three resonator filter 
 Reflection zeros Transmission zeros Poles 

1 -j0.8061 j1.56 -0.9542-1.4447i 
2 j0.9257 infinite -1.1781+ 0.5923i 
3 j0.2430 infinite -0.2239 + 1.2150i 
 
The initial point for the coupling matrix elements for the 

optimization procedure is to set the values of the all pole three 
resonator Chebyshev filter 1 1.0825SM , 

.  12 23 1.0303M M

 
Fig.3 Cost function value for asymmetric three resonator filter 

All self coupling and cross coupling coefficients are set to 
zero. The number of the independent values of the coupling 
matrix is 7. 

After 33 iterations for the optimization coefficient, the 
procedure converges. The values of the cost function vs the 
number of iterations is shown on Fig.3. The initial value of the 

cost function is 0.335 and the end value is 104.927.10 .  The 
optimization process stopped because of reaching local 
minimum of the cost function (7).  The final coupling matrix 
is: 

 

0 1.0866 0 0 0
1.0866 0.1741 0.8076 0.7679 0

0 0.8076 0.7108 0.8076 0
0 0.7679 0.8076 0.1741 1.0866
0 0 0 1.0866 0

M . (8) 

The frequency response of the designed filter is shown on 
Fig.4. It is calculated by the derived in the optimization 
process coupling matrix (8) and (6). It is clearly seen that the 
normalized cut off frequency is 1c

1.56
, while the 

transmission zero frequency is p . The maximum 
value of the return loss is with the prescribed value of -20dB. 

 
Fig.4 Frequency response of three resonator filter with asymmetric 

response. Solid line-S21, dashed line- S11 
 
B. Asymmetric Five Resonator Passband Filter 
The five resonator filter is formed by two cascaded 

trisections, each one performing one transmission zero. The 
filter is Chebyshev type and it has maximum return loss of -
20dB. The transmission zeroes are placed on -2.3 and 1.6. 

The coupling scheme of the filter is shown on Fig.5. 
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Fig.5. Coupling scheme of an asymmetric five pole filter 

Both trisections share a common resonator in order to 
reduce the filter order. The roots of the polynomials in the 
numerator and denominator in (1) are shown in Table2. 

Table 2. Poles and zeros of asymmetric five resonator filter 
 Reflection zeros Transmission zeros Poles 

1 -j0.9522 j1.6 -0.1838 - 1.1266j 
2 -j0.5808 -j2.3 -0.5407 - 0.7163j 
3 j0.0481 infinite -0.6933 + 0.0655j 
4 j0.6452 infinite -0.1377 + 1.1036j 
5 j0.9619 infinite -0.4742 + 0.7961j 

The starting point for the optimization process is based on 
the Chebyshev coupling matrix elements 1 1.0137SM , 
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As it is clearly seen from Fig.6, the transmission zeros are 
placed on the prescribed values of -2.3 and 1.6. The maximum 
value of the reflection coefficient is -20dB.  

12 45 0.8653M M , . The number of 
the independent values of the coupling matrix is 12. The 
optimization process converges very fast in 77 iterations of 
the optimizer with end cost function value 

23 34 0.6357M M

122.5953.10 . The 
trials with setting of all main couplings to ones and all cross 
and self-couplings to zero as an initial point lead the optimizer 
to a local minimum with cost function value of order 31.10 . 
Fig. 5 shows the cost function value with respect to the 
iterations. 

Both presented examples show fast convergence of the cost 
function to a local minimum. In both cases this local 
minimum is found to be a global minimum corresponding to 
general Chebyshev filter. In both cases the starting point for 
the optimization process was the coupling matrix of classic 
Chebyshev filter. All the cross couplings and self-couplings 
were set to zero. During the tests of the optimization function, 
was experienced with another set of starting points. All the 
main couplings were set to ones and the rest of the couplings 
were set to zero. In this case the optimization process went to 
a minimum that was found to be local, but not a global one.   

IV. CONCLUSION 

 
Fig.5 Cost function value for asymmetric five resonator filter 

 

The coupling matrix derived in the optimization process is: 
0 1.0081

1.0081 0.0097
0 0.7590
0 0.3904
0 0
0 0
0 0

M

0 0 0
0.7590 0.3904 0
-0.5480 0.5411 0
0.5411 0.0264 0.5952

0 0.5952 0.3801
0 -0.2527 0.8152
0 0 0

0
0
0

-0.2527
0.8152
0.0097
1.0081

0
0
0
0
0

1.0081
0

This paper presents optimization method for synthesis of 
microwave filters with arbitrary topology. The method uses 
Nelder-Mead local optimizer for coupling matrix 
determination. The synthesis procedure converges very fast as 
for an initial point is used a vector based on the Chebyshev all 
pole filter for the same degree of the filter. To validate the 
proposed synthesis method two resonant filters are designed 
with asymmetrical responses. Both presented examples show 
fast convergence of the cost function to a local minimum. In 
both cases this local minimum is found to be a global 
minimum corresponding to general Chebyshev filter. The 
frequency responses from the synthesis procedure are within 
the expectations and found to be consistent with the 
theoretical responses and given filter specifications. 
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