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An analytical approach to the theory of electromagnetic waves in nonlinear vacuum is developed. The evolution
of the pulse is governed by a system of nonlinear wave vector equations. An exact solution with its own angular
momentum in the form of a shock wave is obtained. © 2012 Optical Society of America
OCIS codes: 190.5940, 260.5950.

Contemporary high-power laser facilities can generate
optical pulses with intensities of the order of
1022 W=cm2. At the same time, the critical power for
observation self-action effects due to virtual electron–
positron pairs is of order [1–3] Pcr � λ2=8n0n2 �
2.5–4.4 × 1024 W, at a wavelength of 1 μm. Thus, for a
laser pulse with waist r⊥ � 1 mm the corresponding in-
tensity becomes Ivaccr � Pcr=r2⊥ � 2.5–4.4 × 1026 W=cm2,
which is above the range of the new high-power lasers.
The nonlinear addition to the refractive index in vacuum
depends also on the magnetic field. That is why new dif-
ferent nonlinear effects can be expected. There are not
only self-action effects, but also vacuum birefringence
[4,5,7], different kinds of four-wave interaction [6,8,9],
and higher-order harmonic generation [10]. In this Letter,
we shall investigate the self-action effect only for inten-
sities of the order of Ivaccr .
Euler, Heisenberg, and Kockel [11,12] predicted intrin-

sic nonlinearity of the electromagnetic vacuum due to the
electron–positron nonlinear polarization. The classical
field-dependent nonlinear vacuum dielectric tensor can
be written in the form

ϵik � δik �
7e4ℏ

45πm4c7
�2�jE⃗j2 − jB⃗j2� � 7BiBk�; (1)

where a complex form of presenting of the electrical Ei
and magnetic Bi components is used. Note that the term
containing BiBk vanishes, when a localized electromag-
netic wave with only one magnetic component Bl is in-
vestigated. The dielectric response relevant to such
optical pulse is thus

ϵik � δik �
14e4ℏ

45πm4c7
�jE⃗j2 − jB⃗j2�: (2)

In the case when the spectral width of a pulse Δkz ex-
ceeds the values of the main wave vector, i.e., Δkz ≃ k0,
the system of amplitude equations can be reduced to
wave type [13] and in nonlinear vacuum becomes

ΔE⃗ −
1

c2
∂2E⃗

∂t2
� γ�jE⃗j2 − jB⃗j2�jE⃗ � 0;

ΔB⃗ −
1

c2
∂2B⃗

∂t2
� γ�jE⃗j2 − jB⃗j2�jB⃗ � 0; (3)

where γ � 7k20e
4ℏ

90πm4c7
and E⃗, B⃗ are the amplitude functions.

Initially, we can write the components of the electrical
and magnetic fields as a vector sum of circular and linear
components Ez; Ec � iEx − Ey; Bl � −Bz. Thus Eq. (3)
is transformed into the following scalar system of
equations:

ΔEz −
1

c2
∂2Ez

∂t2
� γ�jEzj2 � jEcj2 − jBlj2�Ez � 0;

ΔEc −
1

c2
∂2Ec

∂t2
� γ�jEzj2 � jEcj2 − jBlj2�Ec � 0;

ΔBl −
1

c2
∂2Bl

∂t2
� γ�jEzj2 � jEcj2 − jBlj2�Bl � 0. (4)

Let us now parameterize the three-dimensional
�3D� � 1 space-time through pseudospherical coordi-
nates �r;τ;θ;φ�:z� r cosh�τ�cos�θ�, y� r cosh�τ�sin�θ�
sin�φ�, x � r cosh�τ� sin�θ� cos�φ�, and ct � r sinh�τ�,
where r �

�����������������������������������������
x2 � y2 � z2 − c2t2

p
. After calculations, the

corresponding d’Alambert operator in pseudospherical
coordinates becomes [14]

Δ −
1

c2
∂2

∂t2
� 3

r
∂

∂r
� ∂2

∂r2
−

1

r2
∂2

∂τ2
− 2

tanh τ

r2
∂

∂τ

� 1

r2 cosh2τ
Δθ;φ; (5)

where with Δθ;φ is denoted the angular part of the usual
Laplace operator

Δθ;φ � 1
sin θ

∂

∂θ

�
sin θ

∂

∂θ

�
� 1

sin2 θ

∂2

∂φ2 : (6)

The system of equations (4) in pseudospherical coordi-
nates becomes
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3
r
∂Ez

∂r
� ∂2Ez

∂r2
−

1

r2
∂2Ez

∂τ2
− 2

tanh τ

r2
∂Ez

∂τ
� 1

r2 cosh2 τ
Δθ;φEz

� γ�jEzj2 � jEcj2 − jBlj2�Ez � 0;

3
r
∂Ec

∂r
� ∂2Ec

∂r2
−

1

r2
∂2Ec

∂τ2
− 2

tanh τ

r2
∂Ec

∂τ

� 1

r2 cosh2 τ
Δθ;φEc � γ�jEzj2 � jEcj2 − jBlj2�Ec � 0;

3
r
∂Bl

∂r
� ∂2Bl

∂r2
−

1

r2
∂2Bl

∂τ2
− 2

tanh τ

r2
∂Bl

∂τ
� 1

r2 cosh2 τ
Δθ;φBl

� γ�jEzj2 � jEcj2 − jBlj2�Bl � 0. (7)

Equations (7) are solved using the method of separation
of the variables.

Ei�r; τ; θ;φ� � R�r�Ti�τ�Yi�θ;φ�;
Bl�r; τ; θ;φ� � R�r�Tl�τ�Yl�θ;φ�; (8)

where i � z, c. We use an additional constraint on the
angular and “spherical” time parts

jTzj2jYzj2 � jTcj2jYcj2 − jTlj2jYlj2 � const: (9)

The condition (9) separates the variables. The nonlinear
terms appear in the radial part only. Thus the radial parts
obey the equation

3
r
∂R
∂r

� ∂2R

∂r2
−
Ai

r2
R� γjRj2R � 0; (10)

where Ai, i � z, c, l are separation constants. We look for
solutions that possess more clearly expressed localiza-
tion than the scalar soliton solution obtained in [13]

R � sech�ln�rα��
r

; (11)

where α, γ and the separation constants Ai, i � z, c, l
satisfy the relations α2 − 1 � Ai; 2α2 � γ. The corre-
sponding τ-dependent part of the equations (7) is linear:

cosh2 τ
d2Ti

dτ2
� 2 sinh τ cosh τ

dTi

dτ
� �Ci − Ai cosh2 τ�Ti;� 0; (12)

where i � z, c, l and Ci are other separation constants
connected with the angular part of the Laplace operator
Yi�θ;φ�. Only the following solutions of Eq. (12) exist,
which satisfy the condition (9): Tz � cosh τ, Tc � cosh τ,
Tl � sinh τ, with separation constants—for the electrical
part Az � Ac � 3, Cz � Cc � 2 and for the magnetic part
Al � 3, Cl � 0. Thus the magnetic part of the system of
equations (7) does not depend on the angular compo-
nents, i.e., Yl�θ;φ� � 0, and as for the electrical part
Yz�θ;φ�, Yc�θ;φ�, we have the following linear system
of equations:

Δθ;φYi

Yi
� −2; (13)

where now i � z, c. There are only two solutions of
Eq. (13) that satisfy the condition (9): Yz � cos θ,
Yc � sin θ exp�iφ�, Using the relation between the se-
paration constants Ai and the real number α, we obtain
the following values for α and γ: α2 � 4, α � �2; γ � 8.

Finally, we can write the exact solution of the system
of nonlinear equations (4), which describes the propaga-
tion of a electromagnetic wave in nonlinear vacuum

Ez�r; τ; θ� �
sech�ln�r�2��

r
cosh τ cos θ;

Ec�r; τ; θ;φ� �
sech�ln�r�2��

r
cosh τ sin θ exp�iφ�;

Bl�r; τ� �
sech�ln�r�2��

r
sinh τ: (14)

If we rewrite the solution in Cartesian coordinates, it is
not difficult to show that the solution (14) of the system
(4) admits finite energy and the electrical part possesses
angular momentum l � 1:

Ez �
2z

r4 � 1
; Ec �

2�x� iy�
r4 � 1

; Bl �
2ct

r4 � 1
; (15)

where r �
�����������������������������������������
x2 � y2 � z2 − c2t2

p
. The intensity profile of

the solution now becomes

I�x; y; z; t� � 4�x2 � y2 � z2 � c2t2�
��x2 � y2 � z2 − c2t2�2 � 1�2 : (16)

For a comparison, in Fig. 1, we show the time evolution
of the intensity profile I of a spherically symmetric anal-
ytical solution

E�x; y; z; t� � 1
.�

r2

r20
�

�
1� ict

r0

�
2
�

(17)

of the linear scalar wave equation

ΔE � 1

c2
∂2E

∂t2
; (18)

obtained recently by us applying the Fourier method. We
have used normalized scales r0 � 1, c � 1, and times
of evolution t � 0 and t � 10. The initially localized

Fig. 1. Time evolution of the intensity profile I of the spheri-
cally symmetric analytical solution (17) of the linear wave equa-
tion (18) (r0 � 1 and c � 1). The initially (t � 0) localized
amplitude function [Fig. 1(a)] decreases with the generation
of outside and inside fronts [Fig. 1(b)], while the energy density
distributes over the whole space for a finite time (t � 10).
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amplitude function in the linear case decreases with the
generation of outside and inside fronts, while the energy
density distributes over the whole space in a finite time.
The evolution of the intensity profile (16) is presented in
Figs. 2(a) and 2(b) for t � 0 and t � 10 correspondingly.
It is clearly seen from Fig. 2 that solution (15) describes a
nonlinear shock wave in vacuum. The wave admits en-
tirely different evolution than the linear spherical ones:
as the linear wave front enlarges spherically, the shock
wave preserves its amplitude maximum and self com-
presses itself in r direction.
In this Letter, the nonlinear vector wave equations in

nonlinear vacuum (2) are solved through the method
of separation of the variables in a pseudospherical
coordinate system. The obtained analytical solution
(15) represents a spherical shock wave with its own

angular momentum l � 1 for the electrical field. Such
a high-intensity wave can be generated not only from
the laser sources, but also in a nuclear reaction, where
a nonlinear polarization of virtual electron–positron pairs
appears at the beginning. If we compare the nonlinear
vacuum shock wave with a spherically symmetric solu-
tion of the linear wave equation, the difference becomes
obvious. While the spherically symmetric solution of the
linear wave equation forms inside and outside wave
fronts and the amplitude significantly decreases, the non-
linear shock wave preserves the amplitude maximum
and self compress in r direction.
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Fig. 2. Time evolution of the intensity (16) of the solution (15)
of the nonlinear system of equations (4) in Euler’s vacuum
(c � 1) for t � 0 and t � 10 correspondingly. The nonlinear
wave demonstrates entirely different evolution than the linear
spherical one: the shock wave preserves its amplitude maxi-
mum and self compresses in r direction.
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