
ANNUAL JOURNAL OF ELECTRONICS, 2012, ISSN 1314-0078

Approaches for reducing the power consumption in
embedded systems

Lubomir Valeriev Bogdanov and Racho Marinov Ivanov

Abstract – The following paper describes some methods for
the reduction of power consumption in embedded systems.
They will be used as a basis for the development of a tool that
will optimize the power consumption automatically.

Keywords – power optimization, power reduction,
embedded systems, energy efficiency, Powot tool.

I. INTRODUCTION

Nowadays embedded systems are used in every aspect of
our lives – from personal entertainment to healthcare and
manufacturing. No matter where used, almost in any case
the issue with the power consumption is one of the most
daunting tasks to be solved. Portable devices in particular
must use optimized software for maximum throughput, as
well as minimum consumption. A tradeoff between these
two must be found which should extend the discharge
period of the battery.
Most of the microcontrollers today have ways to reduce
their power consumption. For this purpose they use
software and hardware methods. It is the software
developer’s responsibility to take into account the power
consumption while writing the program code. Thus the
final results may vary. On the other hand the hardware is
fixed and the power reduction is more determined. The
overall optimization is dictated by the application.
A tool for automatic code optimization can be developed,
so that the final program is more energy-efficient. This way
the developer can write a program without observing any
rules for power savings and then use this tool to
automatically modify the code.

II. SOFTWARE METHODS FOR POWER REDUCTION

The firmware of the microcontroller has a certain set of
options for reducing power. Among them are the dynamic
change of the processor frequency, selective peripheral
clocking, sleep and deep sleep modes of operation in
Cortex-M cores, and interrupt handler operation.

A. Dynamic change of the processor frequency

The first and most widely-used method for power reduction
is the dynamic change of the processor frequency during
the execution of the firmware. If the application tolerates

such a behavior, then a low frequency could be used during
the idle periods and a high frequency – during the intensive
calculations. In Fig. 1 a graph of the current consumption is
shown. The used part is the Texas Instruments’ Stellaris
LM3S6965. An idle while(1) { } loop is used for the
measurements.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
0

10

20

30

40

50

60

70

80

90

100

LM3S6965

Fclk, MHz

Id
d,

 m
A

FIGURE 1. CURRENT CONSUMPTION VS MICROPROCESSOR

FREQUENCY

It is obvious that the graph is linear and therefore the more
throughput is required, the bigger the power consumption
is.

B.Selective peripheral clocking

The trend in microcontrollers is to have individual control
over the clocking of each peripheral [1]. This helps to
decrease significantly the dynamic power of the whole
chip.
Some measurements of the LM3S6965 peripherals are
shown in Table 1. Their maximum data transfer rate is
used. The number 0x55 is the sent data in all the cases to
force maximum switch rate of the pins, which in turn
simulates the worst case scenario of power consumption
during the data transmission. If we look at each module
apart from the others the consumption is not that high but

TABLE 1. PERIPHERAL CONSUMPTION OF LM3S6965

Peripheral type
Current

consumption, mA
GPIO 2.91
SSI 12.64
I2C 5.52

UART 0.88
Ethernet 4.99

ADC 4.57
PWM 5.63
COMP 1.42

L. Bogdanov is with the Department of Electronics and
Electronics Technologies, Faculty of Electronic Engineering and
Technologies, Technical University - Sofia, 8 Kliment Ohridski
blvd., 1000 Sofia, Bulgaria, e-mail: lbogdanov@tu-sofia.bg
R. Ivanov is with the Department of Electronics and Electronics
Technologies, Faculty of Electronic Engineering and
Technologies, Technical University - Sofia, 8 Kliment Ohridski
blvd., 1000 Sofia, Bulgaria, e-mail: r.ivanov@tu-sofia.bg

ANNUAL JOURNAL OF ELECTRONICS, 2012

in most of the cases the application would require more
than one module to operate. Combined together, the overall
consumption increases significantly. Therefore the best
way to write the program is to enable and disable each
module on demand. This method has one drawback – the
start-up time of the peripherals might slow down the
execution of the program.

C. Sleep and Deep Sleep modes of operation in Cortex-M
cores

The Cortex-M cores implement two low-power modes:
sleep and deep sleep [2]. Since these cores are provided as
an IP library to many manufacturers, a lot of the micro-
controllers today also have these two modes of operation.
In sleep mode the clocking to the microprocessor is stopped
[3]. The peripheral modules such as UART, SPI, Ethernet
and so on continue to operate independently and only when
data processing is required the core is awakened from this
mode. This is done with the help of interrupts.
The microprocessor exits the normal mode of operation
(also called thread mode) and enters the sleep mode when
the WFI instruction is executed. WFI stands for Wait For
Interrupt. One more instruction could be used for this same
purpose – the WFE, or Wait For Event, instruction. The
difference is that by using WFE the sleep mode is entered
if the value in the Event Register is 0. If the value in the
Event Register is 1, then it is cleared and the execution of
the program continues without entering sleep mode. This
mechanism is used when an external event signal is
triggered or when another microprocessor in a multi-
processor system has executed an SEV instruction. On
wake up from sleep mode some system restore tasks must
be executed first.
For further power savings a deep sleep mode is
implemented. In this mode the system clock is stopped
along with the PLL and the flash memory. The
microprocessor enters one of the two modes depending on
the second bit in the SCR (System Control Register)
register. If this bit is 0, sleep mode is entered. If it is 1,
deep sleep mode is entered after executing the WFE or
WFI instruction.
To test the low power functionality of a LM3S6965 chip
two measurements were made:

- One measurement without sleep mode
- One measurement with sleep mode.

In the first case the firmware implemented a simple UART
echo with interrupts, the PLL was on, the processor
frequency was 50 MHz, and an idle loop was used:

int main(void)
{
 //Initializations omitted for clarity
 .
 .
 while(1)
 {

 }
}

This example yielded a power consumption of 350.58 mW.
After using the sleep mode, which is implemented with the

SysCtlSleep() function in Stellaris Peripheral Driver
Library [4], the program was modified to:

int main(void)
{
 //Initializations omitted for clarity
 .
 .
 while(1)
 {
 SysCtlSleep();
 }
}

Now in the second example a power consumption of 272
mW was measured. The total reduction of power is 78 mW.

D. Interrupt handler operation

In some cases it is possible that the microcontroller’s
firmware operates entirely in interrupt handlers. That’s why
the ARM Cortex-M cores have this special feature – a
Sleep-on-exit bit in the SCR register that allows the
microcontroller to enter sleep or deep sleep mode
automatically on return from an interrupt routine. This way
an empty main() function could be used. If the Sleep-on-
exit bit is clear the microprocessor would enter thread
mode after returning from interrupt mode.

III. HARDWARE METHODS FOR POWER REDUCTION

Along with the software there are also hardware methods
for power reduction. While developing the hardware
certain rules must be followed in order to have a low-power
system. The most common way to do this is to control the
voltage regulator connected to the microcontroller. The
power control over the external peripherals is another
option. And last, but not least, is the ability to control the
voltage of the core’s DC/DC converter.

A. Main regulator control

In the common embedded system the voltage regulators of
the microcontroller and the external peripherals are
separated. This reduces the risk of a hardware reset of the
controller caused by noisy periphery.
In some cases the application requires that the system
works for a certain period of time, then goes to a low-
power state, then the system is awakened by the user or an
external device. In these cases the voltage regulator,
supplying the controller, can have an Enable pin. With the
help of it the microcontroller could turn itself off
automatically and this way reduce the power consumed
during the idle periods. A simple block diagram of such a
system is shown in Fig. 2. Nowadays most voltage
regulators have an Enable pin.
The limitations in this setup come from the turn on method.
Once turned off, only an external event can turn the
microcontroller back on. This can either be the operator of
the device or another chip in the system. Therefore this
method is not applicable for autonomous devices.

ANNUAL JOURNAL OF ELECTRONICS, 2012

FIGURE 2. CONTROLLING THE MAIN REGULATOR

B. External peripheral control

Most of the applications require more than one external
peripherals. No matter if they are used or not at a certain
time, the static power consumption of all devices can
decrease the energy efficiency of the system. Therefore if a
certain peripheral is not needed at a certain time, it can be
switched off by the processor. To do this, the whole system
should have electronic power switches for every external
device. Such a system is shown in Fig. 3.

FIGURE 3. CONTROLLING THE EXTERNAL PERIPHERALS

Of course the corresponding data buses must be put to a
high-impedance state or to a logic zero before the actual
device turn off. Otherwise the risk of powering on the
periphery, through one of the transient suppression diodes,
exists.
Once again – the start up time of the peripheral is critical as
with the internal peripherals. It might make this method
pointless if the time is longer than the working period.
Some devices also require processor interaction for the
initialization which might waste more energy than save it.

C. Core voltage control

Some microcontrollers provide a separate pin/pins for the
microprocessor power supply. This allows us to use a
digitally programmable voltage converter to scale its output
voltage to reflect the power needs of the situation. The
higher the voltage, the better performance and vice versa.
This method is shown in Fig. 4. It is obvious that if the
quiescent current of the converter is significant, then this
type of setup is pointless.
Chips that don’t have extra pins for the core supply can’t
optimize power using this method. Some microcontrollers
however have a built in programmable LDO which exclu-

FIGURE 4. CONTROLLING THE CORE VOLTAGE

des the need of an external one. The LM3S6965 is such an
example. In this case the power reduction is indirect
because the low voltage will reflect the maximum operable
processor frequency. The LDO doesn’t reduce the power
itself since the pass element operates in linear mode.

IV. POWER OPTIMIZATION TOOL

By combining the software and hardware methods
described in this paper a tool that automatically optimizes
the program code can be developed. Let’s call this tool
Powot (Power Optimization Tool). The idea is to maintain
system operability while reducing the power. This is a
daunting task since some demanding criteria must be met.
The tool has to be:

- microcontroller independent
- application independent
- hardware power reduction aware
- able to update itself
- command line tool for better IDE integration.

The most hard to implement of these features is the second
one – the application independence. Sometimes the
application might not allow the program to be optimized
because the optimization algorithm relies on sleep modes,
frequency reduction and switching off power to the
microcontroller.
The first step of the tool genesis would be the creation of a
benchmark program that will test the tool’s work. It has to
be a program that will be first compiled without the
optimization and loaded into the chip, then compiled with
the optimization and loaded again. The power
measurements should show power decrease without
slowing down the program. The latter could be verified if
the benchmark sets a pin every few hundred calculations as
a flag that can be monitored with an oscilloscope. A small
decrease in performance is negotiable if the power
reduction is significant. It is also a good idea to use a
common peripheral that can be found in most
microcontrollers, such as UART, otherwise only the
microprocessor would be used. The benchmark will be
chip-dependent, unlike the Powot tool, but the algorithm of
the program will be the same. A simplified algorithm is
shown in Fig. 5.
In the second step an IDE for the creation of the tool should
be chosen. The priority is to use open source tools and the
Powot itself will be open source. The Eclipse IDE is
suitable for this purpose [5]. The GCC compiler and
Eclipse both have versions for Windows as well as Linux.

ANNUAL JOURNAL OF ELECTRONICS, 2012

Other open source IDE is the Qt Creator [6]. Qt includes a
framework that could reduce the effort for development
with high-level built-in APIs. The only disadvantage of this
approach – the Powot tool will be dependent on Qt
libraries. Therefore if Qt Creator is selected as the IDE,
then the first thing that has to be done is to rebuild it with
the ‘static’ option. This way the executable will be Qt
independent but might grow in size.
Both Eclipse and Qt Creator can build console applications
which satisfies the fifth requirement for Powot.

FIGURE 5. BENCHMARK ALGORITHM FOR POWOT TESTS

Next, in the third step, a version control must be chosen.
The fourth requirement for update capability can be
accomplished with the help of CVS, Svn, Git, Bazaar,
Mercurial, etc. All of the mentioned version control tools
are integrated in Qt Creator.
Another important preparation for the development is the
use of the Doxygen tool. It is a tool that creates
documentation from the comments in the source code.
Every project should have this option since it might grow
in size and it is convenient to have some kind of
documentation.
The fourth step is the development of the Powot tool when
everything else is set up. Now the first three requirements
should be taken into account.
The microcontroller independence can be overcome with
the help of auxiliary files. They will contain rules for every
company and every family of microcontrollers within this
company. The syntax for these files should be kept as
simple as possible in order to help spread the tool among
the different companies. This syntax will describe
microcontroller-specific structures for sleep modes, clock
control and so on, that will be inserted in the code later on.
The ‘hardware power reduction aware’ requirement is
actually that part of the Powot tool that will be responsible

for the optimization of the code using the hardware
methods described earlier in this paper. This means that the
user will have to edit configuration files for each hardware
system. The user must tell the Powot tool what kind of
peripherals there are and what kind of power reduction
methods can be applied to them. Because there is a user
interaction, a simple syntax of those files is obligatory,
otherwise the prolife of Powot might be limited.
Finally, there’s no recipe for the second requirement – the
application independence. A certain set of algorithms must
be implemented and tested. The code that would give best
results would be included in the final release.
The code analysis can be implemented in two ways:

- top-level source file analysis
- entire project analysis.

The first method includes analysis only of the top-level
source file in the project. This is the file where the main()
function is. The other source files and headers (.h, .c, .cpp)
are not checked and therefore the functions implemented in
them will not be power optimized. The PNgen tool uses the
same approach for making a sequential code into a parallel
one [7].
The second method includes analysis of all the project files.
This way every function could be optimized for power and
the overall power consumption may be reduced more than
the one in the previous case.

V. CONCLUSION

The need to reduce the power consumption in embedded
systems is becoming a serious issue in the recent years.
Many microcontrollers have ways to reduce power but the
software developer must be aware of them and apply them
carefully in each system. This increases the development
time since in many cases the power optimization is trial-
and-error based. Therefore a tool that does the power
optimizations automatically can be of a real help during the
firmware development. It will set apart the programmer
from all the details of the power management system. The
development time will be reduced and the final product
will be more energy-efficient. That’s why the future Powot
tool will find its place in the firmware IDE and hopefully
catch on in more than one companies.

ACKNOWLEDGEMENT.

The present research is supported by the Technical
University – Sofia under contract № 121ПД0005-03.

REFERENCES
[1] Stellaris LM3S6965 Microcontroller Data Sheet, Texas
Instruments Incorporated, 2007 – 2011.
[2] Cortex-M3 Technical Reference Manual, r2p1, ARM.
[3] Cortex-M3 Devices Generic User Guide, ARM, 2010.
[4] Stellaris Peripheral Driver Library User’s Guide, Texas
Instruments Incorporated, 2006 – 2011.
[5] http://www.eclipse.org
[6] http://qt.nokia.com
[7] Nikolov H., System-Level Design Methodology for
Streaming Multi-Processor Embedded Systems, ISBN 978-
90-9024163-0, 2009.

