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A B S T R A C T

An algorithm is proposed for perfecting the envelope method (EM) for characterization of a thin film on a
substrate specimen from its normal incidence interference transmittance spectrum T(λ). It takes into account the
partial coherence of light propagating through the film, due to light scattering mainly associated with roughness
of the surface film/air, in the computations of both the smoothed transmittance spectrum Tsm(λ) and the ex-
tinction coefficient k(λ) of the film. The algorithm includes enhanced computation of the envelopes T+(λ) and T-
(λ) of Tsm(λ), and adjustment of points T+(λt) and T-(λt) in spectral regions of substrate non-transparency as λt
are the wavelengths of the tangency points between Tsm(λ) and its envelopes. The average thickness d̄ and the
non-uniformity Δd of the film are computed by EM based optimization procedure, followed by obtaining the
refractive index n(λ) of the film by optimized curve fitting over approximated values n0(λt) of n(λt) without
employing a dispersion model. It is demonstrated that k(λ) is determined more accurately from Tsm(λ), based on
computing its coherent light approximation k0(λ) and partially coherent light correction Δk(λ), rather than the
commonly used computation of k(λ) from T+(λ). Two a-Si films with dissimilar thicknesses are characterized by
the proposed algorithm; as there are published characterization results for the same films computed by two
spectroscopic ellipsometry related methods, and two EMs, selected as most likely to provide accurate char-
acterization of the films. Comparing the characterization accuracy for the proposed algorithm with the char-
acterization accuracy for the best of these published results shows that using the proposed algorithm leads to
significantly more accurate characterization of both a-Si films. Accurate characterization is achieved even in a
case of T(λ) influenced by residual gas absorption during its measurement, by employing both Tsm(λ) and T+(λ)
in the computation of k(λ). The presented results indicate that using the proposed algorithm has a capacity for
providing most accurate characterization of almost every dielectric or semiconductor film with d̄ = [300,5000]
nm on a substrate, only from T(λ), compared to all the other methods for characterization of such films only from
T(λ).

1. Introduction

Specimens of a thin film on a substrate are widely used for optical
characterization of the film. A sketch of such specimen and its main
optical characteristics is shown in Fig. 1a. The normal incidence
transmittance spectrum T(λ), in the UV/VIS/NIR spectral region of
wavelengths λ, of a thin dielectric or semiconductor film, with average
thickness d̄ = [300,5000] nm, on a glass substrate usually contains
interference pattern with several maxima and minima [1,2]. A funda-
mental tool for film characterization from such T(λ) is the envelope

method (EM), which is a dispersion model free method since it does not
employ any dispersion model. The EM uses computed upper envelope
T+(λ) and lower envelope T-(λ) of the smoothed transmittance spec-
trum Tsm(λ) of the noisy T(λ). The tangency wavelengths λt(i) represent
the tangency points Tsm(λt) between the two envelopes and Tsm(λ),
where ´i´ is a positive integer showing the number of the ´i-th´ ex-
tremum of Tsm(λ) counted from 1 closest from the higher wavelengths
end.

The EM using only T(λ) has three main versions: the founding EM
(FEM) of Swanepoel [3] with over 4000 citations, the improved EM
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(IEM) [4], and the optimizing EM (OEM) [5]. In [3], and its mod-
ifications [6–11] is considered the simplest case of a film with uniform
thickness. Unlike the FEM and IEM, the OEM selects optimized values of
d̄ and the non-uniformity Δd ≥ 0 of the film thickness, as Δd represents
the maximum deviation of the film thickness from d̄ over the light spot
on the surface film/air. It was demonstrated in [5,12] that the OEM
provides more accurate film characterization compared to the FEM and
IEM.

Every EM version is based on a formula for Tsm(λ), and an inter-
ference fringes equation referring to each λt(i). The most accurate for-
mula for Tsm(λ) is used in [5], and is rewritten as:
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Tu(λ) represents the transmittance of an uniform film, n(λ), k(λ), and x
(λ) are the refractive index, the extinction coefficient, and the absor-
bance of the film, and the subscript ‘s’ refers to the respective known
substrate characteristics. It is assumed in Eq. (1) that the film thickness
d has a continuous uniform distribution in the interval [d̄ - Δd, d̄ + Δd]
over the light spot on the film surface, and any light scattering from the
film is ignored. However, Eq. (1) can be modified and used for any
known distribution of d over the light spot.

The interference fringes equation is:
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The use of Eq. (2) in addition to Eq. (1) can result in more accurate
film characterization by the EM compared to film characterizations by
methods not using interference fringes equation [12,13].

In all of the three main EM versions [3–5] is used ordinary ‘internal
smoothing’ [12,14] of the inherently noisy T(λ), leading to Tsm0(λ)
passing slightly below the peaks and above the valleys of T(λ), therefore
slightly shrinking the interference pattern as illustrated in Fig. 1b.
Correspondingly, it was indicated in [12] that employing ‘external
smoothing’, which provides Tsm(λ) passing slightly externally to T(λ) in
the regions around its extrema and also illustrated in Fig. 1b, can in-
crease the film characterization accuracy when using the OEM, com-
pared with ‘internal smoothing’ of T(λ).

Regarding the computation of the envelopes T+(λ) and T−(λ) of Tsm
(λ), the following approximation was derived for a film on a glass
substrate in the spectral region of weak film absorption and small
variation of n(λ) [15]:
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as ‘+’ from the ‘± ’ sign refers to T+(E) and ‘−’ refers to T−(E). With
respect to the longest wavelength λL of T(λ), in the spectral region of
weak film absorption and small variation of n(λ), using finite difference
representation of the derivative in Eq. (3) provides:
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where ‘+’ from the ‘± ’ signs refers to T+(λ) and ‘−’ to T−(λ), as
±λt1 and ±λt2 < ±λt1 are the two longest tangency wavelengths from

T+(λ) or T-(λ) [16]. Eq. (4) can introduce right ‘boundary points’ for
T+(λ) and T−(λ).

There are two main algorithms for computation of the envelopes

Figure 1. a) A sketch of a thin film on a substrate specimen, and its main optical characteristics. b) T(λ) and Tsm(λ) for a model specimen of a-Si:H film with
= × + = × −n λ k λ π3 10 / 2.6, [ /(4 )]·10 λ5 2 (1.5 106/ 2) 8

, and d̄ = 1000 nm, on a 0.9 mm thick Corning7059 glass substrate [5]. Tsm(λ) of the specimen is computed from
Eq. (1) for an uniform film (with Δd = 0), and for a non-uniform film with Δd = 30 nm. Augmentedly noisy T(λ), in green, and its ordinary ‘internally smoothed’
Tsm0(internal) are illustrated for the specimen with Δd = 30 nm. Ts is the transmittance through the substrate without a film.
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T+(λ) and T−(λ), for a thin film on a glass substrate specimen, pre-
sented in [16] and [17]. The algorithm from [16] uses left and right
‘boundary points’, ‘additional points’, and ‘supplementary points’, for
each of the envelopes T+(λ) and T-(λ), without employing iteration.
The algorithm from [17] uses iteration, for each of the envelopes,
without including any of the above extra points. However, both algo-
rithms from [16] and [17] assume transparent substrate or a self sup-
porting film, i.e. xs(λ) = 1, except for the computation of the right
‘boundary points’ in [16]; although commonly used glass substrates
absorb considerably for λ > 2000 nm, whereas xs(λ > 2000 nm) < 1
[18]. Furthermore, there is an approach for increasing the accuracy of
computation of T+(λ) and T−(λ), especially in the strong absorption
region, by using a “rectifying process”, accounting for the decreased
accuracy in cases of smaller number of interference fringes [19]. No-
tably, the use of the OEM from [5] alleviates the problem of envelopes
inaccuracy in the strong absorption region by computation of d̄ and Δd
of the film, automatically disregarding the data from this region.

Since Tsm(λ) ~ xs(λ) ≤ 1 according to Eq. (1), the envelopes of Tsm
(λ) should obey the relations T+(λ) ~ xs(λ) and T-(λ) ~ xs(λ), i.e. they
should be proportional to the substrate absorbance xs(λ). Because of
this, employing ‘adjusted for xs(λ) ≤ 1 envelopes’ T+(λ) and T-(λ)
computed by modifying ‘conventional envelopes’ of Tsm(λ), obtained
assuming xs(λ) = 1, was proposed in [12].

The formula providing most accurate approximation of T+(λt) and
T-(λt) is [5]:
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In fact, Eq. (5) is also valid for every λ, thus it can be used for
formulation of both envelopes T+(λ) and T-(λ). Notably, (1,2,5) have
been derived assuming n2(λ) > ns2(λ) >> k2(λ) and ns2(λ) >> ks2(λ)
[4], whereas these relationships are commonly satisfied, in the UV/VIS/
NIR spectral region, for a thin dielectric or semiconductor film with
d̄ = [300,5000] nm on a glass substrate [9]. Replacing the above in-
equalities in the formulae for а1, b1 and c1 from Eq. (1) leads to а1 > b1
> 0 and b1 >> |c1|. In (5), the function -π < atan2(.) ≤ π represents
–π/2 < tan−1(un/ud) ≤ π/2, in computations, for unambiguous de-
scription of the phase change π of reflected light when it falls from a
lower refractive index medium [15].

Each film characterization by the EM is executed in two stages. In
the first stage of FEM characterization are computed the thickness d of
the film assumed to be uniform, and the consecutive positive integer
and half-integer interference orders mi[λt(i)] [3]. In the first stage of
IEM or OEM characterization are computed the average film thickness
d̄, the non-uniformity Δd of the film thickness, and mi[λt(i)] [4,5].
Furthermore, in first stage OEM characterization, the set {d̄,Δd,m1} is
optimized to provide smallest value of the error metric:
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where m λ i[ ( )]ti0 are estimated real number values of mi[λt(i)], d̄0[λt(i)]
are estimated values of d̄, and N is an optimized number of adjacent
tangency wavelengths λt(i) participating in these computations [5,12].
The employment of larger optimized N in the error metric from Eq. 6
and more accurate optimized values of d̄ and m1 make possible accurate
characterization of thicker films by the OEM in comparison with the
FEM and the IEM [5,12]. In general, relatively high accuracy of com-
putation of d̄, Δd, and mi can be achieved in the EM as a result of co-
ordinated use of T±(λt) and Eq. (2) for several λt, averaging, and
iteration [3–5,12].

The second stage of EM characterization starts by calculation of the
refractive index n(λt) of the film for each λt(i) from Eq. (2) [3–5,12].
The extinction coefficient k(λt) of the film is commonly computed from
the approximation of T+(λt) e.g. by solution of Eq. (5) for each λt(i)
[3–5,20]. Alternatively, k(λt) can be computed from Tsm(λt) by nu-
merical integration and solution of Eq. (1) for each λt(i) [12]. Ap-
proximations of n(λ) and k(λ) can be derived e.g. by interpolations over
n(λt) and k(λt), respectively [4,12]. In fact, the optimization of the set
{d̄,Δd,m1} at the first stage of OEM characterization is the main dis-
tinction of the OEM from the IEM, as the second stages of OEM and IEM
characterizations are similar [4,5,12].

Replacing the computed d̄, Δd, n(λ) and k(λ) in the right side of
Eq. (1), executing the numerical integration, provides a reconstructed
transmittance spectrum Tr(λ). A figure of merit FOM of a particular EM
film characterization was defined in [12] as the root mean square de-
viation of Tr(λ) from T(λ), with summation over all λ⊂[min(λt),λt(1)]:
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where Nj is the total number of such wavelengths. Therefore, for a
given specimen, the film characterization providing smallest FOM is
considered as the most accurate characterization over the wavelengths
interval [min(λt),λt(1)] since its respective Tr(λ) fits best the experi-
mental spectrum T(λ).

Since a-Si films are usually assumed to have Urbach tails [21,22],
the FOMs were compared in [12] for characterizations of two radio
frequency (RF) magnetron sputtered a-Si thin films with dissimilar
average thicknesses by the OEM, the optimizing graphical method
(OGM) [23], the Tauc-Lorentz-Urbach model method (TLUM) [24], and
the Cody-Lorentz-Urbach model method (CLUM) [25]. In [12], the
OEM and OGM computed n(λ) and k(λ) mainly by ´piecewise cubic
Hermite polynomial interpolation´ (PCHPI) [26] over n(λt) and k(λt),
respectively. The results from [12] showed that the OEM provided most
accurate characterization, of both films, among the four different
characterization methods. The superior performance of the OEM was
explained considering that it does not assume particular band tails
shapes, unlike the TLUM and CLUM; and it does not assume existence of
a wide spectral region of film transparency as an initial approximation,
unlike the OGM [12].

However, there are three important factors hampering further ac-
curacy improvement of film characterization based on the OEM, com-
mented next in the order of appearance in the film characterization
process. The first factor is the incapability to compute accurate ‘ad-
justed for xs(λ) ≤ 1 envelopes’ T+(λ) and T-(λ), since the main algo-
rithms for computation of the envelopes [16,17] do not employ either
iteration or extra envelope points and do not account accurately for xs
(λ) ≤ 1. The second factor originates from the fact that inevitable in-
accuracies of Tsm(λ) result in errors in some tangency wavelengths λt(i),
and in the respective n[λt(i)] calculated from Eq. (2). In this regard,
deriving n(λ) and k(λ) by interpolations over n(λt) and its respective k
(λt) leads to appearance of spurious small humps in both n(λ) and k(λ)
[12]. The third factor originates from the possibility of significant re-
lative errors in the computation of k(λt) due to inaccuracy of T+(λt) or
Tsm(λt), small values of k(λt)<<n(λt) for λt⊂[min(λt),λt(1)], and in-
accuracy of n(λt) [12,27]. This can lead to large errors in k(λ)
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interpolated over the strongly non-linear dependence k(λt).
In this paper is proposed an algorithm for perfecting the EM char-

acterization of a thin film on glass substrate specimen, from its normal
incidence interference transmittance spectrum T(λ), by diminishing the
influence of the above three factors limiting the accuracy of char-
acterization. The algorithm described in the next section is used for
characterization of the two a-Si films with dissimilar thicknesses, from
the respective specimens A038 and A041, already OEM characterized in
[12]. These films have been deposited by RF magnetron sputtering
using applied RF power of 525 W, target-to-substrate distance of 6.1
cm, and Ar gas. The film from A038 has been deposited on 0.9 mm thick
Corning7059 glass substrate, with Ar pressure of 4.4 Pa; and the film
from A041 - on 3.28 mm thick Borofloat33 glass substrate, with Ar
pressure of 0.13 Pa. The area of the light spot on the film surface has
been 10 mm × 3 mm in the measurements of T(λ) of A038 and A041.

Notably, these films are challenging for accurate characterization.
Indeed, the film from A038 is quite thin which leads to too small
number of extrema of its respective Tsm(λ), and possible errors in the
computation of accurate envelopes and tangency wavelengths λt; as the
film from A041 is quite thick which tends to cause errors in the com-
putations of Tsm(λ) and the first interference order m1. Furthermore,
both specimens A038 and A041 have tangency points Tsm(λt) within the
apparent spectral region of non-transparency of the substrate, which
necessitates correcting the locations of at least several points from the
‘conventional envelopes’ of Tsm(λ) to adjust for xs(λ) < 1.

2. Description of the algorithm for perfecting the EM
characterization of a thin film on glass substrate specimen from its
normal incidence interference transmittance spectrum T(λ)

The proposed algorithm is presented in Fig. 2, and its steps are
commented below.

Step A1. Importantly, Eq. (1) regards the light propagating through
the film as coherent. However, the light propagating through the film is
partially coherent, due to the finite slit width of the source [3] and the
light scattering from the film [28,29]. Furthermore, the partial co-
herence of light due to scattering has not been considered in dispersion
model free characterization of a film. In this regard, propagation of
partially coherent light through the film should result in shrinkage of
the interference pattern, since b1 >> |c1| and contributions from dif-
ferent phase differences φ disallow the average φcos(¯ ) to reach± 1 in
Eq. (1). In other words, the thin film interference from uniform film
with a thickness d⊂[d̄-Δd, d̄+Δd] creates the interference pattern in
T(λ); as the scattering from the film, and the finite slit width, slightly
shrink the interference pattern, as illustrated in Fig. 1b. To account for
these effects, an ‘internal smoothing’ of T(λ) is performed, leading to
Tsm0(λ), followed by ‘external smoothing’ of T(λ), which furnishes
Tsm1(λ) and represents a correction for the partial coherence of light
due to the scattering. Tsm1(λ) is then corrected for the finite slit width,
using the slit width correction from [3,5], which provides Tsm(λ). Such
Tsm(λ) corresponds to propagation of coherent light through the film,
and is compatible with Eq. (1) and Eq. (2) which also assume propa-
gation of coherent light through the film.

Based on the above, the computed by ‘external smoothing’ spectrum
Tsm1(λ) touches externally T(λ) in the regions around its extrema as
discussed in the Introduction. The smoothed transmittance spectrum
Tsm(λ) is obtained by a slit width correction of Tsm1(λ) as described in
[12]. For the specimens A038 and A041, |Tsm(λ)-Tsm1(λ)| ⊂
[0.0005,0.004].

Step A2. The envelope T+(λ) is computed by iteration decreasing to
zero the sum

= ∑ −+ = + + +
+S T T| [Λ (i)] [Λ (i)]|l

i
N l l l( )

1 sm
( ) ( ) ( ) , where l is the iteration

step number, N+ is the number of maxima of Tsm(λ) plus the number of
‘additional points’ for T+(λ), and the approximated wavelengths
set =+ + +λ λ{Λ (i)} { , }l l

a
l( )

t
( ) ( ) consists of +λ l

t
( ) for the tangency points and

+λa
l( )for the ‘additional points’ for T+(λ) used at step l. T+(l)(λ) is an

approximation of T+(λ) obtained by PCHPI over the points corre-
sponding to +{Λ (i)}l( ) , the ‘supplementary points’, and the ‘boundary
points’ for T+(λ) at step l; whereas the right ‘boundary point’ T+(l)(λL)
is computed from Eq. (4) and depends on l. At the end of step l is de-
termined the set +

+{Λ (i)}l( 1) , to be used at the iteration step l+1, con-
sisting of the wavelengths corresponding to the maxima of the function
Tsm(λ) - T+(l)(λ). The envelope T-(λ) is computed similarly to T+(λ), by
iteration decreasing to zero the sum

= ∑ −− = − − −
−S T T| [Λ (i)] [Λ (i)]|l

i
N l l l( )

1
( ) ( )

sm
( ) , where N- is the number of

minima of Tsm(λ) plus the number of ‘additional points’ for T-(λ). The
set −

+{Λ (i)}l( 1) to be used at the iteration step l+1 consists of the wa-
velengths corresponding to the maxima of the function T-(l)(λ) - Tsm(λ).
Since the envelopes should only touch Tsm1(λ), without crossing it, the
iteration for computing T+(λ) should always finish with S+(l) = 0, and
the iteration for computing T-(λ) should always finish with S-(l) = 0. It
usually takes 2 to 4 steps to complete each of these two iterations.

Step A3. The tangency wavelengths =+ +λ λ l
t t

( ) and their respective
envelope T+(λ) = T+(l)(λ) are taken from the iteration step providing

Figure. 2. The algorithm for perfecting the EM characterization of a thin film
on glass substrate. The original elements of this algorithm, compared to the
algorithms used in [5,12], are shown in red.
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S+(l) = 0, while the tangency wavelengths =− −λ λ l
t t

( ) and their re-
spective envelope T-(λ) = T-(l)(λ) are taken from the iteration step
providing S-(l) = 0. Besides, in the computation of the envelopes T+(λ)
and T-(λ), obtained from step A2, is assumed implicitly xs(λ) = 1, al-
though commonly used glass substrates absorb significantly for λ >
2000 nm and xs(λ > 2000 nm) < 1 [18]. Moreover, + −T λ( )t and − +T λ( )t

are used in the first stages of each main EM version [3–5], and they do
not belong to Tsm(λ). Consequently, proper adjusting their values for xs
(λ) ≤ 1 should lead to more accurate film characterization.

Adjusted + −T λ( )t and − +T λ( )t in regions with xs(λ) < 1 are for-
mulated similarly to the expression from Eq. (4) by using finite differ-
ence representation of the derivative in Eq. (3), whereas:
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For the only one still unchanged either + −[ ]T λ (1)t or − +T λ[ (1)]t , its
adjusted value in a region with xs(λ) < 1 is formulated, based on
Eq. (4) and Eq. (8), as:
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Since xs(λ) ≅ 1 in the regions of quasi-transparency of the substrate,
+ −T λ( )t and − +T λ( )t are not adjusted for xs(λ) < 1 in these regions.

Steps A4 and A5. In the beginning of this step are known the sub-
strate characteristics ns(λ), ks(λ), and ds; as well as Tsm(λ), all λt(i),
T+(λt), and T+(λt). Considering the comments from the Introduction,
optimized values of the average film thickness d̄, the film thickness non-
uniformity Δd, and the first interference order m1 are computed ac-
cording to the first stage film characterization by the OEM, as described
in [5]. Approximate values n0(λt) of the refractive index n(λt) are cal-
culated thereafter from Eq. (2).

Step A6. Noticeably, n(λ) should be a smooth function
[1,24,25,30,31,32], and error can occur in n0(λt) for any particular
tangency wavelength λt(i). Therefore, based on statistical considera-
tions [14], interpolation using n0(λt) can incur spurious small humps on
n(λ), however, curve fitting using n0(λt) can avoid occurrence of such
humps and lead to more accurate EM characterization. Correspond-
ingly, in this study is employed only curve fitting over n0{Λf} for ob-
taining n(λ); whereas the wavelengths set {Λf} = {λt,λa}, with Nf ele-
ments, consists of all λt and λa for the ‘additional point’ with longest
wavelength. λa is included in the set {λt,λa} to ensure accurate curve
fitting for λ ≈ min(λt), since n(λ) usually changes significantly for such
short wavelengths.

Taking into account results about the optical constants of amor-
phous semiconductors [24,25], only the following two types of fitting
functions Ff are used for curve fitting over n0{Λf} for the a-Si films from
the specimens A038 and A041:
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Using the two-terms exponential from (10) can provide a better fit
over some dependences n0{Λf} which are too steep to be fitted well by
polynomial functions [33]. The curve fitting over n0{Λf} at step A6
provides the refractive index n(λ) of the film, as only the extinction
coefficient k(λ) of the film remains unknown.

Steps A7, A8 and A9. Computation of extinction coefficient k(λ) of
the film with low relative error is significantly more difficult than
computation of accurate n(λ), especially in the region k(λ)<<n(λ), as
indicated in the penultimate paragraph of the Introduction.
Furthermore, k(λ) is usually computed in the EM based on solving
equation for the envelope T+(λ) for each λt [3–5], rather than on using
Tsm(λ). However, besides the possible inaccurate computation of
T+(λt), the partial coherence of light due to scattering, can influence
notably T+(λt) as explained in the discussion about Step A1. These two
factors can result in inaccurate computation of k(λ) from equation for
the envelope T+(λ), which considers the light propagating through the
film as coherent, such as Eq. [5]. Since Tsm(λ) is computed more ac-
curately in its regions away from λt, and Tsm(λ) is influenced less by the
partial coherence of light in the same regions away from λt, as indicated
regarding Step 1, it is reasonable to use Tsm(λ) for accurate computation
of k(λ).

The problem with using Eq. (1) for determination of the extinction
coefficient is that the respectively computed kc[Tsm(λ)] usually contains
spurious small humps due to small inaccuracies of Tsm(λ), the partial
coherence of light, the small values of k(λt)<<n(λt), and small in-
accuracy of n(λt). Nevertheless, kc(λt) represents a rough estimate of k
(λt) although error can occur in kc(λt) for any particular λt(i). Since k(λ)
should be a smooth function [1,24,25,30–32], interpolation using kc(λt)
can incur small humps on k(λ); however, curve fitting using kc(λt) can
avoid occurrence of such humps and lead to more accurate EM char-
acterization. Correspondingly, in this study of k(λ) is employed only
curve fitting over kc{Λf} = kc{λt,λa}; whereas only the fitting functions
Ff from Eq. (10) are used for such curve fitting, which provides an
approximation k0(λ) of k(λ). Notably, since kc(λt) and k0(λ) are ob-
tained based on using Eq. (1), which is valid for coherent light propa-
gating through the film, k0(λ) represents a coherent light approxima-
tion of k(λ).

Furthermore, the area Scoh(χ⊂[χi=4πnd̄/λt(i),χi+1=4πnd̄/λt(i
+1)]), between the interval [χi,χi+1] and the segment Tu([χi,χi+1]) of
the interference transmittance spectrum of a specimen with constant
film thickness, is approximated by using Eq. (1) as:

D.A. Minkov, et al. Thin Solid Films 706 (2020) 137984

5



∫

∫

=

= ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯
−

=

+

+
≪ +

+

S χ χ T χ χ

T χ χ
π τ τ τ x x

a b

where χ πn λ

([ , ]) ( )d

( )d
( )

,

4 d̄/ ,

coh i i

χ

χ
u

π m

πm
u

c a b

1

2 ( 1/2)

2

a,f f,s s,a
2

s

1
2

1
2

i

i

i

i

1

1 1 1

(11)

since а1 > b1 >> |c1|, assuming propagation of coherent light through
the film, and constant values of n(λ) and k(λ) over the interval λ⊂[λt
(i),λt(i+1)].

The respective area Sinc(χ⊂[χi,χi+1]) of the interference free
transmittance spectrum of a specimen with constant film thickness is
approximated as:
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assuming propagation of incoherent light through the film, and con-
stant n(λ) and k(λ) over the interval λ⊂[λt(i),λt(i+1)], in accordance
with [34]. Since the approximation c1<<a1+b1 is usually satisfied for
a thin dielectric or semiconductor film with d̄ = [300,5000] nm on a
glass substrate [5,12], Eqs. (11,12) show that Scoh([χi,χi+1]) ≅ Sinc
([χi,χi+1]) for such specimens. This indicates that the area Ssm([λt(i
+1),λt(i)]), between each interval [λt(i+1),λt(i)] and its respective
segment Tsm([λt(i+1),λt(i)]) of Tsm(λ), should be almost independent
of interference pattern shrinkage caused by the partial coherence of the
light propagating through the film.

Based on the above, Ssm([λt(i+1),λt(i)]) is approximated as follows
by using Eq. (1):
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where A1(λ), A2(λ), and A3(λ) are known functions almost independent
from k(λ), and fast changing compared to it. Eq. (13) shows that the
two areas between the interval [λt(i+1),λt(i)] and its respective k([λt(i
+1),λt(i)]) and kc([λt(i+1),λt(i)]) should be almost equal, for each [λt
(i+1),λt(i)].

Furthermore, the unknown extinction coefficient of the film is ex-
pressed as k[Tsm(λ)] = k0(λ) + Δk(λ). Notably, predominantly co-
herent light propagates through the film, with a small incoherent light
component mostly due to the roughness of the air/film surface and the
slit width, and k0(λ) represents the coherent light approximation of k
[Tsm(λ)]. Therefore, Δk(λ) represents a partially coherent light correc-
tion of k0(λ).

Since both k(λ) and k0(λ) are smooth functions without small
humps, Δk(λ) should be also a smooth function without small humps. In
this regard, using Eq. (13) leads to the following formula for Δk(λ):
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where Δk+(λ) and Δk-(λ) are envelopes of the difference kc(λ)-k0(λ).
Δk+(λ) and Δk-(λ) are respectively obtained by PCHP interpolation
over the maxima and the minima of the difference kc(λ)-k0(λ), sepa-
rated by a specified minimum amount. Based on the above, the com-
putation of Δk(λ) from Eq. (14) provides the extinction coefficient k(λ)
of the film, determined from Tsm(λ), as k[Tsm(λ)] = k0(λ) + Δk(λ).

Alternatively, k(λ) can be computed from T+(λ), e.g. by solution of
its approximation from Eq. (5), for each λ. Furthermore, more accurate
formula for T+(λ) is derived from Eq. (1) by rewriting
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where = = − =+ + +φ πn δd λ φ πn λ φ πn λ4 ( )/ , 4 Δd/ , 4 Δd/ .1 2

3. Results

The algorithm from Fig. 2 is used for characterization of the a-Si
films from the specimens A041 and A038, and the obtained results are
reported in this Section. The substrate absorbance xs(λ), T(λ), the en-
velopes T+(λ) and T-(λ), and the adjusted + −T λ( )t and − +T λ( )t calculated
from Eqs. (8,9) in the region with xs(λ) < 1 are presented in Fig. 3 for
the specimens A038 and A041. Tsm(λ) is based on ‘internal smoothing’
only in the region λ = [1770,2350] nm of T(λ) for the specimen A038,
as seen from the inset of Fig. 3b, due to absorption by CO2 and water
vapor traces revealed by ragged looking dT/dλ in this region [12].

First stage characterizations are performed of the films A038 and
A041 in both cases of the points + −T λ( )t and − +T λ( )t , respectively, being
non-adjusted and adjusted in the region xs(λ) < 1. The obtained results
are exhibited in Table 1.

According to [5], the computed results for d̄, Δd, and m1, from first
stage characterization by the OEM of a particular specimen, correspond
to the smallest value of the error metric SD/N. Therefore, the results
from the first stage characterizations are d̄ = 3929.9 nm, Δd = 53.5
nm, m1 = 12 for the film A041, and d̄ = 774.6 nm, Δd = 26.7 nm,
m1 = 2 for the film A038.

Second stage characterizations of the films A038 and A041 are
performed employing the above values of their parameters d̄, Δd, and
m1. Approximated values n0{λt,λa} of the refractive index are calculated
from Eq. (2), and the refractive index n(λ) of the film is determined by
curve fitting over n0{λt,λa}. For the film A041, the fitting function over
n0{λt,λa} is a polynomial of optimized degree 5 obtained from Eq. (10);
and the fitting function is a two-term exponential, defined in Eq. (10),
for the film A038.

The rough estimate kc(λ) of the extinction coefficient of the film is
computed from Eq. (1) using the known Tsm(λ), and the approximation
k0(λ) of the extinction coefficient is determined by curve fitting over kc
{λt,λa}. For the film A041, the fitting function over kc{λt,λa} is a
polynomial of optimized degree 8 obtained from Eq. (10). For the film
A038, two different two-term exponential fitting functions are em-
ployed below and above λt(4) = 1429 nm, and kc[λt(2) = 1969 nm] is
not used in the curve fitting. The obtained results related to n(λ) of the
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films A038 and A041 are shown in Fig. 4a, and these related to k0(λ) -
in Figs. 4b and 4c. The significantly lower values of n(λ) of the film
A038 compared to the film A041, as seen from Fig. 4a, are consistent
with our recent results for similarly prepared a-Si films, which showed
that n(λ) decreases with increasing the Ar pressure [20].

Regarding the characterization of the film A038, it is seen from the
inset of Fig. 3b and Fig. 4 that the not used in the curve fitting point kc
[λt(2) = 1969 nm] is in the region λ = [1770,2350] nm influenced by
residual CO2 and water vapor absorption. The reason for the too low
value of kc[λt(2)] is that the ‘internal smoothing’ of T(λ), performed
only in this region, has provided too low Tsm[λt(2)]; leading to little

higher n[λt(2)] and quite lower kc[λt(2)], since in this region Tsm(λ) ~
(τa,f τf,s)2x ~ (n2 + kc2).1. Moreover, the data from Fig 4 and Table 2
reveal that best curve fitting of n0{Λf} and kc{Λf} is obtained employing
respectively 1 and 2 ‘two-term exponent’ from Eq. 10. Besides, the re-
sults from Table 2 show that using k[Tsm(λ)] provides lower accuracy
film characterization than using k[T+(λ)]. This is attributed to the
absorption in the region λ = [1770,2350] nm influenced by residual
CO2 and water vapor, which has led to too low Tsm[λt(2)]; while not
changing any T+[λt(i)] since there is no maximum of Tsm(λ) in this
region.

The difference kc(λ) - k0(λ), the envelopes Δk+(λ) and Δk-(λ) ob-
tained by PCHPI over its maxima and minima, and the correction Δk(λ)
=[Δk+(λ)+Δk-(λ)]/2 of k0(λ) are drawn in Fig. 5a for the film A041.
The spectral dependencies of k0(λ), k[Tsm(λ)] = k0(λ) + Δk(λ), and k
[T+(λ)] computed by solving Eq. (15) are shown in Figs. 5a and 5b for
the films A041 and A038.

Reconstructed transmittance spectra Tr(λ) are computed by repla-
cing d̄, Δd, n(λ) and k(λ) in the right side of Eq. (1). Spectral de-
pendencies T-Tr(λ) are presented in Fig. 6.

It is seen from Fig 6b, for the specimen A038, that T(λ) is closer to Tr
(λ) using k[Tsm(λ)] for λ<λb and closer to Tr(λ) using k[T+(λ)] for
λ>λb, whereas k[Tsm(λb)] ≈ k[T+(λb)]. This indicates that most ac-
curate characterization of the film A038 is achieved employing ex-
tinction coefficient k[Tsm(λ<λb)] and k[T+(λ>λb)].

Regarding the selection of the most accurate characterization results
for the films A041 and A038, Tr(λ) are computed from Eq. (1) for
several types of the fitting functions for n(λ) and k0(λ), and the em-
ployed k(λ). Respective figures of merit FOM1 to FOM4 are calculated
from Eq. (7) and refer to employing four different extinction coeffi-
cients: k[Tsm(λ)]=k0(λ)+Δk(λ), k0(λ), k[T+(λ)], as well as k[Tsm
(λ<λb)] and k[T+(λ>λb)]. The values of FOM1 to FOM4 are presented
in Table 2 depending on the features of the performed characteriza-
tions.

The results with lowest FOM for the film A041, displayed in red in
Table 2, confirm that its n(λ) and k0(λ) are best represented by curve
fitting over n0{Λf} and kc{Λf} with polynomials of optimized degrees of
5 and 8, respectively, and employing k[Tsm(λ)]=k0(λ)+Δk(λ). It is also
seen from Table 2 that n(λ) and k0(λ) of the film A038 are best re-
presented by curve fitting over n0{Λf} and kc{Λf} with one and two
different ‘two-term exponent’, as described in Fig. 4, employing k[Tsm
(λ<1600nm)]=k0(λ)+Δk(λ) and k[T+(λ>1600nm)].

The Wemple-DiDomenico approximation (WDA)

≃ +
−

n E( ) 1 E E
E E λ[ ( )]

d0

02 2 is known to be valid for amorphous

Figure 3. a) and b) Normal incidence transmittance T(λ), the envelopes T+(λ) and T-(λ), and xs(λ) for the specimens A041 and A038. In the insets are shown
magnified images including Tsm(λ) obtained by ‘external smoothing’ of T(λ) and slit width correction, unlike in [3–5]. The adjusted points + −T λ( )t and − +T λ( )t in the
region with xs(λ) < 1 are displayed by squares.

Table 1
Results from first stage characterizations of the films A038 and A041 based on
the algorithm from Fig. 2. The data for d̄, Δd, and m1 corresponding to the
smaller value of the error metric SD/N represent the computed values of these
parameters and are displayed in red. The respective results obtained in [12] are
in blue.

first stage characterizations

based on the algorithm from Fig. 2
Case + −( )T λti & Value of the Results:

Study − +( )T λti error metric: d̄ (nm),
(C) SD/N (nm) Δd (nm),

or RSMD/N m1

film A041
C41a are SD/N = 3929.9 nm,

Adjusted in the region 0.567 nm 53.5 nm, 12
C41b RSMD/N = 3932.6 nm,

xs(λ)<1 2.11×10−3 53.4 nm, 12
C41c are not SD/N = 3949.8 nm,

Adjusted in the region 0.592 nm 52.8 nm, 12
C41d RSMD/N = 3953.0 nm,

xs(λ)<1 2.45×10−3 52.7 nm, 12
* best result SD/N = 3939.1 nm,

from [12] 0.594 nm 53.1 nm, 12
film A038
C38a are SD/N = 774.6 nm,

adjusted in the region 0.318 nm 26.7 nm, 2
C38b xs(λ)<1 RSMD/N = 773.8 nm,

1.42×10−3 26.9 nm, 2
C38c are not SD/N = 783.1 nm,

Adjusted i n the region 0.453 nm 24.4 nm, 2
C38d RSMD/N = 781.9 nm,

xs(λ)<1 1.77×10−3 24.7 nm, 2
* best result SD/N = 785.7 nm,

from [12] 0.341 nm 23.1 nm, 2
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Figure 4. Spectral characteristics related to n(λ) and k0(λ) of the films A041 and A038. a) n(λ) determined by curve fitting to n0{Λf}. b) and c) kc[Tsm(λ)] and k0(λ)
determined by curve fitting to kc{Λf}.

Table 2
Results from second stage characterizations of the films A041 and A038 based on the algorithm from Fig. 2. The figures of merit FOM1, FOM2 and FOM3 are calculated
from Eq. (7), whereas Tr(λ) is computed from Eq. (1). The lowest FOMs are displayed in red. The respective results from [6] are in blue.

second stage characterizations based on the algorithm from Fig. 2

Input Case FOM1 FOM2 FOM3 FOM4 for
results Study Features for for for k(λ<λb)=k0+Δk,
from (C) k=k0+Δk k=k0 k from T+ k(λ≥λb) from T+
film A041

n0{Λf}, kc{Λf} are fit by polynomials
C41a C41aa of optimized degrees of 5 and 8. 5.71×10−3 7.39×10−3 7.78×10−3

FOM3 uses k, and T+ from Eq. (15).
n0{Λf} is fit by polynomial of 4-th

C41a C41ab degree, and kc{Λf} - by 2 ‘two-term 5.75×10−3 7.36×10−3 7.78×10−3

exponent’. FOM3 uses k, Eq. (15).
n0{Λf}, kc{Λf} are fit by polynomials

C41a C41ac of optimized degrees of 5 and 8. FOM3 uses k, and T+ from Eq. (5). 5.71×10−3 7.39×10−3 7.78×10−3

best d̄=3939.1nm, Δd=53.1nm, m1=12.
result C41ad Small humps in both n(λ) and k0(λ) 6.99×10−3

in [12] obtained by PCHP interpolation.
film A038

n0{Λf} and kc{Λf} are fit by 1 and 2 1.89×10−3 for
C38a C38aa ‘two-term exponent’. FOM3 uses k, 3.03×10−3 2.17×10−3 2.08×10−3 λb ≈ 1600 nm

and T+ from Eq. (15).
n0{Λf} is fit by polynomial of 5-th There is no optimized degree

C38a C38ab degree, and kc{Λf} by 2 ‘two-term polynomial fit of n0(λt), and the
exponent’. FOM3 uses k, Eq. (15). fit of kc{Λf} contains humps.
n0{Λf} and kc{Λf} are fit by 1 and 2

C38a C38ac ‘two-term exponent’. FOM3 uses k, and T+ from Eq. (5). 3.03×10−3 2.17×10−3 2.07×10−3

best d̄=785.0 nm, Δd=23.5 nm, m1=2.
result C38ad Small humps in both n(λ) and k0(λ) 2.63×10−3

in [12] obtained by PCHP interpolation.

Figure 5. Spectral characteristics related to k(λ). a) The correction Δk(λ)=[Δk+(λ)+Δk-(λ)]/2, where Δk+(λ) and Δk-(λ) are envelopes of the difference kc(λ) -
k0(λ), for the A041 film. b) and c) k0(λ), k[Tsm(λ)] = k0(λ) + Δk(λ), and k[T+(λ)] computed by solving Eq. (15), for the A041 and A038 films.
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semiconductors, where E0>E is the single-effective-oscillator energy
and Ed is the oscillator strength [35]. Therefore, the parameters E0 and
Ed are determined by a linear regression of the WDA dependence [n
(λt)2-1]−1 versus E(λt)2; followed by computation of n(λ) from the WDA
for λ[T(λ)≈0]<λ<min(λt), its respective k(λ) obtained from Eq.(1),
and the absorption coefficient α(λ)=4πk(λ)/λ of the film. Furthermore,
the Tauc optical gap Eg is obtained using a linear regression of the Tauc
approximation (αE)1/2=BT(E-Eg) for indirect electronic transitions,
whereas α>104 cm−1 [1]. The results from these computations are
shown in Fig. 7.

The Tauc slope BT is also determined using the linear regression
with α>104 cm−1 of the same Tauc approximation [1]. The Urbach
energy EU, representing the width of the energy range over which α(E)
tails off exponentially, is determined by an exponential regression with
α<104 cm−1 of the Urbach approximation α(E)=α0exp(E/EU) [1].
Correspondingly, it is established that BT = 423.8 (cm.eV)−1/2 and
EU = 235 meV for the film A041, as BT = 594.4 (cm.eV)−1/2 and
EU = 274 meV for the film A038.

SEM image of a cross-section of the film A038 and AFM image of the
free surface of the same film are shown in Fig. 8, as our SEM data for d̄
have been calibrated by data for d̄ from Veeco Dektak 150 mechanical
surface profiler [20]. The difference between the average thickness
d̄ = 774.6 nm of the film A038 obtained from Table 1 and from this
SEM image is 0.36 %, thus confirming the accuracy of the first stage
film characterization based on the algorithm from Fig. (2).

The RMS surface roughness of the film A038 is Rq ≈ 1.5 nm, and
such roughness spreads over areas of ~ 50 μm × 50 μm on the surface

film/air. On the other hand, the maximum deviation of the film
thickness d from the average thickness d̄ over the light spot area of 10
mm × 3 mm on the surface film/air is Δd ≈ 26.7 nm, according to the

Figure 6. Spectral dependencies T-Tr(λ) for the film characterizations pro-
viding refractive index n(λ) and extinction coefficient either k[Tsm(λ)]=k0(λ)
+Δk(λ), k0(λ), or k[T+(λ)]. a) for the specimen A041. b) for the specimen
A038; T(λ) is closer to Tr(λ) using k[Tsm(λ<λb ≈ 1600 nm)] and closer to Tr(λ)
using k[T+(λ>λb)], whereas k[Tsm(λb)] ≈ k[T+(λb)].

Figure 7. Results for the films A038 and A041 computed by: (a) the Wemple-
DiDomenico approximation, (b) the Tauc approximation for indirect electronic
transitions.

Figure 8. SEM image of a cross-section of the film A038, as the thickness of 777
nm is the value at the arrow location.
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result in red from Table 1. In such a case of Rq << Δd << λ, Δd
causes a significant shrinkage of T(λ) towards the lower λ, whereas the
film surface roughness induces noise in T(λ) and its slight shrinkage, as
illustrated in Fig. 1b.

4. Discussion

The FOM based comparative study [12] of characterization of the
A041 and A038 films, by the OEM [5], OGM [23], and the most re-
levant spectroscopic ellipsometry related methods TLUM [24] and
CLUM [25], showed that the OEM provided most accurate character-
ization of both films. However, the OEM modification in [12] used
envelopes T+(λ) and T-(λ) adjusted for xs(λ) ≤ 1 whose preparation is
ambiguous and difficult, as well as interpolation of n(λ) over n(λt) and
of k(λ) over kt(λt) leading to appearance of spurious small humps in
both n(λ) and k(λ). These facts caused reviewing the OEM modification
from [12] to investigate whether these problems can be resolved, and
resulted in development of the algorithm for perfecting the EM char-
acterization of a thin film on glass substrate presented in Figure 2. The
improvements in the algorithm from Fig. 2 are discussed below with
respect to the algorithm of the OEM modification from [12].

The employed here computation of the envelopes T+(λ) and T-(λ) of
Tsm(λ) is advantageous over the respective approaches from [16] and
[17]. Indeed, it combines inclusion of extra points for the interpolation
of both envelopes, similarly to [16]; with iterations completed at S+(l)

=0 and S-(l)=0, similarly to [17], and using right ‘boundary points’
T+(l)(λL) and T-(l)(λL) changing with the iteration step number l; thus
increasing the accuracy of the envelopes.

Notably, in the computation of the envelopes T+(λ) and T-(λ), ob-
tained from Step A2 of the algorithm, is assumed implicitly xs(λ <
λL) = 1. In this regard, + −T λ( )t and − +T λ( )t are used in the first stages of
each main EM version [3–5], and they do not belong to Tsm(λ); there-
fore proper adjustment of their values in regions with xs(λ) < 1 should
lead to more accurate EM characterization. Correspondingly, Eqs. (8,9)
are derived to provide adjusted + −T λ( )t and − +T λ( )t in regions with xs(λ)
< 1.

Results from Table 1, investigating the influence of the adjustment
of + −T λ( )t and − +T λ( )t in the long wavelengths region with xs(λ) < 1
show that this adjustment leads to decreasing the value of the preferred
error metric SD/N [5] by 4.2% for the specimen A041 and by 29.8% for
A038. This demonstrates that the adjustment of + −T λ( )t and − +T λ( )t in
the region with xs(λ) < 1 results in increasing the accuracy of OEM
based first stage characterization of both films A041 and A038. It is also
seen from Table 1 that the use of + −T λ( )t and − +T λ( )t computed from Eqs.
(8,9) in the region with xs(λ) < 1 leads to smaller SD/N than its re-
spective from [12], and correspondingly results in more accurate first
stage characterizations than in [12] for both films A041 and A038. The
excellence of the first stage characterizations of the films A041 and
A038, employing adjusted + −T λ( )t and − +T λ( )t in the region with xs(λ) <
1, is confirmed by the not exceeding 0.11% difference between the
values of d̄ from Table 1 obtained by using the error metrics SD/N and
RSMD/N [5].

As already mentioned, the interpolation of n(λ) over n0[λt(i)] in
[12] can lead to appearance of spurious small humps in both n(λ) and k
(λ), due to inevitable small inaccuracies of some λt(i). Contrarily, the
curve fitting over n0{Λf} and kc{Λf}, employed at Steps A6 and A7 of
the algorithm from Fig. 2, diminishes appearance of spurious small
humps in both n(λ) and k(λ). Notably, the fitting function Ff for the set
n0{Λf} or kc{Λf} should be chosen to provide smallest values of Fr({Λf})
expressed in Eq. (10). Importantly, the curve fitting over n0{Λf} and kc
{Λf} can preserve large humps in n(λ) and k(λ) inherent to the film
material, thus preserving the EM essence of not employing any dis-
persion model.

To understand the influence of the partial coherence of light pro-
pagating through the film on results from film characterization by the
algorithm from Fig. 2, it should be taken into account that this

algorithm is based on using Eqs. (1,2) assuming propagation of co-
herent light through the film. In this regard, the film characteristics d̄,
Δd, m1, and n(λ) are determined mostly from the wavelengths of the set
{λt,λa} [3–5,12] which are almost independent from the partial co-
herence of light in the film according to the comments from Steps A1-
A3. Furthermore, since k(λ) is computed by using Eq. (1) assuming
coherent light in film, and Tsm(λ) influenced by the partial coherence of
light in the film, k(λ) represents a ‘coherent light in film’ estimation of
the true extinction coefficient affected by the partial coherence of light
in the film. However, optical designs including thin films with unin-
tended surface roughness usually employ ‘coherent light in film’ char-
acteristics; considering monochromatic light in the film, reflected only
from its surfaces, to be coherent [1,29,36]. This exemplifies the ad-
vantage of using the ‘coherent light in film’ estimation k(λ) of the true
extinction coefficient affected by the partial coherence of light in the
film, associated with light scattering from the film.

According to [12], the most accurate film characterization over the
wavelengths interval [min(λt),λt(1)] is identified by its smallest FOM
computed from Eq. (7). Correspondingly, the data displayed in red in
Table 2 indicate that the most accurate film characterization of the film
A041 is achieved using curve fitting of n0{Λf} and kc{Λf} by poly-
nomials of respective optimized degrees of 5 and 8, as described in
Eq. (10), and k[Tsm(λ)] = k0(λ) + Δk(λ). Moreover, it is seen from
Fig. 5a that Δk(λ⊂[1500,2500] nm) = [0.00025,0.0004]. To explain
the obtained Δk(λ) > 0, it is taken into account that the algorithm for
film characterization from Fig. 2 is based on Eq. (1), valid for propa-
gation of coherent light through the film, which provides the average
film thickness d̄ and the coherent light approximation k0(λ) of k(λ).
Moreover, the influence of k0(λ) on Tsm(λ) from Eq. (1) is determined
by the absorbance x0(λ) = exp(-4πk0d̄/λ), and therefore is dominated
by the product k0d̄ for a given wavelength λ. However, a light ray
scattered at the surface air/film, propagates over a distance d > d̄ in the
film; and its dominating product k0d is perceived by Eq. (1) as
(k0 + Δk)d̄ = k0d, where Δk > 0 is partially coherent light correction
of the extinction coefficient due to the light scattering.

Data displayed in red in Table 2 confirm that lowest FOM ≈
1.89×10−3 for the film A038, representing its most accurate char-
acterization, is achieved using k[T+(λ > λb)] and k[Tsm(λ < λb)].
Considering the distortion of T(λ) of the specimen A038 in the region
λ= [1770,2350], associated with residual gas absorption, this very low
value of FOM shows that accurate film characterization can be achieved
by using the algorithm from Fig. 2 even when T(λ) is influenced by
residual gas absorption. Furthermore, taking into account data from
[12], FOM ≈ 1.89×10−3 for the film A038 from Table 2 represents a
record low value of FOM.

Notably, the results for FOM3 from Table 2 indicate that there is
practically no difference in the accuracy of characterization, of either of
the films A041 and A038, performed using Eq. (5) or the more precise
Eq. (15) for computation of k[T+(λ)]. Importantly, however, the FOM
data displayed in red and blue in Table 2 show that the lowest FOMs in
this study are 18.3% lower for the film A041 and 28.1% lower for the
film A038 compared with the respective lowest FOMs for the same films
from [12]. This result and the absence of spurious small humps in n(λ)
and k(λ) presented in Figs. (4a), (5b) and (5c), unlike the presence of
such humps in n(λ) and k(λ) from [12], demonstrate the significantly
higher accuracy of characterization of the films A041 and A038
achieved here compared to [12].

5. Conclusions

In this study is proposed an algorithm for perfecting the thin film
characterization, based on the optimizing envelope method OEM,
without employing a dispersion model. It is shown that this algorithm
provides n(λ) and k(λ) without spurious small humps, more accurate
characterization of the films A041 and A038 than the characterizations
of these films from [12], and a record low value of FOM.
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These results indicate that the proposed algorithm has a capacity for
providing most accurate characterization of almost every dielectric or
semiconductor film with d̄ = [300,5000] nm on a substrate, only from
the normal incidence T(λ), compared to all the other methods for
characterization of such films only from T(λ). Our group intends to
develop software for characterization of a variety of thin films, based on
this algorithm.
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