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Abstract. In this work is presented one new approach for processing of
sequences of medical CT images, called Hierarchical Adaptive Karhunen-
Loeve Transform (HAKLT). The aim is to achieve high decorrelation for each
group of 9 consecutive CT images, obtained from the original larger sequence.
In result, the main part of the energy of all images in one group is concentrated
in a relatively small number of eigen images. This result could be obtained
using the well-known Karhunen-Loeve Transform (KLT) with transformation
matrix of size 9x9. However, for the implementation of the 2-levels HAKLT in
each level are used 3 transform matrices of size 3x3, in result of which the
computational complexity of the new algorithm is reduced in average 2 times,
when compared to that of KLT with 9x9 matrix. One more advantage is that the
algorithm permits parallel processing for each group of 3 images in every
hierarchical level. In this work are also included the results of the algorithm
modeling for sequences of real CT images, which confirm its ability to carry
out efficient decorrelation. The HAKLT algorithm could be farther used as a
basis for the creation of algorithms for efficient compression of sequences of
CT images and for features space minimization in the regions of interest, which
contain various classes of searched objects.

Keywords: Decorrelation of medical CT image sequences, Hierarchical
Adaptive Karhunen-Loeve Transform (HAKLT), Group of Medical Images.

1 Introduction

In the last years, large number of new technologies and systems for digital processing
of medical images had been created [1, 2, 3], such as: the standard Digital Imaging
and Communication in Medicine (DICOM) [4] used for storage, transfer and
visualization of images, obtained from computer tomographic systems, MRI and
ultrasound scanners; Picture Archiving and Communication System (PACS); systems
for digital radiography, teleradiology, etc. Medical images could be still or moving,
such as Magnetic Resonance Image (MRI), Nuclear Magnetic Resonance Image
(NMRI), Magnetic Resonance Tomography Image (MRTI), etc. Moving images are
represented by sequences of still images, obtained in consecutive time moments, or



spatial positions of the Computer Tomography (CT) scanner. Because of the large
volume of the visual medical information, various algorithms are used for its
compression. For still MRI are usually used algorithms based on the DCT, wavelet
decomposition for prediction or zero-tree/block coding [5, 6, 7], etc. For compression
of CT images sequences are used: interframe decorrelation based on hierarchical
interpolation (HINT) [8, 9], spatial active appearance model [10], JPEG-LS and
JPEG2000 with interframe motion compensated prediction [11, 12] and distributed
representation of image sets based on Slepian-Wolf coding [13].

One of the most efficient methods for decorrelation and compression of groups
of images is based on the KLT, also known as transform of Hotelling, or Principal
Component Analysis (PCA) [14] - [23]. For its implementation the pixels with the
same spatial position in a group of N images compose the corresponding N-
dimensional vector. The basic difficulty of the KLT implementation is related to the
large size of the covariance matrix. For the calculation of its eigenvectors is necessary
to calculate the roots of a polynomial of n™ degree (characteristic equation) and to
solve a linear system of N equations. For large values of N, the computational
complexity of the algorithm for calculation of the transform matrix is significantly
increased.

One of the possible approaches for reduction of the computational complexity of
KLT for N-dimensional group of medical images is based on the “Hierarchical
Adaptive KLT” (HAKLT), offered in this work. Unlike the famous hierarchical KLT
(HKLT) [18], this transform is not related to the image sub-blocks, but to the whole
image from one group. For this, the HAKLT is implemented through dividing the
image sequence into sub-groups of 3 images each, on which is applied Adaptive KLT
(AKLT), of size 3x3. This transform is performed using equations, which are not
based on iterative calculations, and as a result, they have lower computational
complexity. To decorrelate the whole group of medical images is necessary to use
AKLT of size 3x3, which to be applied in several consecutive stages (hierarchical
levels), with rearranging of the obtained intermediate eigen images after each stage.
In result is obtained a decorrelated group of 9 eigen medical images.

The paper comprises the following: the principle for decorrelation of CT images
group through HAKLT, the calculation of eigen images through AKLT with 3x3
matrix, experimental results, evaluation of the computational complexity and
conclusions.

2 Principle for Decorrelation of a Group of CT Images
Through Hierarchical AKLT

The sequence of medical images is divided into Groups of 9 Images (GMI), for which
is supposed that they are highly correlated. On the other hand, each GMI is further
divided into 3 sub-groups.
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Fig. 1. Algorithm for 2-levels Hierarchical Adaptive KLT for Group of 9 Medical Images

The algorithm for 2-levels HAKLT for one GMI is shown on Fig. 1. As it is easily
seen there, on each sub-group of 3 images from the first hierarchical level of HAKLT
is applied AKLT with matrix of size 3x3. In result are obtained 3 eigen images,
colored in yellow, blue and green correspondingly. After that, the eigen images are
rearranged so that the first sub-group of 3 eigen images to comprise the first images
from each group, the second group of 3 eigen images — the second images from each
group, etc. For each GMI of 9 intermediate eigen images in the first hierarchical level
is applied in similar way the next AKLT, with a 3x3 matrix, on each sub-group of 3
eigen values. In result are obtained 3 new eigen images (i.e. the eigen images of the
group of 3 intermediate eigen images), colored in yellow, blue, and green
correspondingly in the second hierarchical level. Then the eigen images are
rearranged again so, that the first group of 3 eigen images to contain the first images



from each group before the rearrangement; the second group of 3 eigen images - the
second image before the rearrangement, etc. At the end of the processing is obtained a
decorrelated sequence of eigen images, using which and through inverse HAKLT
could be restored the original sequence.

3 Calculation of Eigen Images Through AKLT with 3x3 Matrix

For the calculation of eigen images through AKLT with 3x3 matrix for GMI sub-
group is used the approach, given in [24] for the representation of the 3D color vector
in the KLT space. From each sub-group with 3 medical images of S pixels each,

shown on Fig. 2, are calculated the vectors C, =[C,,C,¢,Cs]' fors=1,2,..,S (on
the figure are shown the vectors for the first 4 pixels only, resp.
c—:1: [C11:(321:C31]t162:[clz1022 Cal", 63: [C13Co3 Casl' 164: [C14CosCal'). Each
vector is then transformed into corresponding vectors L =[L;,L,,Ls]" through
APCA with the matrix [ @] of size 3x3. Its elements @;; are defined below:

CulD Cor D Cor Cl(-:
Ci2 S i~ G5z —D'D 2 é
Cis Ct Cas 3A
Cw’zs] Cor- ":D CA
[Ci] [C2] [Cs]

Fig. 2. Sub-group of 3 images from the GMI

%+ The covariance matrix [K¢] of size 3x3 for vectors (33 is calculated:

1S = = - kip Ky Kgg
[Kcl= gzcscs —MeMe =| Ky Ky Ky |y 1)
=1 kg Kz Kgg

S
where M =[C;,C,,C,]' is the mean vector. Here X =E( xs):%sz; E() -
s=1

operator for calculation of the mean value of x;fors=1, 2, .., S.
% The elements of the mean vector M, and of the matrix [Kc] are defined in

accordance with the relations:

C_:l = E(Cls )1 62 = E( C2s )1 63 = E(Css )1 (2)



ky=ki=E(Cf )~(C1)? kpp=ky=E(C3 ) ~(C, ) kag= ks=E(C5 ) -(C3)%,  (3)
k12: k21: k4: E(ClSCZS )—( 61 ) 62 )1k23 = k32: k6: E(CZSCSS )— (62 ) 63 ): 4)
k13: k31: I‘5: E( Clsc3s )—(61 ) 63 )- 5)

%+ The eigen values 4,,4,,45 of the matrix [Kc] are defined in accordance to the
solution of the characteristic equation:

det| k;j— 48;; [=2° +ai* +bA+c =0, (6)
where: 5”:{3’ :?j

a=—(Ki+Kot+Ks), b=KkotKikg+ Koka— (kZ+kZ+kZ), .
€ = kokZ+ Kok 2+ Kok Z— (K, koks+ 2k ksks ),

Since the matrix [Kc] is symmetric, its eigen values are real numbers. For their
calculation could be used the equations of Cardano for “casus irreducibilis” (i.e., the
so-called “trigonometric solution”):

=2 L] cos(ﬂ)— 8 =2 L] cos(m)_ a.
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Jy=—2 L?cos(%)—% for A, =2y > 1y 20,

q=2(a/3)°—(ab)/3+c, p=-(a/3)+b<0,

go:arccos[—q/Z/\/qp|/3)3 } ©

% The eigen vectors @, ,®, @, of the covariance matrix [Kc] are the solution of
the system of equations below:

3
[Kc]Dy, = 2,@,, and |<13m|2: > k=1, form=123. (10)
i1

Eqg. 10 follows from the condition for orthogonality and normalization of all 3
eigenvectors:

3

1 for s=k;
0 for s=k.
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The solution of the system of equations (10) is used to calculate components of m™"
eigenvector @, = [@y, @, P31, Which corresponds to the eigen value A, :

D= Ay /Pyi ©opn=B, [Py @3=Dp, [P, form=1,2,3; (12)
Am:( k3_/lm )[k5( kz— ;]“m )— k4k6]1 Bm:( k3_/lm )[ke ( kl_/lm )— k4k5], (13)
Din=Ks [2K,Ks— kg (k3= Agy )= k& (Ky— Ay ), Py=y An+Bi+ D§ #0. (14)

The KLT matrix [@] comprises the eigenvectors @ = [@;, Py Pan ]

t

d_jl Dy Dy Dy

[@]=|@} |=|@), @, @i |,form=123. (15)
d—% D13 Dy Py

The direct AKLT for vectors C, =[Cy,Cys.Css]", from which are obtained vectors

I:s = [Lls 7L2$ !I-?,s]t , IS

Lis Dy Dy Dy (Cls_gl)
Ly, |=| D1, @y Dz |[(Cys—Cy)| fors=1,2,..S. (16)

LSS (DlS czj23 (D33 (CSS _CS)

The components of vectors L =[L;,Ly,Ls]' could be processed in various way

(such as for example: orthogonal transforms, quantization, decimation and
interpolation, etc.). In result are obtained the corresponding vectors

L=y (L) =lva(Li)wa(Los)ws(Leg)l” with  components LY, =yy(Ly),
L =w,(Lys ), L =w3(Lss ), where yy(.),w,(.),w5(.) are the functions of the used
transform. For the restoration of the vectors LY are used the functions for inverse

transform of the components Ly, =y %(L% ), Los =w;%(L%,), Las =w3'(LY,) and

in result are obtained the decoded vectors LS :[Lls,£25,£3s]‘. Using the inverse

AKLT, the vectors Ly are transformed into vectors és =[(A315,(A325,(A335]t :

—>

(;15 Dy Dy, D3| bas 21
Cos |=| Dy Dyy Dypg|| Ly |+|Cy | fors=12,...S. 17
Css Dy D3 D || Ly, C,

—

Here the matrix of the inverse APCA is:



Dy Dy, Dy 1 f [ = =
Dy Dy Dy :[@] :[@] :[@11@2 1@3]- (18)
Dy Dy Dy

For the restoration of vectors és :[(AZ1S ,625 ,635]‘ through inverse AKLT are needed

not only the vectors LS = [Lls ,IA_ZS,Q'S]t , but also the elements @j; of the matrix [@],
and the values of C;,C,,C, as well. The total number of these elements could be
reduced representing the matrix [@] as the product of matrices
[@,(a)].[@:(B)].[®@:(y)], and rotation around coordinate axes for each
transformed vector in Euler angles «, Sand y correspondingly:

@y Py Py
[@]: D1, Dy Py :[@1(0:)][(152([3)][@3(7/)]:[(D(a,ﬁ,y )]’ (19)
D13 Dp3 Py
where
[cosa —sina 0] cosp 0 —sing
[@(a)]= sina cosa Of;[@(B)]= O 1 0O |[;
0 0 1 sing 0 cosp
- I (20)
cosy -siny 0
[@5(r)]=| siny  cosy 0
| 0 0 1]
In this case the elements of the matrix [@] are represented by the relations:
@,,=C0S COS 3OSy —Sina siny;
@,,=—(cosa cos B siny +sina cosy );@4,=—C0S asin f3;
@,,=Sina Cos €Sy +CoSa Siny; @,,=—Sina COS S Siny+C0Sa COS Y ;
@4,=—sina sinf; d13=sinfB cosy; @y3=—sin fsiny; P33=C0S . (21)
The matrix of the inverse AKLT is defined by the relation:
[@]" = [@3(=1 [ @, (B[P~ )] (22)

Then, for the calculation of the elements of the inverse matrix [@] is enough to
know the values of the 3 rotation angles «, Sand ¥, defined by the relations:

a :—arcsin(¢32/,/1—¢323); B = arccos(®4;); y = arccos (@13/41— (.13323 ) (23)

In result, the number of the needed values for the calculation of the matrix [@] is
reduced from 9 down to 3, i.e. 3 times reduction. The elements L;.,L,. L5 for



s=1,2,...,S comprise the pixels of the first, second and third eigen image in the sub-
group of medical images C,,,C,,,Cs;.

4 Experimental results

On the basis of the 2-levels HAKLT algorithm, shown on Fig. 1, were done
experiments with sequences of CT images of size 512x512 pixels, 8 bpp. The
sequence was divided into groups (Set 1,..,Set R), each containing 9 consecutive CT
images. As an example, on Fig. 3 is shown one of the groups - Set 3, which contains
CT Image 1,.., Image 9.

Image 7 Image 9

Fig. 3. Group of 9 consecutive CT images in Set 3.

On Fig. 4 are shown the corresponding eigen images, obtained in result of applying the
2-levels HAKLT algorithm on the group of images (Set 3).



Eigen Image 1 Eigen Image 2 Eigen Image 3

Eigen Image 4 Eigen Image 5

Eigen Image 6
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Fig. 4. Eigen images, obtained for Set 3 after performing 2-levels HAKLT.

As it could be seen from the results on Fig. 4, on the first eigen image is concentrated
the main part of the energy of all 9 images, and the energy of each next eigen image
decreases quickly. This conclusion is confirmed by the data given in Table 2, where is
given the power distribution of pixels of eigen images from Set 3 after first and second
level of HAKLT, before and after their rearrangement in correspondence to Fig. 1. In
Table 1 is given the power distribution of all eigen images in Set 3 before and after
each operation and the relative mean power distribution. On the basis of data given in
Table 1 are build the corresponding graphics, representing the power distribution of all
9 eigen images, shown correspondingly on Figs. 5 - 7.



Table 1. Power distribution of all eigen images in Set 3 before and after each operation and
relative mean power distribution.

Name Level 1 Level 1 Level 2 Level 2 | Relative
(not arranged) | (arranged) (not arranged) | (arranged) | mean

18170 18170 53041 53041 219
715 18056 686 1100
341 18029 316 686

18056 715 1100 710
748 389 710 316
389 694 305 305

18029 341 523 523
694 389 326 326
394 394 242 242
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Fig. 5. Power distribution for Set 3, level 1: a - not arranged, b - arranged.
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Fig. 6.  Power distibution for Set 3, level 2: a - not arranged, b - arranged.



Fig. 7. Relative mean power distribution for Set 3, level 2 (arranged)

In Table 2 are given the mean and relative mean power distribution of pixels of all
9 eigen images in Set 1,.., Set 7 (R=7), and on Fig. 8 a, b - their corresponding graphic
distributions. The data in the last column of Table 2 show, that in the first 3 eigen
images are concentrated 95,7 % of the total mean power of all 9 images in GMI.

Table 2. Power Distribution, Mean Power Distribution, Relative Mean Power Distribution and
Relative Mean % of Power Distribution for all eigen images in Set 1,.., Set 7.

Relative| Reltive
Name Setl| Set2 | Set3 | Set4 | Set5 | Set6 | Set 7 [ Mean | mean | mean %

Eigen Im.1 | 49992 | 49749 | 53041 | 53547 | 53774 | 43272 |37701|48725 | 259.6 91.4
EigenIm.2 | 949 | 811 | 1100 | 875 | 2331 | 1770 | 1094 | 1276 | 6.8 93.8
EigenIm.3| 683 | 2325 | 686 | 1062 | 625 | 834 | 1144 | 1051 | 5.6 95.7
EigenIm.4| 808 | 710 | 710 | 512 | 460 | 811 | 950 | 709 | 3.8 97.1
EigenIm.5| 522 | 566 | 316 | 425 | 300 | 442 | 364 | 419 | 2.2 97.8
EigenIm.6 | 350 | 529 | 305 | 306 | 317 | 402 | 435 | 378 | 2.0 98.6
EigenIm.7 | 206 | 222 | 523 | 317 | 554 | 306 | 430 | 365 | 1.9 99.2
EigenIm.8| 172 | 198 | 326 | 261 | 312 | 251 | 218 | 248 | 1.3 996
EigenIm.9 | 130 | 171 | 242 | 173 | 254 | 167 | 177 | 188 | 1.0 1000
@ @@% ) @;&f & @,,@\‘@&@ é\\&@@ q,@‘\@5i@“‘\@’ié’\@i«?\“{.,@\@i &\\&i@&m@

a.

b

Fig. 8. a. Mean Power Distribution; b. Relative Mean Power Distribution for all sets of eigen

images
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Fig. 9. Quality evaluation (through PSNR in dB) of the restored images from Set 3 after Inverse
2-level HAKLT on the eigen images from Fig. 4.

From Fig. 8 b follows that the mean power of the first eigen image for all sets is
more than 250 times larger than that of each of the next 8 eigen images.

The values for pixels of the eigen images, obtained in result of the direct 2-level
HAKLT, were calculated with full accuracy, and after corresponding rounding could
be transformed into 8-bit numbers. Then, if on the 8 bpp eigen images is applied the
inverse 2-level HAKLT, the quality of corresponding restored images in GMI,
evaluated by their peak signal-to-noise ratio (PSNR), is > 45 dB. This was confirmed
by the results from Fig. 9, obtained for the eigen images in Set 3 of Fig. 4 after inverse
HAKLT in correspondence with the algorithm, shown on Fig.1. Hence, the sequence
of 9 images could be restored with retained visual quality. This result illustrates the
ability for efficient compression of a sequence of CT images, when HAKLT is used.

The experimental results were obtained with the software implementation of
HAKLT, in Visual C.

5 Evaluation of the computational complexity

The computational complexity of the 2-level HAKLT algorithm, based on 3x3
matrices will be compared with that of the KLT algorithm with a matrix of size 9x9,
because 2-level HAKLT is equivalent of the KLT for 9-component vector. For this,
both algorithms are compared in respect to the performed number of operations S
(additions and multiplications) [25] needed for the calculation of the following
components:

e covariance matrices [Kc] — in total 6 for the first algorithm, each of size 3x3,

and one matrix [Kc] of size 9x9 — for the second algorithm;

e eigen values and eigen vectors of the corresponding matrices [Kc];

¢ eigen images of each GMI, obtained using both algorithms.

On the basis of the computational complexity analysis given in [24] for AKLT

with matrix of size 3x3 and for KLT with a matrix of size NxN follows, that for the 2-
level HAKLT with 3x3 matrices and for the KLT with a 9x9 matrix we have:



- The number of operations needed for the calculation of all elements k;; for all
6 matrices [Kc] of size 3x3 (for the 2-level HAKLT) and for one matrix [Kc] of size
9x9 (for the KLT) is:

S(N)|y_s=3N(N+1)IN(N 1)+ 2(N +2)] = 576. (24)
S(N)|y g = (1/ 2)N(N+1IN(N = 1)+ 2(N +2)] = 4230, (25)

- The number of operations needed for the calculation of the eigenvalues of
matrices [Kc] for the 2-level HAKLT and of the [K¢] matrix for KLT, when the QR
decomposition and the Householder transform of (N-1) steps [24] were used, is:

Sval (N )] 5 =282. (26)

4 5, 17
Sva,(N)|N:9=(N—1)(§N +FN +7)=1124. 27)

- The number of operations needed for the calculation of the eigen vectors of
matrices [Kc] for the 2-level HAKLT and for the matrix [Kc] of KLT, in case that
iterative algorithm with 4 iterations is used, is correspondingly:

Syec(N)|y_s = 275. (28)
Syec(N)|_g = N[2N(4N +5)-1] =6633. (29)

- The number of operations needed for the calculation of a group of 9 eigen
images (each of P pixels), obtained in result of the direct 2-level HAKLT and of KLT
for zero mean vectors, is correspondingly:

Sharit (N)|_, =6PN(2N —1)=90P. (30)
St (N)[_g = PN(2N —1)=153P. (31)

Then the total number of operations SS for the 2-level HAKLT and for KLT is
correspondingly:

SS1(3) =[Sk (3)+Svai(3) +Svec(3)+Shari7(3)] =
=576 + 282+ 275+ 90P = 1133+ 90P,
88,(9)=[Sk(9)+Syai(9) +Syec(9)+Sicur (9)] =
= 4239+1124+6633+153P=11996+153P.

(32)

(33)

The reduction of the total number of operations needed for the 2-level HAKLT,
compared to that of the KLT could be evaluated using the coefficient #:
SS,(9) 11996 +153P
SS;(3)  1133+90P '

n(P) (34)



For example, for P=100 17(100)=2.96; for P=1000 correspondingly
1n(1000)=1.81 and n(o)—>1.7. Hence, SSy(P) is at least 1.7 times smaller than
SS,(P) for each value of P (in average, about 2 times).

6 Conclusions

The basic qualities of the offered HAKLT for processing a group of sequential medical
images are:

1. Lower computational complexity than KLT for the whole GMI, due to the lower
complexity of AKLT compared to the case, for which for the calculation of the KLT
matrix are used numerical methods [15, 16];

2. Ability for efficient lossy compression of GMI with retained visual quality of the
restored images and for lossless compression also;

3. Ability for minimization of features space in the regions of interest in a group of
medical images, which contain searched objects of various kinds;

4. There is also a possibility for further development of the HAKLT algorithm,
through: use of Integer KLT for lossless coding of medical images by analogy
approach with [23]; compression of video sequences from stationary TV camera;
sequences of multispectral and multi-view images, etc.
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