
Decorrelation of sequences of medical CT images based 
on the hierarchical adaptive KLT 

Roumen Kountchev, Peter Ivanov 

Technical University of Sofia, Department of Radio Communications and Video Technologies, 
Boul. Kl. Ohridsky 8, Sofia 1000, Bulgaria 

rkountch@tu-sofia.bg; peter.n.ivanov@gmail.com 

Abstract.  In this work is presented one new approach for processing of 
sequences of medical CT images, called Hierarchical Adaptive Karhunen-
Loeve Transform (HAKLT). The aim is to achieve high decorrelation for each 
group of 9 consecutive CT images, obtained from the original larger sequence. 
In result, the main part of the energy of all images in one group is concentrated 
in a relatively small number of eigen images. This result could be obtained 
using the well-known Karhunen-Loeve Transform (KLT) with transformation 
matrix of size 99. However, for the implementation of the 2-levels HAKLT in 
each level are used 3 transform matrices of size 33, in result of which the 
computational complexity of the new algorithm  is reduced in average 2 times, 
when compared to that of KLT with 99 matrix. One more advantage is that the 
algorithm permits parallel processing for each group of 3 images in every 
hierarchical level. In this work are also included the results of the algorithm 
modeling for sequences of real CT images, which confirm its ability to carry 
out efficient decorrelation. The HAKLT algorithm could be farther used as a 
basis for the creation of algorithms for efficient compression of sequences of 
CT images and for features space minimization in the regions of interest, which 
contain various classes of searched objects. 

Keywords: Decorrelation of medical CT image sequences, Hierarchical 
Adaptive Karhunen-Loeve Transform (HAKLT), Group of Medical Images. 

1 Introduction 

In the last years, large number of new technologies and systems for digital processing 
of medical images had been created [1, 2, 3], such as: the standard Digital Imaging 
and Communication in Medicine (DICOM) [4] used for storage, transfer and 
visualization of images, obtained from computer tomographic systems, MRI and 
ultrasound scanners; Picture Archiving and Communication System (PACS); systems 
for digital radiography, teleradiology, etc. Medical images could be still or moving, 
such as Magnetic Resonance Image (MRI), Nuclear Magnetic Resonance Image 
(NMRI), Magnetic Resonance Tomography Image (MRTI), etc. Moving images are 
represented by sequences of still images, obtained in consecutive time moments, or 



spatial positions of the Computer Tomography (CT) scanner. Because of the large 
volume of the visual medical information, various algorithms are used for its 
compression. For still MRI are usually used algorithms based on the DCT, wavelet 
decomposition for prediction or zero-tree/block coding [5, 6, 7], etc. For compression 
of CT images sequences are used: interframe decorrelation based on hierarchical 
interpolation (HINT) [8, 9], spatial active appearance model [10], JPEG-LS and 
JPEG2000 with interframe motion compensated prediction [11, 12] and distributed 
representation of image sets based on Slepian-Wolf coding [13]. 

 One of the most efficient methods for decorrelation and compression of groups 
of images is based on the KLT, also known as transform of Hotelling, or Principal 
Component Analysis (PCA) [14] - [23]. For its implementation the pixels with the 
same spatial position in a group of N images compose the corresponding N-
dimensional vector. The basic difficulty of the KLT implementation is related to the 
large size of the covariance matrix. For the calculation of its eigenvectors is necessary 
to calculate the roots of a polynomial of nth degree (characteristic equation) and to 
solve a linear system of N equations. For large values of N, the computational 
complexity of the algorithm for calculation of the transform matrix is significantly 
increased.  

One of the possible approaches for reduction of the computational complexity of 
KLT for N-dimensional group of medical images is based on the “Hierarchical 
Adaptive KLT” (HAKLT), offered in this work.  Unlike the famous hierarchical KLT 
(HKLT) [18], this transform is not related to the image sub-blocks, but to the whole 
image from one group. For this, the HAKLT is implemented through dividing the 
image sequence into sub-groups of 3 images each, on which is applied Adaptive KLT 
(AKLT), of size 33. This transform is performed using equations, which are not 
based on iterative calculations, and as a result, they have lower computational 
complexity. To decorrelate the whole group of medical images is necessary to use 
АKLT of size 33, which to be applied in several consecutive stages (hierarchical 
levels), with rearranging of the obtained intermediate eigen images after each stage. 
In result is obtained a decorrelated group of 9 eigen medical images.  

The paper comprises the following: the principle for decorrelation of CT images 
group through HAKLT, the calculation of eigen images through АKLT with 33 
matrix, experimental results, evaluation of the computational complexity and 
conclusions. 

 

2 Principle for Decorrelation of a Group of CT Images 
Through Hierarchical AKLT 

The sequence of medical images is divided into Groups of 9 Images (GMI), for which 
is supposed that they are highly correlated. On the other hand, each GMI is further 
divided into 3 sub-groups. 
   



 

Fig. 1. Algorithm for 2-levels Hierarchical Adaptive KLT for Group of 9 Medical Images 

The algorithm for 2-levels HAKLT for one GMI is shown on Fig. 1. As it is easily 
seen there, on each sub-group of 3 images from the first hierarchical level of HAKLT 
is applied АKLT with matrix of size 33. In result are obtained 3 eigen images, 
colored in yellow, blue and green correspondingly. After that, the eigen images are 
rearranged so that the first sub-group of 3 eigen images to comprise the first images 
from each group, the second group of 3 eigen images – the second images from each 
group, etc. For each GMI of 9 intermediate eigen images in the first hierarchical level 
is applied in similar way the next AKLT, with a 33 matrix, on each sub-group of 3 
eigen values.  In result are obtained 3 new eigen images (i.e. the eigen images of the 
group of 3 intermediate eigen images), colored in yellow, blue, and green 
correspondingly in the second hierarchical level. Then the eigen images are 
rearranged again so, that the first group of 3 eigen images to contain the first images 



from each group before the rearrangement; the second group of 3 eigen images - the 
second image before the rearrangement, etc. At the end of the processing is obtained a 
decorrelated sequence of eigen images, using which and through inverse НАKLT 
could be restored the original sequence. 

3 Calculation of Eigen Images Through AKLT with 33 Matrix 

For the calculation of eigen images through АKLT with 33 matrix for GМI sub-
group is used the approach, given in [24] for the representation of the 3D color vector 
in the KLT space. From each sub-group with 3 medical images of S pixels each, 
shown on Fig. 2, are calculated the vectors t
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Fig. 2.  Sub-group of 3 images from the GМI  

 The covariance matrix [KC] of size 33 for vectors sC
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 is calculated: 
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where t
321C C,C,Cm ][

  is the mean vector. Here 



S

1s
ss x

S
1)x(Ex ; E(.) – 

operator for calculation of the mean value of xs for s = 1, 2, . . , S.  
 The elements of the mean vector cm  and of the matrix [KC] are defined in 

accordance with the relations:  
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 The eigen values 321 ,,   of the matrix [KC] are defined in accordance to the 
solution of the characteristic equation: 
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Since the matrix [KC] is symmetric, its eigen values are real numbers. For their 
calculation could be used the equations of Cardano for “casus irreducibilis” (i.e., the 
so-called “trigonometric solution”): 
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 The eigen vectors 321 ,, 


 of the covariance matrix [KC] are the solution of 
the system of equations below: 
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Eq. 10 follows from the condition for orthogonality and normalization of all 3 
eigenvectors: 
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The solution of the system of equations (10) is used to calculate components of mth 
eigenvector ,,, t
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 which corresponds to the eigen value m : 
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The KLT matrix ][  comprises the eigenvectors t
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The direct АKLT for vectors t
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
, from which are obtained vectors 
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The components of vectors t
s3s2s1s L,L,LL ][


 could be processed in various way 

(such as for example: orthogonal transforms, quantization, decimation and 
interpolation, etc.). In result are obtained the corresponding vectors  

t
s33s22s11s

q
s )L(,)L(,)L()L(L ][  


 with components ),L(L s11

q
s1   

,)L(L s22
q

s2   )L(L s33
q

s3  , where (.) ,(.) ,(.) 321   are the functions of the used 

transform. For the restoration of the vectors q
sL


 are used the functions for inverse 

transform of the components ,)L(L̂ q
s1

1
1s1
  ,)L(L̂ q

s2
1

2s2
  )L(L̂ q

s3
1

3s3
  and 

in result are obtained the decoded vectors t
s3s2s1s L̂,L̂,L̂L̂ ][


. Using the inverse 

AKLT, the vectors sL̂


 are transformed into vectors t
s3s2s1s Ĉ,Ĉ,ĈĈ ][
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Here the matrix of the inverse AРСА is: 
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For the restoration of vectors t
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 through inverse AKLT are needed 

not only the vectors t
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reduced representing the matrix ][  as the product of matrices 
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In this case the elements of the matrix ][  are represented by the relations:           
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The matrix of the inverse АKLT is defined by the relation: 
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Then, for the calculation of the elements of the inverse matrix 1][  is enough to 
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In result, the number of the needed values for the calculation of the matrix 1][  is 
reduced from 9 down to 3, i.e. 3 times reduction. The elements s3s2s1 L,L,L  for 



s=1,2,...,S comprise the pixels of the first, second and third eigen image in the sub-
group of medical images s3s2s1 C,C,C . 

4 Experimental results 

On the basis of the 2-levels HAKLT algorithm, shown on Fig. 1, were done 
experiments with sequences of CT images of size 512×512 pixels, 8 bpp. The 
sequence was divided into groups (Set 1,..,Set R), each containing 9 consecutive CT 
images. As an example, on Fig. 3 is shown one of the groups - Set 3, which contains 
CT Image 1,.., Image 9. 
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Image 2 

 
                 Image 3 

 
Image 4  

Image 5 
 

Image 6 

 
Image 7  

Image 8  
Image 9 

Fig. 3. Group of 9 consecutive CT images in Set 3. 

On Fig. 4 are shown the corresponding eigen images, obtained in result of applying the 
2-levels HAKLT algorithm on the group of images (Set 3). 



 

 
Eigen Image 1 

 
Eigen Image 2 

 
Eigen Image 3 

 
Eigen Image 4 

 
Eigen Image 5 

 
Eigen Image 6 

 
Eigen Image 7 

 
Eigen Image 8 

 
Eigen Image 9 

Fig. 4. Еigen images, obtained for Set 3 after performing 2-levels HAKLT. 

As it could be seen from the results on Fig. 4, on the first eigen image is concentrated 
the main part of the energy of all 9 images, and the energy of each next eigen image 
decreases quickly. This conclusion is confirmed by the data given in Table 2, where is 
given the power distribution of pixels of eigen images from Set 3 after first and second 
level of HAKLT, before and after their rearrangement in correspondence to Fig. 1.  In 
Table 1 is given the рower distribution of all eigen images in Set 3 before and after 
each operation and the relative mean power distribution. On the basis of data given in 
Table 1 are build the corresponding graphics, representing the power distribution of all 
9 eigen images, shown correspondingly on Figs. 5 - 7. 



Table 1. Power distribution of all eigen images in Set 3 before and after each operation and 
relative mean power distribution. 

Name Level 1 
(not arranged) 

Level 1  
(arranged) 

Level 2 
(not arranged) 

Level 2 
(arranged) 

Relative 
mean 

Eigen Im. 1 18170 18170 53041 53041 219 

Eigen Im. 2 715 18056 686 1100 5 

Eigen Im. 3 341 18029 316 686 3 

Eigen Im. 4 18056 715 1100 710 3 

Eigen Im. 5 748 389 710 316 1 

Eigen Im. 6 389 694 305 305 1 

Eigen Im. 7 18029 341 523 523 2 

Eigen Im. 8 694 389 326 326 1 

Eigen Im. 9 394 394 242 242 1 
 
 

   
                                   a                                                                       b 

Fig. 5. Power distribution for Set 3, level 1: a - not arranged, b - arranged. 

 

     
                                 a                                                                          b 

Fig. 6.      Power distibution for Set 3, level 2: a - not arranged, b - arranged. 

 
 



 

   
Fig. 7. Relative mean power distribution for Set 3, level 2 (arranged) 

In Table 2 are given the mean and relative mean power distribution of pixels of all 
9 eigen images in Set 1,.., Set 7 (R=7), and on Fig. 8 a, b - their corresponding graphic 
distributions. The data in the last column of Table 2 show, that in the first 3 eigen 
images are concentrated 95,7 % of the total mean power of all 9 images in GMI.  

Table 2. Power Distribution, Mean Power Distribution, Relative Mean Power Distribution and 
Relative Mean % of Power Distribution for all eigen images in Set 1,.., Set 7. 

 
Name 

 
Set 1 

 
Set 2 

 
Set 3 

 
Set 4 

 
Set 5 

 
Set 6 

 
Set 7 

 
Mean 

Relative 
mean 

  Reltive    
mean % 

Eigen Im.1 49992 49749 53041 53547 53774 43272  37701   48725 259.6 91.4 

Eigen Im.2 949 811 1100 875 2331 1770 1094 1276 6.8 93.8 

Eigen Im.3 683 2325 686 1062 625 834 1144 1051 5.6 95.7 

Eigen Im.4 808 710 710 512 460 811 950 709 3.8 97.1 

Eigen Im.5 522 566 316 425 300 442 364 419 2.2 97.8 

Eigen Im.6 350 529 305 306 317 402 435 378 2.0 98.6 

Eigen Im.7 206 222 523 317 554 306 430 365 1.9 99.2 

Eigen Im.8 172 198 326 261 312 251 218 248 1.3 
99.6 

Eigen Im.9 130 171 242 173 254 167 177 188 1.0 
100.0 

 

        
                                 a.                                                                       b. 

Fig. 8. a. Mean Power Distribution; b. Relative Mean Power Distribution for all sets of eigen 
images  



 
Fig. 9. Quality evaluation (through PSNR in dB) of the restored images from Set 3 after Inverse 
2-level HAKLT on the еigen images from Fig. 4. 

    From Fig. 8 b follows that the mean power of the first eigen image for all sets is 
more than 250 times larger than that of each of the next 8 eigen images. 

The values for pixels of the еigen images, obtained in result of the direct 2-level 
HAKLT, were calculated with full accuracy, and after corresponding rounding could 
be transformed into 8-bit numbers. Then, if on the 8 bpp еigen images is applied the 
inverse 2-level HAKLT, the quality of corresponding restored images in GMI, 
evaluated by their peak signal-to-noise ratio (PSNR), is  45 dB. This was confirmed 
by the results from Fig. 9, obtained for the еigen images in Set 3 of Fig. 4 after inverse 
HAKLT in correspondence with the algorithm, shown on Fig.1. Hence, the sequence 
of 9 images could be restored with retained visual quality. This result illustrates the 
ability for efficient compression of a sequence of CT images, when HAKLT is used. 
       The experimental results were obtained with the software implementation of 
HAKLT, in Visual C.  

5 Evaluation of the computational complexity 

The computational complexity of the 2-level HAKLT algorithm, based on 33 
matrices will be compared with that of the KLT algorithm with a matrix of size 99, 
because 2-level HAKLT is equivalent of the KLT for 9-component vector. For this, 
both algorithms are compared in respect to the performed number of operations S 
(additions and multiplications) [25] needed for the calculation of the following 
components: 

 covariance matrices [KC] – in total 6 for the first algorithm, each of size 33, 
and one matrix [KC] of size 99 – for the second algorithm;    
 eigen values and eigen vectors of the corresponding matrices [KC]; 
 eigen images of each GMI, obtained using both algorithms. 

On the basis of the computational complexity analysis given in [24] for AKLT 
with matrix of size 33 and for KLT with a matrix of size NN follows, that for the 2-
level HAKLT with 33 matriсеs and for the KLT with a 99 matrix we have: 



        - The number of operations needed for the calculation of all elements kij for all 
6 matrices [KC] of size 33 (for the 2-level HAKLT) and for one matrix [KC] of size 
99 (for the KLT) is:  

  .576)2N(2)1N(N)1N(N3)N(S 3Nk 


][                  (24) 

  .4230)2N(2)1N(N)1N(N)2/1()N(S 9Nk 


][                   (25) 

- The number of operations needed for the calculation of the eigenvalues of 
matrices [KC] for the 2-level HAKLT and of the [KC] matrix for KLT, when the QR 
decomposition and the Householder transform of (N-1) steps [24] were used, is:  

 .282)N(S 3Nval 


                                                                                (26) 

 .1124)7N
6
17N

3
4)(1N()N(S 2

9Nval 


                                   (27) 

        - The number of operations needed for the calculation of the eigen vectors of 
matrices [KC] for the 2-level HAKLT and for the matrix [KC] of KLT, in case that 
iterative algorithm with 4 iterations is used, is correspondingly: 

275.)N(S 3Nvec 
        (28) 

.66331-)52N(4NN)N(S 9Nvec 


][             (29) 

       -  The number of operations needed for the calculation of a group of 9 eigen 
images (each of Р pixels), obtained in result of the direct 2-level HAKLT and of  KLT 
for zero mean vectors, is correspondingly: 

.P90)1N2(PN6)N(S 3NHAKLT 
       (30) 

.P153)1N2(PN)N(S 9NKLT 
                                                    (31) 

Then the total number of operations SS for the 2-level HAKLT and for KLT is 
correspondingly: 

,P901133P90275282576           

)3(S)3(S)3(S)3(S)3(SS HAKLTvecvalk1


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                                      (32) 
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The reduction of the total number of operations needed for the 2-level HAKLT, 
compared to that of the KLT could be evaluated using the coefficient :  

     .
P901133
P15311996

)3(SS
)9(SS)P(

1

2




                                                 (34) 



For example, for P=100 ;96.2)100(   for P=1000 correspondingly 
81.1)1000(   and .7.1)(   Hence, SS1(Р) is at least 1.7 times smaller than 

SS2(Р) for each value of  Р (in average, about 2 times). 

6 Conclusions 

The basic qualities of the offered HAKLT for processing a group of sequential medical 
images are: 

1. Lower computational complexity than KLT for the whole GMI, due to the lower 
complexity of AKLT compared to the case, for which for the calculation of the KLT 
matrix are used numerical methods [15, 16]; 

2. Ability for efficient lossy compression of GMI with retained visual quality of the 
restored images and for lossless compression also; 

3. Ability for minimization of features space in the regions of interest in a group of 
medical images, which contain searched objects of various kinds; 

4. There is also a possibility for further development of the HAKLT algorithm, 
through: use of Integer KLT for lossless coding of medical images by analogy 
approach with [23]; compression of video sequences from stationary TV camera; 
sequences of multispectral and multi-view images, etc. 
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