Adapted managerial mathematical model to study the functions and interactions between enterprises in high-tech cluster

Kiril P. Anguelov, and Vesela G. Kaynakchieva

Citation: AIP Conference Proceedings **1910**, 020019 (2017); View online: https://doi.org/10.1063/1.5013956 View Table of Contents: http://aip.scitation.org/toc/apc/1910/1 Published by the American Institute of Physics

Adapted managerial mathematical model to study the functions and interactions between enterprises in high-tech cluster

Kiril P. Anguelov^{1, a)}, Vesela G. Kaynakchieva^{2, b)}

^{1,2} Faculty of Management, Technical University, Sofia, 1000, Bulgaria, Sofia, 8 Kliment Ohridski Blvd.

> ^{a)} Corresponding author: ang@tu-sofia.bg ^{b)} vodenicharova@tu-sofia.bg

Abstract. The aim of the current study is to research and analyze Adapted managerial mathematical model to study the functions and interactions between enterprises in high-tech cluster, and his approbation in given high-tech cluster; to create high-tech cluster, taking into account the impact of relationships between individual units in the cluster–Leading Enterprises, network of Enterprises subcontractors, economic infrastructure.

1. INTRODUCTION

The term "cluster" is submitted for the first time from Prof. Michael Porter. According to him the cluster can be classified as "mixture", but this term is with wider application and is consisted with international competition [7]. Deployment of an enterprise's production near suppliers or next to big markets it is not necessary, since lowering of transport costs eliminates this need [7].

Other author, who examined, study and analyze clusters, is Robert Breo. He gives definition about the cluster. Breo stated few factors, which distinguished today's industrial cluster from these clusters in 20th century [9]:

- Formal Business Plan;
- Integration and modification of numerous foreign technologies;
- Development of the work force of all levels;
- Organizational skills;
- Competition of local level;
- Efficient transport of products;
- Cooperation public stakeholders;
- Educational system (programs, training, study).

The aim of the current study is to research and analyze Adapted managerial mathematical model to study the functions and interactions between enterprises inhigh-tech cluster, and his approbation in given high-tech cluster; to create high-tech cluster, taking into account the impact of relationships between individual units in the cluster–Leading Enterprises, network of Enterprises subcontractors, economic infrastructure.

Subject of the study are theoretical mechanisms for the definition of mathematical models for study the functions and interactions between enterprises in high-tech cluster.

Object of the study are production enterprises, members of cluster.

The relevance of the study is justified by the importance of the research problem – adapted managerial mathematical model to study the functions and interactions between enterprises in high-tech cluster. Advantages, which have enterprises when they cooperated themselves and simultaneously are competitors on the domestic and

Proceedings of the 43rd International Conference Applications of Mathematics in Engineering and Economics AIP Conf. Proc. 1910, 020019-1–020019-17; https://doi.org/10.1063/1.5013956

Published by AIP Publishing. 978-0-7354-1602-4/\$30.00

foreign markets – stimulation of the innovation actions; exchange of knowledge, experience, ideas and good practices; increasing competitiveness of manufactured products and services.

2. STAGING (DESCRIPTION) THE PROBLEM

Examine the structure of Cluster "Mechatronics and Automation".

Leading enterprises – high-tech enterprises are key enterprises, exporting stocks and services outside the region, i. e. their role is basic in the high-tech cluster.

The aim of the problem is to create high-tech cluster, for which to choose such business incubators of ideas and technologies the Leading Enterprises and Enterprises Subcontractors, in order the cluster to function optimally, i. e. the aim is maximum overall efficiency of the high-tech cluster.

The fact that all of this must comply with the costs that will be needed and with the potential return on the invested capital must not be ignored.

The solution of the problem consists of few stages – Data calculating, unification of criteria for optimality appropriately, solving of the problems from describing mathematical models.

The mathematical model consists of two problems.

2.1. Theoretical mathematical model for creating of high-tech cluster

To solve the problem, are described two mathematical models, i. e. the mathematical model consists of two problems.

The high-tech enterprises use the development and products, created in business incubators.

• First problem of the mathematical model

Let leading high-tech enterprises have a number of $m - K_1, K_2, ..., K_m$, and the goods and services offered from them have a number of $l - S_1, S_2, ..., S_l$. For every offered goods or services are provided costs and potential profit. How qualitative one good or service is, is influenced by different factors as invested capital, human resources, equipment, etc. The experts in the fields develop estimates all offered goods and services for each enterprise.

These assessments formed on the base some macroeconomic indicators:

- Manufacture;
- Labor market;

International transactions.

Let these assessments are:

For enterprise K_i , $i = 1 \div m$, for offered goods and services S_j , $j = 1 \div l$, assessments respectively O_{ij} , $i = 1 \div m$, $j = 1 \div l$.

Goods and services Enterprise	<i>S</i> ₁	<i>S</i> ₂	•••	<i>S</i> _l	O_{ij} assessment of leading K_i high-tech enterprise for
<i>K</i> ₁ <i>K</i> ₂	$\begin{array}{c} 0_{11} \\ 0_{21} \end{array}$	$egin{array}{c} 0_{12} \ 0_{21} \end{array}$	•••	$egin{array}{c} O_{1l} \ O_{2l} \end{array}$	offered from him S_j good or service, $i = 1 \div m$, $j = 1 \div l$
 <i>K_m</i>	O_{m1}	O_{m2}	•••	O_{ml}	-

TABLE 1. Assessments of offered goods and services for given enterprise

Thus defined assessments are indicators for efficiency of each activity of the offered goods and services for each leading high-tech enterprise form the cluster.

Let potential forecast and plan costs for given leading high-tech enterprise for each from offered goods and services are R_{ij} , $i = 1 \div m$, $j = 1 \div l$ – table 2

TABLE 2. Potential forecast and plan costs for offered goods and services of given leading high-tech enterprise
(for 1 year)

Goods and services	<i>S</i> ₁	<i>S</i> ₂		Sl	R_{ij} – forecast and plan costs of
Enterprise					leading high-tech enterprise K_i for
<i>K</i> ₁	<i>R</i> ₁₁	<i>R</i> ₁₂	•••	R_{1l}	single amount from offered from the enterprise S_i goods and services
K_2	R_{21}	R_{21}	•••	R_{2l}	(for 1 year)
•••	•••	•••	•••	•••	· · ·
<u> </u>	R_{ml}	R_{m2}	•••	R_{ml}	

Let potential forecast and plan profits for given leading high-tech enterprise for each from offered goods and services are P_{ij} , $i = 1 \div m$, $j = 1 \div l$ – table 3:

TABLE 3. Potential forecast and plan profits for offered goods and services of given leading high-tech enterprise (for 1 year)

Goods and services Enterprise	<i>S</i> ₁	<i>S</i> ₂		<i>S</i> _l	P_{ij} forecast and plan profits of given leading high-tech enterprise
K1	P ₁₁	P ₁₂	•••	P_{1l}	K_i for single amount from offered form the enterprise S_i goods and
<i>K</i> ₂	P_{21}	P_{21}	•••	P_{2l}	services (for 1 year)
	•••	•••	•••	•••	
$-K_m$	P_{ml}	P_{m2}	•••	P_{ml}	

The mathematical model of the First problem

The mathematical model of the task for distribution of goods and services between leading high-tech enterprises at limited general financial assets for costs and at least certain amount financial assets for profit is: Linear integer optimization problem with Boolean variables, i. e. 1 = trie, 0 = false [4, 1, 2, 3, 5, 6]:

$$max\left\{F(X) = \sum_{i=1}^{m} \sum_{j=1}^{l} O_{ij} \cdot x_{ij} = O_{11} \cdot x_{11} + O_{12} \cdot x_{12} + \dots + O_{1l} \cdot x_{1l} + O_{21} \cdot x_{21} + O_{22} \cdot x_{22} + \dots + O_{2l} \cdot x_{2l} + \dots + O_{m1} \cdot x_{m1} + O_{m2} \cdot x_{m2} + \dots + O_{ml} \cdot x_{ml}\right\}$$

subject to:

$$\begin{cases} \sum_{i=1}^{m} \sum_{j=1}^{l} R_{ij} \cdot x_{ij} \leq R \\ \sum_{i=1}^{m} \sum_{j=1}^{l} P_{ij} \cdot x_{ij} \geq P \\ \sum_{i=1}^{m} x_{ij} \geq 1, j = 1 \div l \\ \sum_{i=1}^{l} x_{ij} \geq 1, i = 1 \div m \\ x_{ij} = \{0; 1\} \end{cases}$$

(1)

where and R is overall forecast and plan minimum guaranteed cost for offered goods and services from leading high-tech enterprises, and P is overall forecast and plan maximum guaranteed profit. x_{ij} is single quality of given good and services S_j , offered from leading high-tech enterprise K_i in a period of time 1 year and

 $x_{ij} = \begin{cases} 1, \text{ if instructed of the enterprise } K_i \text{ of fers the good and the service } S_j \text{ } i = 1 \div m, j = 1 \div l \\ 0, \text{ if not instructed of the enterprise } K_i \text{ of fers the good and the service } S_j \text{ } i = 1 \div m, j = 1 \div l \end{cases}$

• Second problem of the mathematical model

Indicators for the efficiency are seven factors, which indicate industrials cluster's influence on the competitiveness of enterprises, which are members of clusters. These indicators are as follows:

- Competitiveness of offered production –A₁
- Labor productivity $-A_2$;
- Financial results A₃;
- Growth of enterprises $-A_4$
- Innovation of enterprises A₅
- Production and marketing flexibility A₆
- Adaptability of enterprises to market A₇

Each from the indicators is described quality. For the indicator A_i , $i = 1 \div 7$, subset of elements of the indicator: $\{a_{ij}\}, i = 1 \div 7, j = 1 \div 9$ (*j* is different number for different indicators A_i).

Indicators from $A_1 \div A_7$ are evaluated degree of importance and determined by the degree of scale $1 \div 10$, as 1 is bad, and 10 is excellent, as the weight is assessed form results of the enterprises and expert evaluation of the researcher.

The experts in the given field determine the degree of importance, as they make an expert assessment, that transform quality characteristics of the factor "a" in quantitative ones.

For assessment of the indicator A_i , $i = 1 \div 7$, set the following table:

TABLE 4. Assessment of Indicator A_i , $i = 1 \div 7$

Characteristics of the factor Degree of importance	<i>a</i> _{i1}	<i>a</i> _{i2}	<i>a</i> _{i3}	<i>a</i> _{i4}	<i>a</i> _{<i>i</i>5}	a _{i6}	<i>a</i> _{i7}	a _{i8}
1÷ 10	b_{51}	b_{52}	b_{53}	b_{54}	b_{55}	b_{56}	b ₅₇	b_{58}
Weight vector	u_{51}	u_{52}	u_{53}	u_{54}	u_{55}	u_{56}	u_{57}	u_{58}

Describe of the weight vector:

$$\vec{u_i} = (u_{i1}, u_{i2}, \dots, u_{i9}), \text{ where } u_{ij} = \frac{b_{ij}}{\sum_{j=1}^k b_{ij}}$$
 (2)

Looking for distribution of goods and services between leading high-tech enterprises maximum overall efficiency from the implementation, as taking into account the following conditions – limited general financial assets for costs, at least certain amount financial assets for profit.

It is necessary to determine Enterprise Subcontractors. The purpose is to experts determine what will be the activities as a whole, i. e. what delivery is necessary for raw materials and materials, equipment and service. Let these activities are denoted with $d_1, d_2, ..., d_k$. And Enterprise Subcontractors are n of number $-F_1, F_2, ..., F_n$. Activities depend on the economic infrastructure of the subcontractor – factors as human resources, technologies, capital and finance, business climate, physical infrastructure. Let these factors are s of number $-f_1, f_2, ..., f_s$. Each factor must be assessed different indicators from experts in the relevant field. Let for factor $f_t, t = 1 \div s$, the number of indicators is e_t , and indicators are $a_{te_t}, t = 1 \div s$. Each indicator has particular importance (meaning).

<u>Weight method</u>: For factor f_t , $t = 1 \div s$, with indicators a_{te_t} , $t = 1 \div s$, relevant assessments are o_{te_t} , $t = 1 \div s$, and their relevant importance (weights) are u_{te_t} , $t = 1 \div s$, where

$$\sum_{t=1}^{s} \sum_{l=1}^{e_t} u_{tl}$$
(3)

(4)

It's find efficiency of each factor as follows: For factor $f_t, t = 1 \div s$, the efficiency is

$$q_t = (o_{t1}, o_{t2} \dots o_{te_t}) \times \begin{pmatrix} u_{t1} \\ u_{t2} \\ \dots \\ u_{te_t} \end{pmatrix}, t = 1 \div s$$

The amount of resulting efficiencies gives the efficiency of the activity. In Table 5 are presented these efficiencies for each activity for each from enterprise subcontractors:

TABLE 5 . Efficiencies for each activity of given enterprise subcontractor

	Activities	<i>d</i> ₁	d ₂	•••	d_k
Enterprises Subcontract					
Subcontract	ors				
F	1	Q_{11}	Q_{12}		Q_{1k}
F	2	Q_{21}	Q_{21}		Q_{2k}
		•••			
<i>F</i>	'n	Q_{n1}	Q_{n2}		Q_{nk}

In order to deploy activities between enterprises subcontractors, looking for maximum overall efficiency from activities taking into account following conditions – limited overall financial assets for costs, let certain amount financial assets for profit.

Let forecast and plan costs for each enterprise subcontractor for each of activities are r_{bc} , $b = 1 \div n$, $c = 1 \div k$, and forecast and plan profits for each enterprise subcontractor for each of activities are p_{bc} , $b = 1 \div n$, $c = 1 \div k$ – Table 6.

	Activities	<i>d</i> ₁	<i>d</i> ₂	 d_k	<i>d</i> ₁	d ₂	
Enterprise Subcontractor							
F ₁		<i>r</i> ₁₁	r_{12}	 r_{1k}	p_{11}	p_{12}	
F ₂		r_{21}	r_{22}	 r_{2k}	p_{21}	p_{22}	
F_n		r_{n1}	r_{n2}	 r_{nk}	p_{n1}	p_{n2}	

Mathematical model of the Second problem

The mathematical model of the problem for deployment of activities between enterprises subcontractors at limited overall financial assets for costs and at least certain amount financial assets for profit is: Linear integer optimization problem with Boolean variables, i. e. 1 = trie, 0 = false [4; 1; 2; 3; 5; 6]:

$$max \left\{ G(Y) = \sum_{b=1}^{n} \sum_{c=1}^{k} Q_{bc} \cdot y_{bc} = Q_{11} \cdot y_{11} + Q_{12} \cdot y_{12} + \dots + Q_{1k} \cdot y_{1k} + Q_{21} \cdot y_{21} + Q_{22} \cdot y_{22} + \dots + Q_{2k} \cdot y_{2k} + \dots + Q_{n1} \cdot x_{n1} + Q_{n2} \cdot x_{n2} + \dots + Q_{mk} \cdot x_{nk} \right\}$$

subject to:

$$\begin{cases} \sum_{b=1}^{n} \sum_{c=1}^{k} r_{bc} \cdot y_{bc} \leq r \\ \sum_{b=1}^{n} \sum_{c=1}^{k} p_{bc} \cdot y_{bc} \geq p \\ \sum_{b=1}^{n} y_{bc} \geq 1, c = 1 \div k \\ \sum_{c=1}^{k} y_{bc} \geq 1, b = 1 \div n \\ y_{bc} \in \{0, 1\} \end{cases}$$

(5)

Where r is overall forecast and plan minimum guaranteed cost for activities of enterprises subcontractors, and p is overall forecast and plan maximum guaranteed profit. y_{ij} is single quality of given activities d_c , implemented from enterprise subcontractor F_b in a period of time 1 year and

$$y_{ij} = \begin{cases} 1, \text{ if instructed of the enterprise } F_b \text{ to perform activity } d_c, & c = 1 \div k, b = 1 \div n \\ 0, \text{ if not instructed of the enterprise } F_b \text{ to perform the activity } d_c, & c = 1 \div k, b = 1 \div n \end{cases}$$

2.2. Application of the Theoretical mathematical model in Cluster "Mechatronics and Automation"

Cluster "Mechatronics and Automation" was established on 22.12.2006 by Initiative Committee. The mechatronics and the automation suggest connection in manufacturing systems of mechanics, electronics and software. The development of the cluster is aimed at the demand for export-oriented niche market in order to realize the high-tech products and services with high value added. As products and services are realized mechatronic manufacturing systems, automation of continuous productions, software products for aggregates management, industries and factories (numerical control, MES, ERP and others).

Geographically the cluster is situated in the Town of Blagoevgrad, and it used with support of local municipal authority. Members of Cluster "Mechatronics and Automation" are high-tech enterprises, with scope of activity in the field of engineering, hardware and software[10].

The difference between ordinary and high-tech clusters is in the composition of development units, which are elements of the cluster. For them is characterized the presence of business incubator, where arise and developed high technologies. Project of the structure Cluster "Mechatronics and Automation" (CMA) is shown in Fig. 1

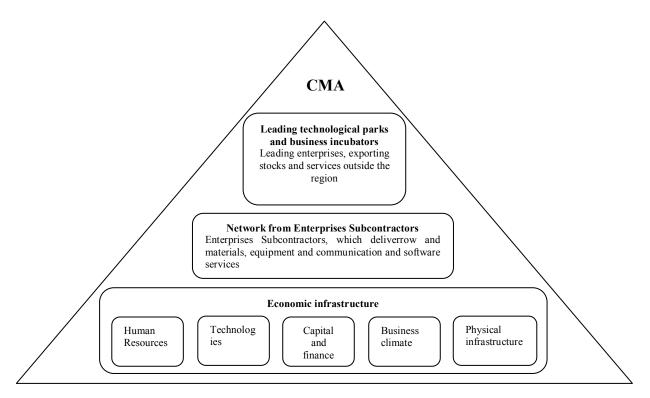


FIGURE 1. Project of the structure Cluster "Mechatronics and Automation"

First problem of the mathematical model

Data are taken from studied enterprises, member of Cluster "Mechatronics and Automation". Studied enterprises are in the field of manufacture.

Studied leading enterprises are following:

 K_1 – RITTBUL Ltd.

 K_2^{T} – Joint Stock Company (JSC) SAMEL 90 K_3 – SPESIMA Ltd.

Studied enterprises subcontractors of leading enterprises are following:

 F_1 -ULTRAFLEKS KORPOREYSHAN Ltd.

 $\overline{F_2}$ – General partnership "SEMIS – CANEV i SIE" F_3 – JSC MEHATRONIKA

Scheme of leading enterprises and their enterprises subcontractors, i. e. the leading enterprise and its enterprise subcontractor, is shown of Fig. 2.

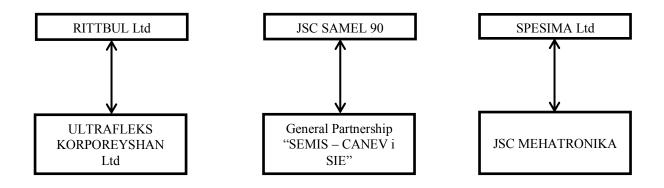


FIGURE. 2. Scheme of leading enterprises ant their enterprises subcontractors in Cluster "Mechatronics and Automation"

The collected data are indicator A_i , $i = 1 \div 7$ each leading high-tech enterprise, member of Cluster "Mechatronics and Automation". Assessments made by experts in potential fields in every single one, member of the cluster, and they are shown in the Table 7:

TABLE 7. Assessment of the enterprise K_m , $m = 1 \div 3$, for his proposed goods and services S_n , $n = 1 \div 8$

Goods and services Enterprise	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄	<i>S</i> ₅	<i>S</i> ₆	<i>S</i> ₇	<i>S</i> ₈
К1	$0_{11} = 35$	$0_{12} = 42$	$0_{13} = 35$	$0_{14} = 41$	$0_{15} = 37$	$0_{16} = 32$	$0_{17} = 46$	<i>O</i> ₁₈ = 31
К2	$0_{21} = 39$	<i>0</i> ₂₂ = 45	0 ₂₃ = 33	$0_{24} = 36$	$0_{25} = 31$	$0_{26} = 36$	$0_{27} = 34$	<i>O</i> ₂₈ = 43
К3	$0_{31} = 34$	$0_{32} = 31$	<i>O</i> ₃₃ = 34	$O_{34} = 30$	$O_{35} = 45$	0 ₃₆ = 37	$0_{37} = 36$	<i>O</i> ₃₈ = 28

For the distribution of goods and services between leading high-tech enterprises are used Annual Profit and Loss Accounts of the relevant enterprise.

Let potential forecast and plan costs for each leading high-tech enterprise for each proposed good and service are R_{ii} , $i = 1 \div m$, $j = 1 \div l$ – table 8: [thousand. lev / year] (for 1 year):

TABLE 8. Potential forecast and plan costs for each leading high-tech enterprise for each proposed good and service (for 1 year)

Goods and services	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄
Enterprise	D = 10.026	D _ 20.26E	D _ E6 12E	D _ 20 202
K_1	$R_{11} = 18236$	$R_{12} = 29365$	$R_{13} = 56135$	$R_{14} = 28393$
K_2	R_{21}	$R_{22} = 851230$	$R_{23} = 632\ 458$	$R_{24} = 1132487$
	= 984521			
K ₃	R ₃₁	$R_{32} = 643252$	$R_{33} = 139245$	$R_{34} = 231065$
5	=351242	52	33	54
Goods and	<i>S</i> ₅	S ₆	<i>S</i> ₇	<i>S</i> ₈
services	0	Ū.		Ũ
Enterprise				
<i>K</i> ₁	$R_{15} = 32846$	$R_{16} = 11138$	$R_{17} = 44369$	$R_{18} = 38\ 518$
K_2	$R_{25} = 0$	$R_{26} = 343739$	$R_{27} = 3\ 745\ 673$	$R_{28} = 1598066$
K ₃	R ₃₅	$R_{36} = 132895$	$R_{37} = 0$	$R_{38} = 68\ 185$
	= 225 116			

 R_{ij} forecast and plan costs of the leading high-tech enterprise K_i for single amount of his proposed S_j good or service (for 1 year) The size of the Costs of raw materials and external services is as follows:

For $K_1 - RITTBUL$ Ltd: 259 000 lv.

For K_2 – Stock company SAMEL 90: 12 288 000 lv.

For K₃-SPESIMA Ltd: 1 791 000 lv.

Let potential forecast and plan profits for each leading high-tech enterprise for each proposed good and service are P_{ij} , $i = 1 \div m$, $j = 1 \div l$ – table 9: [thousand. lev / year] (for 1 year):

Goods and services	<i>S</i> ₁	<i>S</i> ₂	S ₃	<i>S</i> ₄
Enterprise				
<i>K</i> ₁	$P_{11} = 25\ 185$	$P_{12} = 38\ 139$	$P_{13} = 59343$	$P_{14} = 41139$
<i>K</i> ₂	$P_{21} = 3\ 435\ 297$	$P_{22} = 8939745$	P ₂₃ = 2 143 595	$P_{24} = 6\ 227\ 898$
<i>K</i> ₃	$P_{31} = 28475$	$P_{32} = 39145$	$P_{33} = 48745$	<i>P</i> ₃₄ = 22 764
Goods and services Enterprise	<i>S</i> ₅	<i>S</i> ₆	S ₇	<i>S</i> ₈
<i>K</i> ₁	$P_{15} = 23\ 148$	$P_{16} = 18936$	$P_{17} = 29365$	$P_{18} = 28745$
<i>K</i> ₂	$P_{25} = 0$	$P_{26} = 3\ 321\ 116$	$P_{27} = 995\ 138$	$P_{28} = 924\ 211$
K ₃	$P_{35} = 53\ 147$	$P_{36} = 65234$	$P_{37} = 0$	P ₃₈ = 56 490

TABLE 9. Potential forecast and plan profits for each leading high-tech enterprise for each proposed good and service (for 1 year)

 P_{ij} - forecast and planning profit of the leading high-tech enterprise K_i for single amount of his proposed S_j good or service (for 1 year)

The size of Accounting profit is as follows: For $K_1 - RITTBUL$ Ltd: 264 000 lv. For $K_2 - Stock$ company SAMEL 90: 25 987 000lv. For K_3 -SPESIMA Ltd: 314 000 lv.

• Second problem of the mathematical model

The collected data for relevant activities, implemented from enterprises subcontractors for economic infrastructure factors $f_1 \div f_5$ and elements subset of individual indicator a_{ij} , $j = 1 \div 7$. Data are processed and received efficiencies of activities of enterprises subcontractors and they are systematized in Table 10.

TABLE 10. Efficiencies of enterprises subcontractors for proposed of them activities

Activities Enterprises Subcontractors	<i>d</i> ₁	<i>d</i> ₂	<i>d</i> ₃	d_4	<i>d</i> ₅	d ₆	d ₇	<i>d</i> ₈
F ₁	$Q_{11} = 0$	$Q_{12} = 0$	$Q_{13} = 0$	$Q_{14} = 116,04$	$Q_{15} = 77,36$	$Q_{16} = 13,38$	$Q_{17} = 0$	$Q_{18} = 58,02$
F_2	$Q_{21} = 118,3$	$Q_{22} = 59,4$	$Q_{23} = 198$	Q ₂₄ = 138,6	$Q_{25} = 158,4$	$Q_{26} = 178,2$	$Q_{27} = 39,6$	$Q_{28} = 79,2$
F ₃	<i>Q</i> ₃₁ = 19,4	$Q_{32} = 77,8^{-1}$	$Q_{33} = 97,3$	$Q_{34} = 58,38$	$Q_{35} = 116,76$	$Q_{36} = 19,46$	$Q_{37} = 136,22$	$Q_{38} = 175,44$

Distribution activities between enterprises subcontractors are used Annual reports on income and expenses in relevant enterprise subcontractor.

Forecast and plan costs for each activity of given enterprise subcontractor with specific data - r_{bc} , $b = 1 \div$ $m, c = 1 \div k$ for 1 year, are shown in Table 11. Forecast and plan profits for each activity of given enterprise subcontractor with specific data - p_{bc} , $b = 1 \div m$, $c = 1 \div k$, for 1 year, are shown in Table 12.

Activities	<i>d</i> ₁	<i>d</i> ₂	<i>d</i> ₃	<i>d</i> ₄
Enterprise-				
Subcontractor				
F_1	$r_{11} = 0$	$r_{12} = 0$	$r_{13} = 0$	$r_{14} = 258359$
F_2	$r_{21} = 11586$	$r_{22} = 10\ 578$	$r_{23} = 13\ 432$	$r_{24} = 10\ 342$
F ₃	r ₃₁ = 795 856	r ₃₂ = 1 125 433	r ₃₃ = 956 793	r ₃₄ = 899 135
Activities	d_5	<i>d</i> ₆	d_7	<i>d</i> ₈
Enterprise-				
Subcontractor				
F ₁	r ₁₅ = 455 786	r ₁₆ = 525 643	r ₁₇ = 343 672	r ₁₈ = 157 540
F_2	$r_{25} = 15\ 785$	$r_{26} = 9\ 581$	$r_{27} = 11158$	$r_{28} = 10\ 538$
F_3	$r_{35} = 536458$	$r_{36} = 129333$	r_{37}	r ₃₈ = 133 681
			= 110 311	

TABLE 11. Forecast and plan costs for each activity of given enterprise subcontractor with specific data r_{bc} , $b = 1 \div m$, $c = 1 \div k$ (for 1 year)

The size of Costs of raw materials and external services of studied enterprises subcontractor is as follows: For F_1 - ULTRAFLEKS KORPOREYSHAN Ltd: 1 741 000 lv. For F_2 - General Partnership "SEMIS – CANEV i SIE": 93 000 lv.

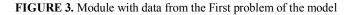
For F_3 -JSC MEHATRONIKA: Costs for raw materials: 3 776 000 lv.; Costs for external services: 938 000 лв. Total Costs for raw materials, materials and external services for JSC MEHATRONIKA: 3776000 + $938\,000 = 4\,714\,000\,lv$.

TABLE 12. Forecast and plan profits for each activity of given enterprise subcontractor - p_{bc} , $b = 1 \div m$, c = $1 \div k$ (for 1 year)

Activities	<i>d</i> ₁	d ₂	<i>d</i> ₃	<i>d</i> ₄
	-	-	U U	-
Enterprise-				
Subcontractor				
F_1	$p_{11} = 0$	$p_{12} = 0$	$p_{13} = 0$	$p_{14} = 12\ 586$
F ₂	$p_{21} = 3\ 143$	$r_{22} = 4\ 574$	$p_{23} = 3\ 256$	$p_{24} = 5\ 135$
F ₃	<i>p</i> ₃₁ = 343 259	$r_{32} = 258963$	p_{33}	$p_{34} = 139456$
5	1 51	52	= 425 369	1 51
Activities	d_5	d_6	d_7	<i>d</i> ₈
Enterprise-				
Subcontractor				
F ₁	$p_{15} = 13\ 476$	<i>p</i> ₁₆ = 9 799	<i>p</i> ₁₇ = 14 786	$p_{18} = 21353$
F_2	$p_{25} = 1\ 795$	$p_{26} = 3\ 956$	$p_{27} = 1\ 955$	<i>p</i> ₂₈ = 1 186
$\overline{F_3}$	$p_{35} = 236\ 432$	$p_{36} = 195347$	p ₃₇	$p_{38} = 132\ 985$
5			= 310 189	

The size of Accounting profit of studied enterprises subcontractor is as follows:

- For F_1 ULTRAFLEKS KORPOREYSHAN Ltd: 72 000lv. For F_2 General Partnership "SEMIS CANEV i SIE":25 000 lv.
- For F_3 Stock Company MEHATRONIKA: 2 069 000 lv.

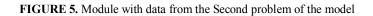

3. NUMERICAL DECISION AND FINDINGS OF CONDITIONED PROBLEMS

A suitable software product LINDO &LINGO that has ready module for solve the Linear integer optimization problem with Boolean variables, for solving both parts of the mathematical model is used.

3.1. Numerical decision of conditioned problems

Decision of First problem of the mathematical model

UNGO - UNDO Model - first task - fig 3	-
File Edit LINGO Window Help	
	? №?
📴 LINDO Model - first task - fig 3	
Max 35x1+42x2+35x3+41x4+37x5+32x6+46x7+31x8+39x9+45x10+33x	11+36x12+31x13+
36x14+34x15+43x16+34x17+31x18+34x19+30x20+45x21+37x22+36x2	3+28x24
Subject to	
2)15236x1+29365x2+56135x3+28393x4+32846x5+11138x6+44	369x7+38518x8+
984521x9+851230x10+632458x11+1132487x12+343739x14+3745673x	15+1598066x16+
351242x17+643252x18+139245x19+231065x20+225116x21+132895x2	2+68185x24<=
10235123	
3)25185x1+38139x2+59343x3+41139x4+23148x5+18936x6+29	365x7+28745x8+
3435297x9+8939745x10+2143595x11+6227898x12+3321116x14+9951	.38x15+924211x16+
28475x17+39145x18+48745x19+22764x20+53147x21+65234x22+5649	0x24>=18347890
End	
Gin 24	



🗱 LINDO - [Rep	oorts Window]		
File Edit So	ive Reports Window Help		
LP OPTIMUM OBJECTIVE V		27 9	
	SOLUTION OF 804 NG BEST SOLUTION	4.000000 AT BRANCH O PIVOT 27	
OBJE	CTIVE FUNCTION VALU	JE	
1)	804.0000		
VARIABLE	VALUE	REDUCED COST	
81	1.000000	-25.000000	
X2	1.000000	-42.000000	
X3	1.000000	=35.000000	
24	1.000000	-41.000000	
XS	1.000000	-37.000000	
X6	1.000000	-32.000000	
87	1.000000	-46.000000	
xe	1.000000	-31.000000	
X9	1.000000	-39.000000	
X10	1.000000	-45.000000	
X11	1.000000	-33.000000	
X12	1.000000	-36.000000	
X13	0.00000	-31.000000	
X14 X15	1.000000	-36.000000	
X16	1.000000	-49.000000	
X10 X17	1.000000	-34.000000	
X10	1.000000	-31.000000	
X19	1.000000	-34.000000	
X20	1.000000	-30.000000	
X2 1	1.000000	-45.000000	
X2 2	1.000000	-37.000000	
X2 3	0.00000	-26.000000	
X2.4	1.000000	-28.000000	
ROW	SLACK OR SURPLUS	DUAL PRICES	
2)	502279.000000	0.000000	
2)	491685.000000	0.000000	
NO. ITERATI	ONS= 27		
BRANCHES=	O DETERM. = 1.000	o ac	

FIGURE 4. The decision with data from the First problem of the model

The decision of the Second problem of the mathematical model

UNGO - LINDO Model - second task - fig 5	
File Edit LINGO Window Help	
Dele xee ic yeo <u>y</u> ee fiel	9 N 9
IINDO Model - second task - fig 5	
Max 0x1+0x2+0x3+116.04x4+77.36x5+13.38x6+0x7+58.02x8+118.8	x9+59.4x10+198x11
+138.6x12+158.4x13+178.2x14+39.6x15+79.2x16+19.46x17+77.84	x18+97.3x19+
58.38x20+116.76x21+19.46x22+136.22x23+175.44x24	
Subject to	
2)258359x4+455786x5+525643x6+343672x7+157540x8+11586	x9+10578x10+
13432x11+10342x12+15785x13+9581x14+11158x15+10538x16+79585	6x17+1125433x18+
956793x19+899135x20+563458x21+129333x22+110311x23+133681x2	4<=5320132
3)12586x4+13476x5+9799x6+14786x7+21353x8+3143x9+4574	x10+3256x11+
5135x12+1795x13+3956x14+1955x15+1186x16+343259x17+258963x1	8+425369x19+
139456x20+263432x21+195347x22+310189x23+132985x24>=1962142	
End	
Gin 24	

LINGO - [Solution Report - Решение на втора ч	аст на задачата]	
File Edit LINGO Window Help		
Global optimal solution found.		
Objective value:	1916.	000
Extended solver steps:		0
Total solver iterations:		0
Variable	Value	Reduced Cost
X1	0.000000	-97.00000
x2	0.000000	-39.00000
x3	0.000000	-19.00000
X4	1.000000	-116.0000
x5	1.000000	-77.00000
X6	1.000000	-13.00000
X7	1.000000	-1.000000
x8	1.000000	-58.00000
x9	1.000000	-119.0000
X10	1.000000	-59.00000
X11	1.000000	-198.0000
X12	1.000000	-139.0000
X13	1.000000	-158.0000
X14	1.000000	-178.0000
X15	1.000000	-40.00000
X16	1.000000	-79.00000
X17	1.000000	-19.00000
X18	1.000000	-78.00000
X19	1.000000	-97.00000
X20	1.000000	-58.00000
X21	1.000000	-117.0000
X2.2	1.000000	-1.000000
X23	1.000000	-136.0000
X2 4	1.000000	-175.0000
Row Sla	ack or Surplus	Dual Price
1	1916.000	1.000000
2	215058.0	0.000000
3	144470.0	0.000000
I		

FIGURE 6. The decision with data from the Second problem of the mode

3.2. Findings from the application of the mathematical model in Cluster "Mechatronics and Automation"

Leading high-tech enterprises		G	oods and ser	vices, assigned	l of leading h	igh-tech ente	erprises	
	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄	<i>S</i> ₅	<i>S</i> ₆	<i>S</i> ₇	<i>S</i> ₈
K ₁ – RITTBUL Ltd	1	1	1	1	1	1	1	1
K_2 – JSC SAMEL 90	1	1	1	1	0	1	1	1
K ₃ – SPESIMA Ltd	1	1	1	1	1	1	0	1

Decision of the First problem of the mathematical model

Maximum overall efficiency is 835.19, as total costs are 502 379, and the profit is 491 685.

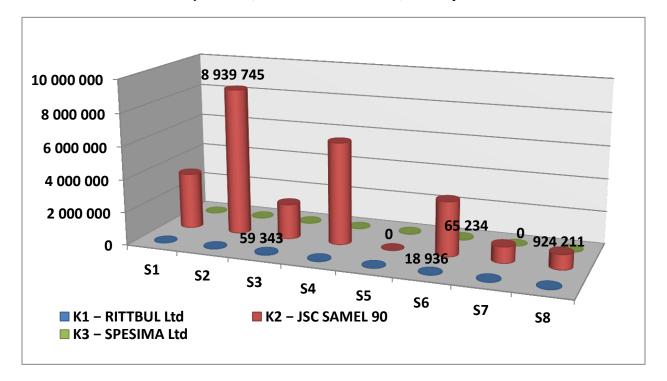


FIGURE 7. Distribution of cost for leading high-tech enterprises to the goods and services, which they offer (for 1 year)

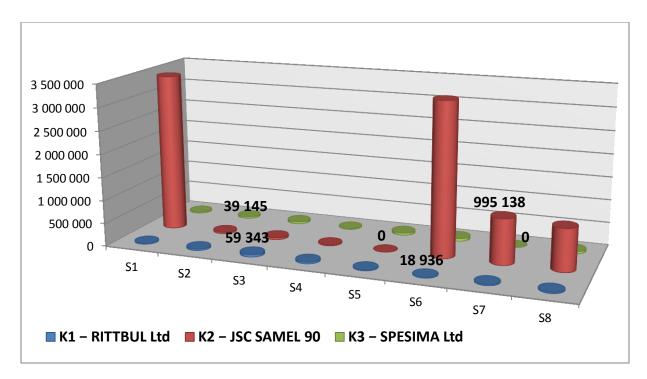


FIGURE 8. Distribution of profits for leading high-tech enterprises to the goods and services, which they offer (for 1 year)

Notice: All costs values and profits values of leading high-tech enterprises, shown in Fig. 7 (costs) and Fig. 8 (profits) are shown in table 8 (costs) and table 9 (profits). In Fig. 7 and Fig. 8 only the largest and smallest cost and profit figures of the leading high-tech enterprises are reflected, since if all values are shown, the chart will not be aesthetically.

Conclusion of the decision of the First problem

1. The K_1 – **RITTBUL Ltd** are assigned these goods and services: S_1 – Import and sale of Professional hand tools and electrical equipment; S_2 – Import and sale of instrumentation, suit Tools, LED lighting, software for design of electronic devices; S_3 – Production of LED lighting; S_4 – Production of transformers and coils; S_5 – Production of chokes, cable bundles, amplifiers, connectors; S_6 – Development and implementation of specialized systems for the production automation; S_7 – Production of specialized robots for automation of Horizontal machines for injection molding of zinc, magnesium, aluminum; S_8 –making on specialized Robotics systems (automated devices), specialized hardware and software.

The leading high-tech enterprise K_1 – RITTBUL Ltd, is assigned all goods and services $S_1 \div S_8$, since they are with numerical value "1".

.2. The K_2 – JSC SAMEL 90, is assigned following goods and services: $S_1 \div S_8$, since they are with numerical value "1", without good and service S_5 . The leading high-tech enterprise K_2 – JSC SAMEL 90 is not assigned good and service S_5 , since has numerical value "0".

3. The K_3 – SPESIMA LTD is assigned following goods and services $S_1 \div S_8$, since they have numerical value "1", without good and service S_7 . The leading high-tech enterprise K_3 – SPESIMA LTD is not assigned good and service S_7 , since it has numerical value "0".

General conclusion from the decision of the First problem

The leading high-tech enterprise **RITTBUL LTD** is assigned all goods and services $S_1 \div S_8$. The Joint Stock **Company SAMEL 90** is assigned only seven from eight goods and services, without good and service S_5 . The leading high-tech enterprise **SPESIMA LTD** is assigned just seven from eight goods and services, without good and service S_7 .

The RITTBUL LTD is assigned all goods and services. The JSC SAMEL 90 and the SPESIMA LTD are assigned seven goods and services, as of the JSC SAMEL 90 is not assigned good and service S_5 , and of the SPESIMA LTD is not assigned good and service S_7 .

The decision of the Second problem of the mathematical model

<u>Enterprises</u> Subcontractors	Activities, assigned for implementation from enterprises subcontractors							
	d_1	d_2	d ₃	d_4	d_5	d_6	d ₇	<i>d</i> ₈
F ₁ – ULTRAFLEKS KORPOREYSHAN	0	0	0	1	1	1	1	1
Ltd <i>F</i> ₂ – General Partnership 'SEMIS – CANEV i	1	1	1	1	1	1	1	1
SIE" F ₃ – JSC MEHATRONIKA	1	1	1	1	1	1	1	1

TABLE 14. Assignment activities for implementation from enterprises subcontractors

Maximum overall efficiency is 1916.00, as total costs are 215058.0, and the profit is 144470.00.

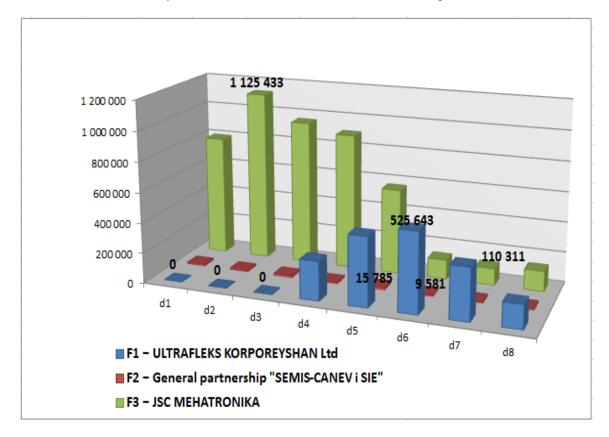


FIGURE 9. Cost allocation for enterprises subcontractors to the activities, which they assigned (for 1 year)

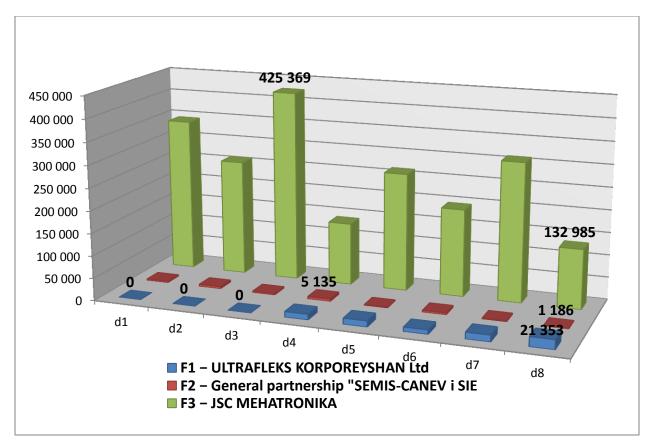


FIGURE 10. Distribution profits of enterprises subcontractors to activities, which they assigned (for 1 year)

Conclusion of the decision of the Second problem

1. The F_1 – ULTRAFLEKS KORPOREYSHAN Ltd is assigned these activities: d_4 – Services in engineering - manufacturing of electronic components and finished products, prototypes, complete solutions, specialized software and hardware; d_5 – Production of industrial electronics; d_6 – Repair of metal cutting machineries; d_7 – Design of machines for production and filling of flexible packaging; d_8 – Productionandsale of machineryforproductionandfilling of flexiblepackaging.

The F_1 – ULTRAFLEKS KORPOREYSHAN Ltd is not assigned these activities: d_1 – Production of induction generators for industrial applications to heat treatment, soldering, welding, melting and casting of various metals and alloys; d_2 – Production of induction generators used in dentistry and jewelry casting dentures and jewelry; d_3 – Services in engineering - the development of electronic components and finished products, prototypes, complete solutions, specialized software and hardware.

The enterprise subcontractor F_1 – ULTRAFLEKS KORPOREYSHAN Ltd is assigned with the implementation of activities $d_4 \div d_8$. The F_1 – ULTRAFLEKS KORPOREYSHAN Ltd is not assigned for with the implementation of activities $d_1 \div d_3$.

2. The Enterprise Subcontractor F_2 – General Partnership "SEMIS – CANEV i SIE" is assigned with the implementation of all activities $d_1 \div d_8$. Don't have activities, that are not assigned of the F_2 – General Partnership "SEMIS – CANEV i SIE".

3. The F_3 – JSC MEHATRONIKA is assigned with the implementation of all activities $d_1 \div d_8$. Don't have activities, that are not assigned with the implementation of the F_3 – JSC MEHATRONIKA.

General conclusion from the decision of the Second problem

The enterprise subcontractor ULTRAFLEKS KORPOREYSHAN Ltd is assigned with implementation of five of the activities: $d_4 \div d_8$. The ULTRAFLEKS KORPOREYSHAN Ltd is not assigned with the implementation of these activities: $d_1 \div d_3$.

The General Partnership "SEMIS – CANEV i SIE" is assigned with the implementation of all activities $d_1 \div d_8$. JSC MEHATRONIKA is assigned with the implementation of all activities $d_1 \div d_8$.

The ULTRAFLEKS KORPOREYSHAN Ltd is assigned with the implementation of only five activities, and three activities $d_1 \div d_3$ are not assigned with the implementation. The General Partnership "SEMIS – CANEV i SIE" and the JSC MEHATRONIKA are assigned with the implementation of all activities $d_1 \div d_3$.

4. CONCLUSION

From the conducted research and approbation of adapted managerial mathematical model to study the functions and interactions between enterprises in high-tech cluster, are made the following major conclusions:

- 1. The adapted managerial mathematical model allows studying the functions and interactions between enterprises not only in high-tech cluster, but also in other cluster. This fact on one hand forms preconditions for choice of cluster, where to be proposed this model for improvement of the interaction between enterprises, members of cluster.
- 2. Ready software product LINDO & LINGO, with that are performed calculations, has development ready module for calculate of this type mathematical model.
- 3. The adapted managerial mathematical model is approbated in high-tech cluster Cluster "Mechatronics and Automation", where it becomes clear that the interaction between leading high-tech enterprises and their enterprises subcontractors is carried out as efficiently as possible.
- 4. On the bases of the adapted managerial mathematical model is developed expert methodology for practical application, which includes description and characterization of its stages.

REFERENCES

- 1. Gorbunov, V. M., Decision theory, , Tomsk, 2010. (in Russian)
- 2. Cheshankov, B., Operation Research, part 1, Bulgaria, Sofia, 2004. (in Bulgarian)
- 3. Dantzig, G. B., Thapa, M. N., Linear Programing 2: Introduction and Extension, Germany, Berlin, 2003. (in Bulgarian)
- 4. Dimitrov, M., Study of operations, University press "Stopanstvo", ISBN 954-494-672-1. (in Bulgarian)
- 5. Fiedler, M., Nedoma, J., Ramik, J., Rohn, K., Zimmermann, Linear Optimization Problem with Inexact Data, Berlin, Germany, 2006.
- 6. Gartner, B., Matonsek, J., Understanding and Using Linear Programing, Berlin, 2006.
- 7. Porter, M., Competitive advantage of nations", "Klas i kaistil", S., 2004. (in Bulgarian)
- 8. Velev, Ml., Cluster approach for increasing competitiveness, "Softtreid, S., 2007.(in Bulgarian)
- 9. How do industry clusters start? http://photonicsclusters.com/howstart.html, Accessed to 08.2015.
- 10. http://www.cluster-mechatronics.eu/index.php/bg_BG/about, Cluster "Mechatronics and Automation".