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Abstract—This paper describes two methodologies for 
implementation of Hammerstein model by using different 
input-output representations into model predictive control 
schemes. The model nonlinearity is easily approximated using 
a simple Takagi-Sugeno inference, while the linear parts are 
flexibly introduced. As optimization procedures for predictive 
control are used a standard gradient optimization method and 
an implementation of Hildreth Quadratic Programming. A 
comparison between the proposed control strategies is made by 
simulation experiments for control of nonlinear lyophilization 
plant. 

Keywords- predictive control, fuzzy-neural models, 
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I.  INTRODUCTION 
Many biopharmaceutical entries are not stable for long 

periods of time as an aqueous solution. In the presence of 
water as solvent, such materials either degrade through a 
chemical reaction of hydrolysis or undergo other chemical 
reactions allowed by the molecular mobility provided in a 
liquid state. In addition these degradation reactions may be 
accelerated in higher temperatures. Low temperature 
vacuum-drying conditions afforded by lyophilization provide 
safe and effective mechanism for removing the solvent and 
converting the material to a solid state thereby promoting 
long-term stability [1]. 

Nowadays, pharmaceutical industries are generating 
many products each year, thus creating pressure for reliable 
determination and control of the drying cycles during 
lyophilization. The lyophilization is the most complex and 
expensive form of drying, because of the amount of the 
consumed energy during the process batch; a factor which 
one would like to reduce by advanced control 
methodologies, such as Model Predictive Control (MPC). 
MPC has recently found a wide acceptance in industrial 
applications, where dynamics are relatively slow and hence 
can accommodate on-line optimization easily [2]. During the 
last years many researchers report different suitable 
applications of MPC in lyophilization [3-6]. 

One of the most frequently studied class of nonlinear 
models used in MPC are the so-called block oriented 
nonlinear models [7], which consist the interconnection of 
linear dynamic systems and static nonlinearities. Within this 
class, two of the more common model structures are the 
Hammerstein and the Wiener models. The Hammerstein 
model consist a cascade connection of static nonlinearity 
followed by a linear dynamic system [8] and it is 
successfully applied for nonlinear system representation in 
different applications [9-11]. 

This paper represents a comparative study between 
explicit and non-explicit MPC implementations by using a 
simple Fuzzy-Neural (FN) Hammerstein model, based on the 
Takagi-Sugeno fuzzy-neural technique. The possible benefits 
of the proposed approaches are demonstrated by simulation 
experiments in MATLAB environment to control the 
temperature of the heating shelves in notion to the 
temperature of the ice front during a freeze-drying cycle. 

II. FUZZY-NEURAL HAMMERSTEIN MODELS 

A. Fuzzy-neural NARX Hammerstein model 
Using a simple Takagi-Sugeno inference, the static 

nonlinearity into the Hammerstein model can be easily 
represented as [12]: 

)]n,u(k[u(k),.... v(k)kvfu uum −==     where)),((  (1) 

The unknown nonlinear functions fu can be approximated 
by Takagi-Sugeno type fuzzy rules: 
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The upper index is: (i)=1, 2,…N, where N is the number 
of the fuzzy rules, Ai is an activated fuzzy set defined in the 
universe of discourse of the input  v=[v1, v2,…vp] and the crisp 
coefficients dji, are the coefficients into the Sugeno function 



fu.  From a given input vector, the output of the fuzzy model 
is inferred by computing the following equation: 
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where μui are the degrees of fulfillment in notion to ui-th 
activated fuzzy membership function. Afterwards, the linear 
part is introduced into the fuzzy model as follows: 
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In general, the designed FN Hammerstein model can be 
represented as: 
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B. Fuzzy-neural State-Space Hammerstein model 
Using the above notations, the general states-space FN 

Hammerstein model can be expressed as: 
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where x1(k), u(k) and z(k) are vectors for the state, the input 
and the output of the nonlinear part. The unknown nonlinear 
functions fx and fz can be approximated by Takagi-Sugeno 
type fuzzy rules: 
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where R is the ith rule of the rule base, rp  is the corresponding 
state regressor, Mi is a membership function of a fuzzy set, 
A(i), B(i), C(i) and D(i) are state-space matrices according each 
rule and ϑ is a vector of free elements (offsets). The role of 
the model offsets is to compensate the possible disturbances 
in the process [13]. For each input vector, the output of the 
fuzzy model is computed by using the following equation: 
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where μui are the degrees of fulfillment in notion the 
activated fuzzy membership function. Thereafter, the linear 
part is introduced as: 
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In notion to each activated fuzzy rule, the general local fuzzy 
model can be expressed as: 
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Finally, the general model representation is expressed as: 
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C. Learning algorithm for the designed fuzzy-neural 
models 
The identification procedure involves the determination 

of two groups of parameters: Gaussian membership 
functions and linear coefficients in the rules premise and 
consequent parts, respectively. The designed algorithm 
minimizes an instant error measurement function E(k)=ε2/2 
and ε(k)=y(k)-ŷ(k), between the real plant output y(k) and 
this one estimated by the fuzzy-neural model ŷ(k). A two 
step gradient learning procedure is performed to calculate 
the current values of the parameters. 

Assuming that βsi is an adjustable s-th coefficient for the 
functions fx, fz and fu into the i-th activated rule as a 
connection in the output neuron, the general parameter 
learning rule for the consequent parameters is: 
β(k+1)=β(k)+η(∂E/∂βi). After calculating the partial 
derivatives, the final recurrent predictions for each adjustable 
coefficient βsi (a(i), b(i)) or d(i)) for the NARX model and 
for the State Space model (a(i), b(i), c(i), d(i) or ϑ(i)) are 
obtained by using the same equations: 
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The output error E can be used back directly to the input 
layer, where the premise adjustable parameters are situated 
(center – cli and the deviation – σli of a Gaussian fuzzy set). 
Through the interconnections of the corresponding 



membership degrees where the link weights are unit, the 
error E is propagated. Thus, the learning procedure for the 
rule premise parameters can be expressed by the same 
learning rule: 
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III. MODEL PREDICTIVE CONTROL STRATEGIES 

A. Solution of the non-explicit optimization problem 
Using the designed NARX type FN model, the 

Optimization Algorithm computes the future control actions 
at each sampling period, by minimizing the following cost 
function: 
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where ŷ is the predicted model output, r is the reference and 
Δu is the rate change of the control action. The tuning 
parameters of the predictive controller are: N1 -the minimum 
prediction horizon, N2 -the maximum prediction horizon, Nu -
the control horizon and ρ -the weighting factor penalizing 
changes in the control actions. Taking into account, that the 
above criterion is quadratic one and there are no constraints, 
in respect to future control actions a simple analytic 
minimization can be performed, by applying the condition 
ΔJ=0. [12,14]. The partial derivatives ∂Y(k)/∂U(k) can be 
calculated by the following equations using the designed 
model: 
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The second group of partial derivatives is given by: 
∂U(k)/∂U(k). Since, Δu(k)=u(k)+u(k-1), then this group of 
derivatives represent a simple matrix with zeros and ones. 

Finally, the control actions are calculated iteratively 
according the following expressions: 
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B. Quadratic Programming procedure 
Using the designed FN state-space Hammerstein model, 

the Optimization Algorithm computes the future control 
sequence, by minimizing the following cost: 
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which can be simply expressed in vector form as: 
J(k)=[Y(k)-Τ(k)]2Q+[ΔU(k)]2R; where, Y is the matrix of the 
predicted plant output, Τ is the reference matrix, ΔU the 
matrix of the predicted rate of the controls and Q and R are 
the matrices, penalizing the changes in error and control term 
of the cost function. Taking into account the general 
prediction form of a linear state-space model, the predicted 
output can be derived as Y(k)=ΨX(k)+Yu(k-1)+ΘΔU(k)+ϑ 
[15].  

Then, the predicted error  can be defined as: E(k)=Τ(k)-
ΨX(k)-Yu(k-1)-ϑ and if ΔU=0 is assumed, using the last 
notation, the cost function can be rewritten as: 
J(k)=ΔUTHΔU+ΔUTΦ+ΕTQΕ, where Φ=-2ΘТQΕ(k) and 
H=ΘТQΘ+R. Differentiating the gradient of J with respect to 
ΔU, gives the matrix of second order derivatives, or Hessian 
of J(k): ∂2J(k)/∂ΔU2(k)=2H=2(ΘТQΘ+R). If Q(i)≥0 for each 
i, this ensures that ΘTQΘ≥0. So, if R≥0 then the Hessian is 
certainly positive-definite, this is enough to guarantee that 
the minimum has been reached. 

Linear constraints usually take place in the quadratic 
programming. Since, U(k) and Y(k) are not explicitly 
included in the optimization problem, the constraints can be 
expressed in terms of ΔU, where the first row represents the 
constraints on the amplitude of the control signal, the second 
one the constraints on the output changes and the last the 
constraints on the rate change of the control signal [15]. 
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C. Hildreth Quadratic Programming procedure 
Necessary condition for optimization in presence of 

inequality constraints is the satisfaction of the Kuhn-Tucker 
conditions, where the vector λ contains the Lagrange 
multipliers. These conditions can be expressed simply using 
the active set notation. 

Using the active set procedures which belong to the 
family of primal methods, the solutions depend on the primal 
decision variables and the computational burden is quite 
large, if many constraints are imposed. On the other hand, 
programming of an active set method is a difficult task. For 
this purpose, a dual method is applied in order to identify the 
constraints which are not active, so they can be eliminated 
from the solution [16]. Thus, a simple programming task for 
finding the optimal solutions of the constrained minimization 
problem can be adopted. The dual is also a quadratic 
programming problem with λ as the decision variable: ΔU=-
H-1Φ-H-1(Ωactλact), min (λTMλ+λTK+γTM-1γ) and λ>0. 

A simple Hildreth quadratic programming procedure is 
used for solving this dual problem, where the direction 
vectors were selected to be equal to the basis vectors. Then, 
the λ vector is varied one component at a time. At a given 
stage, once obtained the vector λ ≥ 0, the attention is focused 
on a single component λi, which is further adjusted to 
minimize the objective function. If that requires λi<0, λi can 
be set equal to zero, otherwise the objective function is 
decreased. Then, the next component λi+1, is considered. 
After one complete cycle through the components as 
iteration taking the vector λm to λm+1, the method can be 
expressed explicitly as: λi

m+1=max (0, αi
m+1) where:  
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where the scalar hij is the ijth element in the matrix M, and ki  

is the ith element in the vector K. Also, there are two sets of λ 
values in the computation: one involves λm and one involves 
the updated λm+1. Because the converged λ vector contains 
either zero or positive values of the Lagrange multipliers, 
finally the expression has the form: ΔU=-H-1(Φ+ΩTλ*) 
where: λ*

act=-(ΩactH-1Ωact
T)-1(γact+ ΩactH-1Ωact

T) 

IV. SIMULATION EXPERIMENTS  
 

A.  Experimental plant description 
On Fig. 1 a schematic diagram of the components of a 

lyophilization apparatus is shown. It consists of a drying 
chamber (1); temperature controlled shelves (2), a condenser 
(3) and a vacuum pump (4). The major purposes of the 
shelves are to cool/freeze or to supply heat to the product by 
the corresponding heating or refrigeration system (5). The 
product is placed on supportive product shelves (6) and the 
chamber is isolated from the condenser by the valve (7). The 
vacuum system is placed after condenser. The sublimation 
driving force pipes out the sublimed water from the product, 
which transforms back to ice on the condenser wall. 

 

Figure 1.  Shematic diagram of a lyophilization plant. 

The product is loaded on the product shelves inside the 
chamber. When it is entirely frozen, the chamber is 
evacuated and the partial vapour water pressure difference 
increases between the frozen ice zone and the chamber, thus 
creating a natural driving force for the sublimation process. 
Then, the heating system starts to provide enthalpy to 
accelerate the sublimation, which occurs at the moving ice 
front and proceeds from the top of the frozen product 
downwards. At the end of the primary stage of the process 
the major part of the water in the product has been removed 
and what remains is the portion of water constrained in the 
solution. At this point, the product can be unloaded, but the 
remaining water content is too high to be guaranteed its 
biological stability. For this purpose, to reduce the water 
content, the product is exposed at higher temperatures which 
induce the so called secondary drying stage of the freeze-
drying process. In this study it is assumed only the primary 
drying phase of a small scale apparatus, for drying 50 vials 
filled with glycine in water adjusted to pH 3, with 
hydrochloric acid [17-18].  

B. Initial conditions, quality criteria and constraints 
Simulation experiments to control the heating shelves 

temperature, in notion to temperature inside the frozen 
product layer has been performed in Matlab & Simulink 
environments. According to chosen control loop, the system 
is nonlinear and non stationary one, since the product 
properties change over the drying cycle. The following initial 
conditions for simulation experiments are assumed: N1=1, 
N2=5, Nu=3; System reference r=255K; Initial shelf 
temperature, before the start of the primary drying 
Tsin=228K; Initial thickness of the interface front 
x=0.0023m; Thickness of the product L=0.003m. During the 
primary drying the temperature of the heating shelves is 
maintained of about 298 K, for about 45 minutes of time, till 
the product is dried. The following constraints on the 
optimization problem are imposed: constraints on the 
amplitude of the control signal- the heating shelves 
temperature 228K< Ts < 298K; constraints on the output 
changes- product temperature 238K< T2 < 256K; constraints 
on the rate change of the control signal 0.5K< ΔTs < 3K.  

To estimate effectiveness of the drying process a 
parameter representing a notion between the cumulative 



energy which is minimized and the energy provided for the 
heating shelves, is introduced [12]. The notion will be the 
smallest possible, when the process is driven as fast as 
possible. The settling time of the process is also taken tp. as 
quality criterion 

C. Experimental results 
The simulation study is realized using a validated plant 

model for a small scale lyophilization plant. The used model 
is derived from the physical laws of heat and mass transfer 
under minor assumptions [17-18]. To preserve the 
computational consistency, a final value of x=0.0001 m for 
the interface front is chosen to stop the simulation 
experiments. Increasing the heating shelves temperature from 
228 K indicates the start of the primary drying phase, 
confirmed by the initial drop of the product temperature, 
which represents the sudden loss of heat due to sublimation. 
The loss of heat due to sublimation vanishes after all of the 
unbound water has sublimed, then the enthalpy input from 
the shelf causes a sharp elevation of the product temperature. 

Comparative experiments with the proposed predictive 
control strategies using NARX FN model with Gradient 
optimization procedure (case 1) and State-Space FN model 
with HQP (case 2), are made for two different values of the 
penalty term ρ and matrix R on the control actions over the 
control horizon. The temperature versus time profile for the 
product and heating shelves temperatures for the 
representative vial are presented on Fig. 2  for (case 1) and 
on Fig. 5 for (case 2). The decrease of the frozen layer is 
demonstrated on Fig. 3 for (case 1). The prediction of the 
states (case 2); x1 - interface position (Fig. 7) and x2 - 
temperature in the frozen region (Fig. 6), is presented. On 
Fig. 4 for (case 1) and Fig. 8 for (case 2) are demonstrated 
the squared errors of the models, during the controller 
operation.  

The proposed FN models have a simplified structure 
based on the classical Takagi-Sugeno technique, which aims 
to ensure reliable and accurate modeling of the lyophilization 
process dynamics, stating small number of parameters 
without additional need of computational power. The 
consequent parameters of the proposed fuzzy-neural rules are 
initialized at first with randomly selected coefficients in a 
normalized range. The penalty terms/matrices into the 
objective functions are experimentally chosen. At each 
sampling period the models produce a predicted system 
output (the product temperature) in notion to current values 
of the input vector. 

The optimization procedure for the NARX model lies on 
first-order gradient optimization algorithm, as iterative 
solution in notion to the computation of optimized values of 
the heating shelves temperature, by minimizing the system 
error for the temperature into the moving ice front. The 
presented case considers an unconstrained optimization 
problem where all process variables are scaled to their 
maximum allowed bounds. The control actions are computed 
analytically in an iterative manner along the defined control 
horizon. On the other hand, the optimization for the State-
Space case is done by using a simple Hildreth Quadratic 

Programming procedure using the well known Active Set 
notation and a dual mechanism to determine the constraints 
that are not currently active. A system of inequality 
constraints is defined for the temperature of the heating 
shelves and its rate change, as well as for the product 
temperature. 

 
Figure 2.  Temperature profile during lyophilization cycle (case 1a, b). 

 
Figure 3.  Interface position during lyophilization cycle (case 1a, b). 

 
Figure 4.  Squared model errors during lyophilization cycle (case 1a, b). 

 
Figure 5.  Temperature profile during lyophilization cycle (case 2a, b) 

As can be seen for both cases the transient responses of 
the considered squared errors had a smooth nature and they 
are successfully minimized during the learning process for 
the models. This circumstance proves their proper operation 
and ensures a well driven lyophilization cycle demonstrated 
by the transient responses of the moving ice front. The 
moving ice front is an important parameter which accounts 
for the reliable an optimal drying process. For this purpose, it 
is used into the state-space model for a parameter being 
predicted by the model, along with the temperature in the 
frozen region. The assumed variations in case 1 differ on the 
chosen penalty term. As can be seen from Table 1, the 



increase of the penalty factor leads to improved process 
dynamics, intensification of the drying process and 
diminishing of the drying time. Similarly, the same 
variations are investigated in case 2 using two different R 
matrices. The obtained results are similar to case 1, except 
that the relation between the matrix R and the quality of 
process dynamics is reciprocal since; the notation in HQP 
optimization problem requires an indirect inversion of the 
Hessian. 

 

Figure 6.  State x2 (frozen region temperature) prediction (case 2a, b). 

 

Figure 7.  State x1 (interface position) prediction (case 2a, b). 

 
Figure 8.  Squared  model errors during lyophilization cycle (case 2a,b)  

TABLE I.  QUALITY CONTROL CRITERIA 

case ρ/R tp, s RMSE Eef Ts, K 
1a 0.300 2649 0.072 0.029 287.3 
1b 0.340 2549 0.074 0.028 288.2 
2a 0.020 2460 0.076 0.025 298.3 
2b 0.008 1830 0.088 0.023 298.4 

 

Both control methodologies show a better system 
performance after proper selection of the initial conditions 
according to the requirements of the drying regime, but their 
real time applicability may impose different constraints 
depending on the product being lyophilized and the scale of 
the plant. The State Space approach will be a promising 
solution for large scale lyophilization plants, where the 
handling of the regime constraints is crucial and the system 
dynamic is relatively slow, which can accommodate with the 
computational procedures of the algorithm. On the other 
hand, the non-explicit strategy offers a simple and faster 

control solution, but unexpected disturbances may violate the 
scaling of the main parameters and deteriorate the system 
performance, which may restrict its application to small scale 
drying plants, where hard constraints on the regime are not 
imposed. A major advantage of the proposed control 
methodologies is the application of simple FN approach, 
which may impact the proper handling of some process 
uncertainties. 
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