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Abstract. This paper presents a numerical study of fuel/fuel blends impact on rate of heat release 
at different exhaust gas recirculation rate in case of homogeneous charge compression ignition 
(HCCI) combustion. A direct injection engine is used for simulation which also allows mixture 
preparation in intake manifold leading to premixed combustion. The numerical analysis was 
conducted by means of an engine model developed in advanced simulation software AVL Boost. 
The combustion model is based on skeletal reaction mechanism of C7H16(n-heptane) that uses 
26 species and 66 reactions. Additionally, to the main fuel, methane and hydrogen was added. 
Thus, the influence of fuel blends was evaluated at EGR rate within the range of 0% to 40%.     

1.  Introduction 
Conventional spark-ignition (SI) and compression-ignition (CI) engines offer high thermal efficiency in 
conversation the fuel energy. However, the combustion process in both engines leads to high NOx and 
soot formatted in the cylinder due to high local temperature and non-homogeneous charge especially in 
diesel engines. As a result, complex after treatment system needs to be implemented in passenger cars 
that leads to higher vehicle’s cost as well as to restriction in the optimal engine management. Moreover, 
CO2 emissions from ICEs need to be further reduced according to the new European regulation for 
passenger cars that was imposed in 2020. The new CO2 reference limit is 95 g/km. In short term, 
replacing the gasoline by compressed natural gas (CNG) in SI engines could reduce CO2 emissions by 
25% in NEDC [1]. This study also reported around 50% reduction of NOx while CO and CH slightly 
increase. However, the emissions were measured after a three-way catalytic converter (TWC). Thus, 
TWC is still needed to respect Euro 6 limits. Methane in mixture with CO2 in a form of biogas could be 
successfully used in stationary SI engines where biogas is residual product [2]. However, increased 
concentration of CO2 significantly reduces the engine output power.  

In order to reduce in-cylinder NOx and soot more complex approach is needed. For that, low 
temperature combustion (LTC) of homogeneous mixture need to be implemented [3]. Pachiannan et al. 
in [4], presented a comprehensive review of performance and emission characteristics of LTC when 
different fuel was used. LTC combustion can be achieved by different approaches such as: homogeneous 
charge compression ignition (HCCI), premixed charge compression ignition (PCCI), partially premixed 
charge compression ignition (pPCCI), reactivity controlled compression ignition (RCCI) and etc. The 
main differences between HCCI, PCCI and pPCCI is the duration of ignition delay period. HCCI is 
recognised by long ignition delay while pPCCI offers ignition delay similar to conventional CI engines 
[5]. Operating range in terms of local temperature/air-excess ratio of HCCI for NOx and soot reduction 
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is shown in Figure 1. RCCI is a combustion process where usually two fuels with different reactivity 
are used [6,7]. LTC is very sensitive to numbers of factors such as: fuel reactivity, injection timing, 
injector characteristics, injection pressure, piston bowl geometry, intake charge temperature, exhaust 
gas recirculation (EGR), turbocharging, compression ratio and etc. [8–10]. The influence of fuel/fuel 
blends and EGR rate on combustion characteristics was widely studied in the literature [11–15]. The 
fuel has an impact on HCCI combustion by their reactivity. The impact of ethanol/diesel and 
ethanol/biodiesel blends on emissions was experimentally studied in [13]. It was reported that an average 
56.5% of diesel fuel can be replaced by ethanol with 70% NOx and 61% smoke opacity reduction. 
Calam et al. [16] compared combustion characteristics, engine performance and emissions on several 
fuels to n-heptane operating in HCCI combustion. It was reported that octane number has significant 
impact on HCCI combustion as CA50 was more controllable with high octane fuels while E25 is more 
suitable for HCCI combustion with minimum pressure rise.  

The combustion process in ICEs is often studied numerically by means of 1D-0D simulation 
approach [17]. It allows to investigate the combustion characteristics using different blends in both SI 
and CI engines without complex CFD simulation. However, HCCI combustion is usually two or three 
stage combustion with low temperature phase (LTF), intermediate phase (IF) and high temperature 
phase (HTF) [4,18] that cannot be expressed with conventional diesel combustion mechanism. 
Phenomenological HCCI combustion models are based on detailed chemistry reactions of the fuel in 0D 
cylinder model. The reaction mechanism on n-heptane and blends was studied in [19–21]. Zeuch et al. 
[21] proposed a comprehensive skeletal reaction mechanism of n-heptane, while Tsurushima in [20] 
presented a skeletal reaction mechanism with 33 species and 38 reactions.                  

Thus, the paper aims to study numerically the impact of fuel/fuel blends on the rate of heat release, 
pressure rise, engine performance and pollutant formation at different exhaust gas recirculation rate. The 
main fuel was n -heptane know as primary reference fuel (PRF) while in the blends the n-heptane is 
mixed with methane and hydrogen.   

2.  HCCI combustion mathematical background 
HCCI combustion can be divided in three phases, such called: LTF, IF and HTF. The first phase depends 
on the characteristics of the charge flow; the intermediate phase depends on the kinetics of the chemical 
behavior of the fluid, and the last phase is influenced by chemical and turbulent mixing conditions. 

In order to obtain the rate of heat release in 0D cylinder model following correlation can be used: 
𝒅𝒅𝑸𝑸𝑭𝑭
𝒅𝒅𝒅𝒅

= ∑ 𝑢𝑢𝑖𝑖.𝑀𝑀𝑊𝑊𝑖𝑖. 𝜔̇𝜔𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1                                                (1) 

 

Figure 1. Operating mode of HCCI combustion on local φ-T diagram [8] 
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where: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 - number of species in the gas phase 𝑢𝑢𝑖𝑖 - species internal energy [J/kgK]; 𝑀𝑀𝑊𝑊𝑖𝑖 - 
species molecular weight [kg/kmole]; 𝜔̇𝜔𝑖𝑖 - species reaction rate [kmole/m3s]  

The species mass fractions are calculated as follows:  

𝜌𝜌 𝑑𝑑𝜔𝜔𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑀𝑀𝑊𝑊𝑖𝑖. 𝜔̇𝜔𝑖𝑖 (2) 

where: 𝜌𝜌 - mixture density [kg/m3] and 𝜔𝜔𝑖𝑖 - species mass fraction [-]. 
The reaction rate of each species 𝜔̇𝜔𝑖𝑖 is calculated based on a specified set of chemical reactions that 

describe the auto-ignition process. In this study a reduced skeletal reaction mechanism on C7H16 (n-
heptane) proposed by Barroso [22] was used. This reduced mechanism consists of 26 species and 66 
reactions as it based on skeletal mechanism of Newson that involves 67 species and 254 reactions. The 
analysis reported by Barroso, concerning heat release rate parameters CA10 and CA50 for reduced 
mechanism revealed maximum deviation of 2°CA degrees compared to the initial mechanism.      

The thermodynamic properties of each species is estimated as follows: 
 

𝑐𝑐𝑝𝑝
𝑅𝑅

= 𝑎𝑎1 + 𝑎𝑎2𝑇𝑇 + 𝑎𝑎3𝑇𝑇2 + 𝑎𝑎4𝑇𝑇3 + 𝑎𝑎5𝑇𝑇4                                              (3) 

 
𝐻𝐻
𝑅𝑅𝑅𝑅

= 𝑎𝑎1 + 𝑎𝑎2
2
𝑇𝑇 + 𝑎𝑎3

3
𝑇𝑇2 + 𝑎𝑎4

4
𝑇𝑇3 + 𝑎𝑎5

5
𝑇𝑇4 + 𝑎𝑎6

𝑇𝑇
                                          (4) 

 
𝑆𝑆
𝑅𝑅

= 𝑎𝑎1𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑎𝑎2𝑇𝑇 + 𝑎𝑎3
2
𝑇𝑇2 + 𝑎𝑎4

3
𝑇𝑇3 + 𝑎𝑎5

4
𝑇𝑇4 + 𝑎𝑎7                                       (5) 

This skeletal reaction mechanism cannot be used to estimate the NOx and soot formation, thus, it 
was used to predict heat release rate and NO for different fuel blends and EGR rate.   

3. Simulation model 
The engine that was numerically studied is 2.0 liter four cylinders’ direct injection engine, developed 
for passenger cars. The maximum output power when operating with diesel in conventional 
compression-ignition mode is 101 kW at 4000 rpm as the maximum torque is 320 Nm at 2000 rpm. The 
engine is equipped with variable geometry turbocharger. The boost pressure is limited to 1.4 bar. 
Common rail direct injection fuel system of the engine is delivered by Delphi. The maximum injection 
pressure is limited to 1600 bar. The engine is equipped with EGR and post treatment system including 
catalytic converter and diesel particulate filter (DPF). The cylinder head is equipped with four valves 
per cylinder. The main geometrical parameters of the engine are listed in Table 1. 
 

Table 1. Main engine parameters 

Type of engine Direct injection 

Number of cylinders 4 

Displacement 2 L 

Cylinder bore 85 mm 

Cylinder stroke 88 mm 

Compression ratio 17,6 

Valves per cylinder 4 
 



EKOVarna 2020
IOP Conf. Series: Materials Science and Engineering 977 (2020) 012028

IOP Publishing
doi:10.1088/1757-899X/977/1/012028

4

 
 
 
 
 
 

This engine was considered suitable to be adapted for HCCI combustion using diesel fuel or fuel 
blends as it offers direct injection in the cylinder while port injection of high octane or gaseous fuel 
could be further implemented. The engine model was developed in advanced simulation software AVL 
Boost (Figure 2). The model is based on 0D cylinder modeling considering uniform thermodynamics 
parameters in the combustion chamber and 1D unsteady flow modeling into intake and exhaust pipes. 
The main engine data such as: engine type, operating parameters, friction losses and firing order were 

defined in the Engine element - E1. Cylinder geometry was imposed in elements C1 to C4. The single 
zone HCCI combustion was chosen which required definition of general species transport and detailed 
reaction mechanism including reaction coefficients. In the element named “Cylinder”, gas to cylinder 
wall heat transfer was defined as well as the valves lift curves and valves discharge coefficients. The 
intake and exhaust geometry was presented by pipes and plenums (PL1 and PL2). Moreover, an air 
intake intercooler was placed after the compressor - CO1. The turbocompressor model (TC1) used 
simplified modeling with constant pressure ratio and efficiency on the compressor side and equivalent 
turbine discharge coefficient as well as constant overall efficiency.  

 
Table 2. Simulation constraints 

Parameter Value 
Engine speed 2500 rpm 
Injected fuel 1.5e-005 kg/cycle 
Boost pressure 0.3 bar 
EGR 0% 20% 40% 

Fuel mixture 

100% C7H16 
90% C7H16 + 10%CH4 
80% C7H16 + 20%CH4 

95% C7H16 + 5%H2 

 

Figure 2. Engine simulation model, built in advanced simulation software AVL Boost 
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In order to establish the EGR rate a simplified approach was used. There was no physical connection 
between exhaust and intake manifold while the EGR rate was determined by defining the gas 
composition in intake manifold.  

The simulations were carried out at constant engine speed, constant total injected fuel mass and 
constant intake pressure. In imposed limitations the combustion process, engine performance and NO 
formation were studied with four fuels at several EGR rate. All limitations and variable simulation 
parameters are listed in Table 2.  

4. Results and discussion 

4.1. Study the heat release rate 
The heat release rate (HRR) was studied numerically when engine is fueled by: pure n-heptane (C7H16), 
mixture 90% n-heptane + 10% methane, mixture 80% n-heptane + 20% methane and mixture 95% n-
heptane + 5% hydrogen. The results are presented in Figure 3. When no EGR is applied the start of 
combustion was found to be too early - 25°CA, BTDC. The same value was observed for pure n-heptane 
and other fuel blends. Increasing the EGR to 20% and 40% leads to late start of combustion as it accounts 
to 15°CA, BTDC when n-heptane was used. However, when higher EGR rate (40%) is applied the 
combustion duration is longer for n-heptane due to slight increase in HRR during the LTF. As a result, 
the maximum HRR for EGR of 40% was at 5°CA, ATDC providing the maximum IMEP. Adding 
methane and hydrogen in fuel blends reduced the effective EGR rate. In the cases when 10% methane 
and 5% hydrogen was added to n-heptane the engine IMEP is close to zero when EGR was 40%. 
Moreover, increasing the methane to 20% in fuel blends leads to effective combustion only without 
EGR. The maximum HRR is similar for all cases without EGR while 20% EGR leads to reduced 
maximum HRR value. Here, it was observed the effective combustion with 40% EGR only for pure n-
heptane as it significantly reduced maximum HRR to 140 J/deg. When fuel blends were studied, it was 
observed that the maximum of HRR was close to TDC or after TDC which means higher IMEP and 
engine thermal efficiency. Using 20% methane in the fuel blend leads to lower intensity of LTF and 
higher HRR during the HTF as a result maximum HRR occurs at 3°CA, ATDC. However, this fuel 
blend limited effective EGR range below 20%.  

  

  

Figure 3. HRR obtained with different fuel/fuel blends and EGR rate 
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4.2. Study the in-cylinder pressure 
 

In-cylinder pressure was also studied in order to analyze maximum pressure rise and to evaluate the 
engine performance. Thus, the impact of fuel/fuel blends and EGR rate within the range of 0% to 40% 
on in-cylinder pressure was investigated. The results are presented in Figure 4. The maximum in-
cylinder pressure was observed for all studied fuel blends to be without EGR. Despite of the fact that 
start of combustion and CA50 were different for each fuel blend, the maximum pressure was estimated 
to be within the range of 115 bar to 120 bar. The pressure maximum angular position was affected by 
fuel blends as it was far before TDC for pure n-heptane while it reached TDC when 20% methane was 
added. In case of pure n-heptane the maximum pressure had the same value even when 20% EGR was 
applied. However, the position of maximum pressure was close to TDC. Increasing the EGR to 40% for 
n-heptane leads to lower in-cylinder pressure as the maximum value was estimated to be 92 bar at 10°CA 
ATDC. Appling higher EGR rate (40%) for fuel blends leads to very low integral heat release, thus very 
low IMEP was estimated.      

4.3. Engine performance and NO analysis  
In HCCI combustion the HRR and in-cylinder pressure curve are very sensitive to fuel reactivity and 
in-cylinder conditions. Thus, the engine performance is also affected while the start of combustion and 
CA50 are sensitive to fuel/fuel blends and EGR rate. Estimated engine output performance, maximum 
pressure rise and NO fraction are summarized in Table 3. 

Table 3. Numerical results 

Fuel mixture EGR 
[%] 

Engine torque 
[Nm] 

Engine power 
[kW] 

Pressure rise 
[bar/deg] 

Mass fraction 
NO [-] 

C7H16 
0% 30.9 8.1 27.8 5.08e-006 

20% 46.9 12.3 26.8 1.08e-006 

  

  

Figure 4. In-cylinder pressure with different fuel/fuel blends and EGR rate 
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40% 56.3 14.7 7.2 6.94e-008 

90%C7H16 
10%CH4 

0% 36.5 9.6 21.5 4.68e-006 

20% 53.8 14.1 19.8 5.01e-007 

80%C7H16 
20%CH4 

0% 43.9 11.5 22.9 3.22e-006 

20% 14.1 3.7 4.2 5.42e-011 

95%C7H16 
5%H2 

0% 33.4 8.7 32.3 4.88e-006 

20% 50.1 13.1 24.7 8.54e-007 

5. Conclusion   
The impact of fuel/fuel blends and EGR rate on combustion, performance and NO formation in HCCI 
combustion was numerically studied. Four fuels were proposed: pure n-heptane (C7H16), 90% n-
heptane + 10% methane, 80% n-heptane + 20% methane and 95% n-heptane + 5% hydrogen. For each 
fuel/fuel blend EGR rate was varied within the range of 0% to 40%. The engine speed was 2500 rpm, 
total fuel mass was 1.5e-005 kg/cycle and the boost pressure was 0.3 bar. The results revealed that EGR 
rate has significant impact on start of combustion and CA50 of HRR. The higher range of EGR can be 
applied when pure n-heptane is used. Adding methane to the n-heptane reduced maximum HRR and 
retarded start of combustion. It had positive effect to IMEP and engine performance. However, higher 
concentration of methane limited the effective EGR rate. The engine could not operate with 40% EGR 
when the fuel blend consists 10% and 20% methane. Moreover, methane concentration more than 10% 
also reduced EGR rate below 20%. The small quantity of hydrogen has similar effect to 10% methane 
in the fuel blend. It provided similar engine performance but higher maximum pressure rise with EGR 
within the range of 0% to 20%. The simulation revealed higher engine performance with pure n-heptane 
and 40% EGR. Here, the engine torque accounted to 56.3 Nm and output power was 14.7 kW. This case 
offered lower maximum pressure rise of 7.2 bar/deg and lower NO fraction of 6.94e-008. Similar engine 
performance was observed with fuel blend of 90% n-heptane and 10% methane. However, the maximum 
pressure rise is much higher as well as the NO fraction.       
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