
MODEL BASED HARDWARE DESIGN WITH SIMULINK HDL

CODER

Krasimira Filipova
1)

, Tsvetomir Dimov
 2)

1)

Technical University of Sofia, Faculty of Automation, 8 Kliment Ohridski,

1000 Sofia, Bulgaria, Phone: +359 2 965 25 26, Е-mail: Krfil [AT] tu-sofia.bg
2)

Technical University of Sofia, Faculty of Automation, 8 Kliment Ohridski,

1000 Sofia, Bulgaria, E-mail: Tz.Dimov [AT] gmail.com

Abstract: The paper examines a method for model based design of hardware systems. Simulink models can

be used for hardware design by using Simulink HDL Coder for HDL code generation. This method for

electronic system development and automatic code generation have become an established technology in the

design process. In this paper is presented an approach which will be shown with an example of traffic light

model.

Key words: Simulink, HDL Code, FPGA

1. Introduction

Programmable devices (FPGA – Field

Programmable Gate Array) are very important

part of the development process for almost

every electronic system. FPGA gives resources

that can be configured to implement variety of

arithmetic and logical functions. This resources

include specialized DSP blocks, multipliers,

memory, data structures, registers, tristate

buffers, multipexors [1].

 Model based design with Simulink gives an

opportunity for obtaining hardware descriptions

without handwriting of HDL code and by using

an automatic code generation process. This can

be done by Simulink HDL Coder and a special

library of blocks that supports code generation.

Nowadays, model based development is

common practice with a wide range of

specialized software tools for modeling and

simulation such as MATLAB and Simulink are

used for specifying, designing, implementing,

and checking the functionality of new controller

functions. The quality and efficiency of the

software are strongly dependent upon the

quality of the model used for code generation.

The usage of Simulink can reduce the time for

system design. This environment also gives

error free code and no debugging is needed.

There are many architectures and

implementation processes made by different

software packages. In this article is used Xilinx

ISE Project Navigator. This software package

gives a convinient way for simulation of

different system descriptions and synthesis of

electronic systems which are described with

hardware language. (HDL - Hardware

Description Language). The two most popular

hardware description languages are VHDL and

Verilog [2]. In this article is used a discription

in Verilog language.

This paper will present one of the most

modern and effective methods for digital

systems design and its main benefits.

2. Description of the method for HDL code

generation

The only alternative to general purpose DSPs

is to realise the algorithm into an ASIC for

hardware acceleration. Normally, the system

prototype is implemented on FPGA because of

its flexibility and the final implementation will

be on ASIC because of the high speed and low

cost for a serial production.

The needed hardware description will be

automaticly generated by using Simulink

functionality for hardware design by

abstractions, which can be automaticly

compilated into HDL code. Another important

functionality is the generation of a test bench to

be used for simulation of the hardware

description [3]. Model based design by

Simulink is very flexible because of the easy

changes in the model. This approach makes the

electronic system design a lot faster with no

need for attention to internal connections in the

device prototype. Simulink uses suitable

libraries for eficent implementation of the

functions, built with blocks. By using this

design method it is not necessary to have

detailed information for the characteristics of

the used FPGA and easily can be made changes

in the design [4]. Also important is the

possibility for using the hole MATLAB

functionality for data analisys and visualization

in the design process.

The transition from Simulink model to

hardware description is made by a group of

blocks, united in a library (hdllib/hdlsupported).

They are like the other Simulink blocks, but

they represent specific components of a

hardware device and from models built with

blocks from this library can be generated HDL

code. This automated transfer allows HDL

language not to be learned and the code don’t

need debugging.

2.1. Simulink HDL Coder

Simulink HDL Coder automates the

algorithm design process, from modeling to

FPGA implementation. It generates bit-true and

cycle-accurate, synthesizable Verilog and

VHDL code from Simulink models, MATLAB

code, and Stateflow

charts [7]. The generated

HDL code can be simulated and synthesized

using standard tools and then implemented on

FPGA. Simulink HDL Coder can control HDL

architecture, implementation and generate

hardware resource utilization reports. For rapid

verification, Simulink HDL Coder generates test

benches and EDA cosimulation models, and

provides code traceability.

HDL code generation process starts by

modeling the algorithm in Simulink, MATLAB,

or Stateflow. HDL code can be generated from

MATLAB code by using the Embedded

MATLAB

function block. Simulink HDL Coder

provides a library of logic elements, such as

counters and timers that are written in

MATLAB code. Also finite-state machine can

be modelled in Stateflow and handwritten or

legacy HDL code can be integrated into the

Simulink model via black-box interfaces.

Simulink HDL Coder generates VHDL and

Verilog test benches to enable rapid verification

of the generated HDL code. HDL testbench can

be customized by a variety of options that apply

stimuli to the HDL code. Also the process of

compiling and simulating the code can be

automated by generating a script.

The algorithms and designs used to define

systems are normally modeled using high level

software languages like MATLAB or C. But

these designs could not be suited to real

hardware implementation. Simulink HDL coder

is a new tool, which comes with MATLAB-

Simulink software package and can be used to

generate HDL code based on Simulink models

and Stateflow finite-state machines [5]. The

coder brings the Model based design into the

domain of applicationspecific integrated circuit

(ASIC) and field programmable gate array

(FPGA) development. Using the coder, system

architects and designers can spend more time on

tuning the algorithms and models and

experimentation and less time on HDL code

writing. Simulink HDL coder compatibility

checker utility can be run to examine

MATLAB-Simulink models and blocks for

HDL code generation compatibility, then by

invoking the coder, using either the command

line or the graphical user interface.

The coder generates VHDL or Verilog code

that implements the design embodied in the

model. Usually, a test bench also can be

generated. The test bench with HDL simulation

tools can be used to simulate the generated HDL

code and evaluate its behavior. The coder

generates scripts that automate the process of

compiling and simulating the. Various software

packages can be used by the coder to cosimulate

generated HDL entities within a Simulink

model.

Simulink HDL Coder generates script files

for use with HDL simulation and synthesis

tools. Script generation is executed

automatically when is enabled and code

generation is started. By default, Simulink HDL

Coder generates script files that are compatible

with the Mentor Graphics ModelSim HDL

simulator and with Synplicity Synplify synthesis

software. Simulink HDL Coder can be

programed to generate scripts for most EDA

tools. EDA script generation can be customized

via the Simulink HDL Coder GUI, or by setting

makehdl or makehdltb properties at the

command line.

Due to the drastic reduction of design time,

between the design developer and

implementation engineer and the absence of

design misunderstandings, this automatic

method of converting an algorithm into a

hardware design proved to be feasible.

2.2. Creation of a Simulink model

For automatic generation of hardware

description and FPGA implementation the

model have to be realised with blocks from the

library hdlsupported. This library starts by the

command hdllib in Matlab command line.

The traffic light model is built by blocks

from this library. The model is shown on a Fig.

1.

Fig. 1 Traffic light Simulink model

Fig. 2 Model with a subsystem

This is a relatevly small model. In a bigger

projects the different parts of a model can be

grouped in subsystems. By doing this a

hardware description can be generated for parts

of the system. The traffic light model can be

presented with a subsystem. This is shown on a

Fig. 2.

By double clicking on the sybsystem block

(Traffic Light) it contents can be viewed as is

shown on Fig. 1. Hardware descriptions of a

different parts of a system or subsystems can be

collected in the simulation stage. This is

possible because of the hardware language

standard. Also a hand written code parts can be

added to a project.

2.3. HDL code generation

The HDL code generation starts from the

Simulink menu Tools->HDL Code Generation-

>Generate HDL. The generated Verilog code is

shown on Table 1.

Table 1. The generated HDL code.

Li

ne

Verilog code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

// ---

//

// File Name:

C:\Users\tzveto\Documents\tl\tlhdl.v

// Created: 2012-04-16 12:23:29

//

// Generated by MATLAB 7.13 and Simulink

HDL Coder 2.2

//

//

// -- --

// -- Rate and Clocking Details

// -- --

// Model base rate: 0.1

// Target subsystem base rate: 0.1

//

// ---

// ---

//

// Module: tlhdl

// Source Path: tlhdl

// Hierarchy Level: 0

//

// ---

`timescale 1 ns / 1 ns

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

module tlhdl

 (

 In1,

 In2,

 In3,

 Out1_0,

 Out1_1,

 Out1_2,

 Out2_0,

 Out2_1,

 Out2_2,

 Out3_0,

 Out3_1,

 Out3_2

);

 input In1;

 input In2;

 input In3;

 output [63:0] Out1_0; // double

 output [63:0] Out1_1; // double

 output [63:0] Out1_2; // double

 output [63:0] Out2_0; // double

 output [63:0] Out2_1; // double

 output [63:0] Out2_2; // double

 output [63:0] Out3_0; // double

 output [63:0] Out3_1; // double

 output [63:0] Out3_2; // double

 wire [63:0] Traffic_Light_out1_0; // ufix64

 wire [63:0] Traffic_Light_out1_1; // ufix64

 wire [63:0] Traffic_Light_out1_2; // ufix64

 wire [63:0] Traffic_Light_out2_0; // ufix64

 wire [63:0] Traffic_Light_out2_1; // ufix64

 wire [63:0] Traffic_Light_out2_2; // ufix64

 wire [63:0] Traffic_Light_out3_0; // ufix64

 wire [63:0] Traffic_Light_out3_1; // ufix64

 wire [63:0] Traffic_Light_out3_2; // ufix64

 // <Root>/Traffic Light

 //

 // <Root>/Data Type Conversion

 //

 // <Root>/Data Type Conversion1

 //

 // <Root>/Data Type Conversion2

 Traffic_Light u_Traffic_Light (.In1(In1),

 .In2(In2),

 .In3(In3),

.Out1_0(Traffic_Light_out1_0), // double

.Out1_1(Traffic_Light_out1_1), // double

.Out1_2(Traffic_Light_out1_2), // double

.Out2_0(Traffic_Light_out2_0), // double

.Out2_1(Traffic_Light_out2_1), // double

.Out2_2(Traffic_Light_out2_2), // double

.Out3_0(Traffic_Light_out3_0), // double

86

87

88

89

90

91

92

93

94

95

96

97

98

.Out3_1(Traffic_Light_out3_1), // double

.Out3_2(Traffic_Light_out3_2) // double

);

 assign Out1_0 = Traffic_Light_out1_0;

 assign Out1_1 = Traffic_Light_out1_1;

 assign Out1_2 = Traffic_Light_out1_2;

 assign Out2_0 = Traffic_Light_out2_0;

 assign Out2_1 = Traffic_Light_out2_1;

 assign Out2_2 = Traffic_Light_out2_2;

 assign Out3_0 = Traffic_Light_out3_0;

 assign Out3_1 = Traffic_Light_out3_1;

 assign Out3_2 = Traffic_Light_out3_2;

endmodule // tlhdl

When the generated code is written it is

ready for simulation. Also additional files for

various software simulators can be generated for

the next step when the code will be simulated.

2.4. Simulation of the generated code

After the hardware description is generated

the simulation can be performed by using the

Xilinx software ISE Project Navigator. The

HDL code (Verilog) is added to the project in

this software package. The code is checked for

errors, simulated and the RTL scheme

realisation can be viewed by selecting View

RTL Schematic.

After syntax check (Behavioral Syntax

Check) the simulation of the behavioral model

is performed by selecting Simulate Behavioral

Model [6].

Fig. 3 Simulation in Xilinx ISE

The figure above (Fig. 3) shows the interface

of Xilinx ISE software. After behavioral syntax

check the model can be simulated. If there are

no errors the simulation results are shown.

Fig. 4 Simulation results

From the simulation results (Fig.4) of the

hardware description can be made the

conclusion that the generated hardware

description is accurate.

2.5. Results analysis.

The generated HDL code from a Simulink

model gives values that are acurate in time and

can be simulated and synthezed with variety of

software tools and after that can be implemented

in FPGA [7]. Simulink also can control the

HDL architecture and implementation, and to

generate a report for the used resources. For a

vast verification it can generate a test files and

cosimulation models and gives code

traceability. This design method from modeling

to programmable device implementation

becomes recursive.

By this method the behavior and synthesis of

a various types of systems can be simulated [8].

It also gives to a system designers an easy way

to add inputs to the designed system, whitch are

called test vectors and to observe the new output

reactions. With this, by simulation, the designer

can assure of the accurate performing of the

designed system by passing the input data and

observing the output.

3. Conclusion

The modern programmable devices in

combination with appropriate software packages

for synthesis and simulation give a significantly

accelerated design process of electronic

systems.

This approach for automatic generation of a

hardware descriptions block built models of

functions and systems saves significant amount

of time for code writing, debugging and

verification of the generated hardware.

The conclusion that can be made is this

approach is suitable for hardware generation by

model based design in Simulink. It also gives

potentiality for simultaneous design, simulation,

analysis and visualisation by Matlab and

Simulink [9]. All this gives contribution to the

development of the hardware based system

design.

Acknowledgement
The results, published in this paper, are

gotten by the project № 112pd055-8 financed by

the Technical University of Sofia – Fund

Scientific Investigations.

References:
[1] I. Grout, Digital systems design with FPGAs.

Elsevier Ltd., 2008, Oxford.

[2] К. Филипова, М. Христов, Използване на

(v)HDL за синтез на електронен хардуер,

Издателство КИНГ-2001, 2004, София.

[3] C. Maxfield, The design warrior's guide to

FPGAs, Elsevier Ltd., 2004, Oxford.

[4] B. Zeidman, Introduction to CPLD and FPGA

Design, The Chalkboard Network, 2001.

[5] Kr. Filipova, Ts. Dimov, D. Djamijkova, F. F.

Filipov, “Showing the capabilities of VHDL

description and Simulink HDL Coder for control

system”, IX INTERNATIONAL

CONFERENCE “CHALENGES in HIGHER

EDUCATION and RESEARCH in 21st

CENTURY”, Sozopol, Bulgaria, 2011.

[6] Kr. Filipova, Vl. Yankov, F. F. Filipov, Y.

Kralev, Ts. Dimov, “Investigating opportunities

for hardware realization of transfer functions”,

Sixth International Conference - Computer

Science'2011, Ohrid, R. Macedonia, 2011.

[7] I. Petrinska, F. Filipov, Ts. Dimov, K. Filipova,

“Intelligent Lighting Control System for

Education Buildings”, Lux junior, 10. Forum

für den lichttechnischen Nachwuchs, Dörnfeld

bei Ilmenau, Germany, 2011.

[8] Xilinx, “ISE Design Suite”

 http://www.xilinx.com/support/documentation/in

dex.htm

[9] MathWorks, “Simulink HDL Coder”,

http://www.mathworks.com/products/slhdlcoder/

