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Abstract. Considering the complexity of the aerodynamic interaction between a non-homogeneous, non-
stationary wind field and a wind turbine, one can easily establish that the constructive elements of the turbine 
will be exposed to dynamic loads, which will eventually lead to forced motion and particularly to forced 
vibrations. One of the most significant elements of every wind turbine is the tower of the generator. The 
tower is subjected to forced vibrations and transmits all dynamic loads that appear in the wind turbine. That 
is why a dynamic analysis of the tower is worth executing. In this research such an analysis is made 
considering the tower of the generator as Euler-Bernoulli beam structure and considering it as a Love-
Kirchhoff shell structure. 

1 Introduction 

The purpose of this study is to analyse the dynamic 
behaviour of a tower of a wind turbine generator of high 
power such as the NREL5MW wind turbine. Considering 
the aerodynamic interaction between the wind and the 
whole wind turbine, the station is subjected to dynamic 
loads. These loads are transmitted to the ground through 
the tower of the turbine. That is why a dynamic survey on 
the tower is of significant interest. The dynamic analysis 
can give the natural characteristics of the tower, can 
provide more knowledge on the forced vibrations and 
show a relation between wind speed and generated 
stresses. 

In our previous studies [1] a modified BEM theory 
was used to obtain the aerodynamic forces acting on the 
turbine, using a non-homogenous, non-stationary wind 
field model. The data obtained from thеsе studies will be 
used in the present one. 

The following assumptions are made: 
• The pitch angle of the blades is assumed to be constant 

and an active pitch control system is not considered; 
• Any deformation of the blades as well as their mass and 

inertial characteristics are neglected; 
• The wind field is considered non-homogenous, non-

stationary. 

2 A dynamic model of the tower of 
NREL5MW wind turbine 

2.1. Geometrical and material properties of the 
tower 

The tower of NREL5MW [2] is a truncated cone shown 
in Fig. 1. The geometric and material characteristics are 
given in Table 1. 

 

Fig. 1. NREL5MW Tower. 

Table 1. Geometric and material characteristics of the tower of 
the NREL5MW wind turbine. 

Geometric characteristics Characteristics of the material 
 Height, m 87,6 Density, kg.m-3 8500 

Cone angle, ° 1,4 Mass, kg 347460 
Outer diameter  
at the base, m 

6 Young’s module, GPa 210  

Inner diameter  
at the base, m 

5,93 Shear module, GPa 80,8 

Outer diameter  
at the top, m 

3,87 Poisson’s ration 0,43 

Inner diameter  
at the top, m 

3,82 Damping ratio, % 1 

2.2. External loads 

The tower of the wind turbine transmits almost all forces 
that appear in the wind turbine generator structure. Three 
external forces are taken into consideration in the present 
study. These are the thrust force Fth, and the torque Mwt, 
both resulting from the aerodynamic interaction between 
the wind and the wind turbine [1] and a non-uniform 
distribution acting on the tower, resulting from the 
interaction between the wind and the tower itself - Fig. 2. 

The determination of these forces was the subject of 
previous studies [3]. The purpose here is to derive an 
analytical form of the external loads. Using [1] one can 
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obtain a dependence between Fth and Mwt and the wind 
speed, defining them as a function of the wind speed V∞ 

as shown in Fig. 3. 

 

Fig. 2. Acting forces on the tower of NREL5MW. 

 

 

Fig. 3. Thrust force and torque as a function of the wind speed. 

In order to obtain these dependencies into an 
analytical form a polynomial aproximation is made using 
the discrete values. The aproximation is in polynomial 
form: 

 
௧௛ሺܨ ஶܸሻ ൌ ∑ ܽ௠ ஶܸ

௠ெ
௠ୀଵ

ௐ்ሺܯ ஶܸሻ ൌ ∑ ܾ௠ ஶܸ
௠ெ

௠ୀଵ
, (1) 

where:  
am and bm are coefficients to be defined; 

V∞ was derived in analytical form decomposing the power 
spectrum density function Su’ in Shinozuka series [4]: 

 ܸ∞ ൌ √2∑ ඥܵݑ′ሺ݂ሻ∆݂cos	ሺ2ݐ݂݅ߨ ൅ ݂݅ሻ
ܰെ1
݅ൌ0 , (2) 

where: 
∆݂ –frequency summation step; 
௜݂ – random phases. 

Graphical visualization of (2) is shown in Fig.4. 

 

Fig. 4. Wind speed velocity distributed in time. 

Substituting (2) in (1) gives an expresion of the thrust 
force Fth(t) and the torque Mwt(t) as a function of time. The 
obtained fuctions are shown in Fig. 5. 

 

 

Fig. 5. Thrust force Fth(t) and torque Mwt(t) as a function of 
time. 

The distributed load is defined similarly with the 
difference that one more function is required to represent 
the change in magnitude with respect to the height of the 
tower f(x,t) = X(x)F(V∞(t)), where X(x) represents the 
vertical wind speed distribution [1]. Fig. 6 shows the 
distributed load f(x,t). 
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Fig. 6. Non-uniform distributed load as a function of time and 
height f(x,t). 

The boundary conditions of the model are as follows: 
a fixed end at the base of the tower and a point mass m0 
and inertia moment I0 (with respect to the axis of the 
generator) at the top end - Fig.2. This point mass and 
inertia represent the mass characteristics of all bodies 
attached to the tower, such as wind wurbine, electric 
generator, hub, nacelle, shafts, bearings, etc. 

2.3. Dynamic analysis of the tower in terms of 
the Euler-Bernoulli beam theory 

In this section a dynamic analysis of the tower is executed 
using Euler-Bernoulli beam theory with equation in 
general form: 

 
డమ

డ௫మ
ቂܫܧሺݔሻ

డమ௪ሺ௫,௧ሻ

డ௫మ
ቃ ൅ ሻݔሺܣߩ

డమ௪ሺ௫,௧ሻ

డ௧మ
ൌ ,ݔሺݍ  , (3)	ሻݐ

where: 
• E – Young’s modulus of the tower material; 
• I(x) – geometric moment of inertia of th tower; 
• w – transverse displacement; 
• ρ – density of the material of the tower’s material; 
• q(x,t) – distributed load. 

The implemented methodology is as follows. First, the 
natural frequencies ωi are determined using Rayleigh-Ritz 
formula [5]: 
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,  (4) 

where W*
i(x) are aproximated functions, called 

Ansatzfunktion. For approximated functions are used the 
exact mode shapes of an uniform beam, with the same 
boundaries, the same length, the same material and mass 
properties, The mode shapes of this simplified beam 
model are shown in Fig. 7. 

Substituting the aproximated mode shapes in (4) gives 
the corresponding frequencies, which are shown in 
Table 2. 

Table 2. Natural frequencies of the tower of NREL5MW wind 
turbine with boundaries point mass and inertia at top end. 

ω1, Hz 0,3475 
ω2, Hz 3,3234 
ω3, Hz 11,0003 
ω4, Hz 22,2794 
ω5, Hz 37,0453 

 

Fig. 7. First five mode shapes of the simplified beam. 

Once the natural frequencies are obtained  the partial 
differential Euler-Bernoulli equation (3) becomes a 
homogenous, ordinary differential equation ordinary with 
non-constant coefficions. 

ሻݔሺܫܧ 
ௗరௐ೔ሺ௫ሻ

ௗ௫ర
൅ ሻ߱௜ݔሺܣߩ

ଶ
௜ܹሺݔሻ ൌ 0 (5) 

It will be solved in order to determine the mode shapes of 
the tower. Equation (5) does not have an exact solution,  
Here it is solved numerically in matlab using “bvp4c” 
solver [6]. The obtained solution is shown in Fig.8. 

 

Fig.8. First five mode shapes of the tower of NREL5MW. 

Once the natural characteristics of the tower are 
defined, they can be used to determine the response of the 
structure. For this purpose a modal analysis aproach is 
used [7]. The response 

,ݔሺݓ  ሻݐ ൌ ∑ ௜ܹሺݔሻߤ௜ሺݐሻ
ହ
௜ୀଵ  (6) 

is defined as a sum of the products of the mode shapes 
Wi(x) and a time dependence function μi(t): 

ሻݐ௜ሺߤ  ൌ
ଵ

ఠ೔
׬ ܳሺ߬ሻ݊݅ݏ
௧
଴ ሾ߱௜ሺݐ െ ߬ሻሿ݀߬, (7) 

where 

 ܳ௜ሺݐሻ ൌ ׬ ௜ܹሺݔሻ݂ሺݔ, ݔሻ݀ݐ
௅
଴ . (8) 

In order for the solution to show both qualitative and 
quantitative characteristics, the mode shapes must be 
normalized, using the following scaling coefficient Ci. 

௜ܥ  ׬ ሻݔሺܣߩ ௜ܹ
ଶሺݔሻ݀ݔ ൌ 1

௅
଴  (9) 

The modal analysis solution shows the participation of 
each mode shape in the beam response. The described 
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methodology is executed in Matlab and gives us the 
following results. Fig. 9 shows the response due to the 
distributed load f(x,t) separated into the first four mode 
shapes. It is observed that the solution is dominated by the 
first mode. Еvery subsequent mode participates less as 
compared to the previous one. Fig. 10 shows the response 
due to the thrust force Fth. Fig. 11 shows the response due 
to the torque Mwt. Fig. 12 shows the total response of the 
tower due to all the external excitations. Fig. 13 shows the 
normal stresses, generated in the structure due to the 
external loads. 

 

Fig. 9. Beam response due to the distributed load f(x,t) with the 
exact participation of the first 4 mode shapes. 

 

Fig. 10. Beam response due to the thrust force Fth. 

 

Fig. 11. Beam response due to the torque Mwt. 

 

Fig. 12. Beam response due to all external loads. 

 

Fig. 13. Generated normal stresses due to all external loads. 

2.4. Numerical analysis in ANSYS Workbench 

The modal numerical survey made in ANSYS Workbech 
shows that the tower of NREL5MW has the behavior of 
shell structures. It shows the typical for a shell structure 
circumferential mode shapes. It also shows a difference in 
the natural frequencies corresponding to the shell bending 
mode shapes. The comparison between the frequencies is 
shown in Table 3. 
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Table 3. Natural frequencies of the structure,  
corresponding to the bending mode shapes. 

Natural 
frequencies 

Euler-Bernoulli 
beam analysis 

ANSYS numerical 
results 

ω1, Hz 0,3475 0,331 
ω2, Hz 3,3234 1,967 
ω3, Hz 11,0003 4,61 
ω4, Hz 22,2794 10,531 
ω5, Hz 37,0453 18,874 

Regardless of this difference, the performed analysis 
in section 2.3 is applicable for all kinds of continuous 
structures. Considering that the response is dominated by 
the first mode shape a significant difference in the 
solution will not appear. That is because there is only a 
slight difference in the frequency corresponding to the 
first mode. 

2.5. Natural characteristics of a shell structure 
tower model 

In order to confirm the shell behavior of the tower a shell 
model is analyzed in this section. For easier analysis and 
determination of the natural characteristics, the model of 
the tower is simplified as follows. It is considered uniform 
with a constant-circular cross section and constant 
thickness. The top end is set free without point mass and 
inertia. Fig. 14. 

 

Fig. 14. Shell structure model. R and θ are polar coordinates. 

The differential equations known as Love-Kirchhoff 
equations [6] describing the dynamic behaviour of a shell 
structure are: 
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where: 
• the α, β – curvilinear coordinates; 
• A, B – lengths of the radius vector projection 

respectively on  α, β coordinate; 
• Rα, Rβ – radiuses of the curvilinear coordinates 
• z – linear coordinate; 
• Nij ,Qij – normal and tangential forces per unit length 
• Mij – moments of the forces 
• Ri – radiuses of curvature; 

After a simplification for a cylindrical shell structure 
equations (10) take the form of: 
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known as Donnell-Mushtari-Vlasov Theory [7, 8], where: 
• w, v, u – displacements respectively in transverse, 

circumferential and axial direction; 
• qx, qθ, qz are projection of the distributed load; 
• C and D - constants depending on material’s properties; 
• ν – Poisson’s ratio of the material; 
• h – thickness of the shell. 

The system of PDE (11) does not have an exact 
solution. The natural frequencies corresponding to the 
shell bending mode shapes are determined using a semi-
analytical analysis based on Rayleigh-Ritz approach [9, 
10]. The idea is that the solution of (11) is approximated 
in the following form: 

ቚݑሺݔ, ,ߠ ሻݐ ൌ ቂܣଵ
ௗௐభሺ௫ሻ

ௗ௫
൅ ଶܣ
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,ݔሺݒ| ,ߠ ሻݐ ൌ ሾܤଵ ଵܹሺݔሻ ൅ ଶܤ ଶܹሺݔሻሿ݊݅ݏ	ሺ݊ߠሻ݊݅ݏ	ሺ߱ݐሻ; 

,ݔሺݓ| ,ߠ ሻݐ ൌ ሾܥଵ ଵܹሺݔሻ ൅ ଶܥ ଶܹሺݔሻሿܿݏ݋	ሺ݊ߠሻ݅ݏ ݊ሺ߱ݐሻ, (12) 

where W1(x) are the beam bending modes for a clamped-
free boundaries and W2(x) are the beam bending modes 
for a clamped-pinned boundaries. The described 
procedure is executed in Matlab. The bending modes of a 
shell structure are these for n = 1 and m = 1, 2, 3... A 
comparison between the frequencies corresponding to the 
first five bending modes of the described structure 
considered as a beam, as a shell and results from ANSYS 
are shown in Table 4. 
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Table 4. Natural frequencies corresponding to the bending 
mode shapes of the model considered as a beam structure, as a 

shell structure and numerical results. 

Natural 
frequencies 

Beam 
structure 

Shell 
structure 

ANSYS numerical 
results 

ω1, Hz 0,7 0,64 0,63 
ω2, Hz 4,4 3,58 3,8 
ω3, Hz 12,32 9,82 10,18 
ω4, Hz 24,16 N/A 18,83 
ω5, Hz 39,96 N/A 29,19 

The results confirm that the described structure from 
Fig. 14 has a behavior of a shell. 

3 Conclusion 

In the present paper several important conclusions were 
arrived at: 

1. The tower of NREL5MW wind turbine shows a 
behavior of a shell structure, not a beam and should be 
analyzed and considered as a shell. 

2. The dynamic response of the structure under a 
stochastic generated wind excitations is dominated by the 
first mode of the structure, which represents nearly 98% 
of the response. Every subsequent mode contributes less, 
as compared to the previous one. The second and the third 
mode respectively represent only 2% and 0,2% of the 
response. 

3. Due to the stochastic characteristics of the wind, the 
absence of correlation between the frequencies of the 
excitation forces, a resonance state does not appear. The 
structure passes through resonanse very fast and 
amplitudes of the forced vibrations do not increase. 
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