
Showing the capabilities of VHDL description and Simulink® HDL

Coder for control system

Krasimira Filipova

1)
, Tsvetomir Dimov

 2)
, Filip Filipov

3)
, Denitca Djamijkova

 4)

1)
Technical University of Sofia, Faculty of Automation, 8 Kliment Ohridski,

1000 Sofia, Bulgaria, Phone: +359 2 965 25 26, Е-mail: Krfil [AT] tu-sofia.bg
2)

Technical University of Sofia, Faculty of Automation, 8 Kliment Ohridski,

1000 Sofia, Bulgaria, E-mail: Tz.Dimov [AT] gmail.com

3)
Technical University - Sofia, FDIBA, Bulgaria, Е-mail: pilif.pilif [AT] gmail.com

4)
Technical University – Vienna, Austria, Е-mail: Denitsa.Djamiykova [AT] gmail.com

Abstract: This paper shows the capabilities of VHDL description and the usage of Simulink HDL

Coder for description of electronic control system without studying the electric circuits in detail. This is

demonstrated by two examples, based on VHDL code description and Simulink HDL Coder. The results are

achieved by block diagram of algorithm for behavior description of the system or by a logical function as a

base for a model of digital electronic circuit.

Key words: Hardware Description Languages, VHDL, Simulation, Simulink, Conversion

1. Introduction

This paper describes a suitable way to

convert every digital algorithm, in

corresponding electronic hardware. Several

Hardware Description Languages (HDLs) are

utilized within the design process for these

digital systems. Formalized approaches may

provide a solution whose effectiveness can be

analyzed and where improvements to both the

design approach and chosen implementation

architectures can be predicted.[1] [2]

 With the use of a VHDL or Simulink HDL

Coder the FPGA Design can be automated

created without circuit implementation as shown

on the figures below. [3] [4] [5]

Important is the possibility to control the post

synthesis timing report and to annotate back the

Simulink model to identify timing-constraint

bottlenecks. Such integration with synthesis

tools provide rapid design iterations and

significantly reduce FPGA design cycle time.

The overall intention is to model the behavior of

a digital algorithm with given user-defined

parameters and to write directly the VHDL code

or to create automatically in Simulink the code

and to convert this automatically to VHDL code

after that.[6] [7] [8] [9].

2. Praxis with VHDL Code

The usage of VHDL, MATLAB/Simulink

HDL coder and the new toolboxes for

description of the algorithm is examinated.

Also, it’s possible for this approach to use the

capabilities of mentioned toolboxes for

automated generation of HDL code,

independently of writing the VHDL code. The

approach, used in this paper, at first, is to use

manually creation of the VHDL code for the

control unit to be designed. [11] [12] [13]

At the beginning we have to describe special

features and how it works. Below, on fig.1 is

shown the block diagram of the investigated

algorithm. It contains 8 logical blocks, 9 inputs

and 7 outputs. On the shown algorithm we have

to virtually synthesize the electric control unit.

For this we have to follow two basic steps:

 creation of the VHDL code

 creation of the testbench for testing the

sequence of events, for correctness of this

sequence and for estimation of the algorithm

correctness.

mailto:krfil@tu-sofia.bg
mailto:tz.dimov@gmail.com
mailto:pilif.pilif@gmail.com
mailto:denitsa.djamiykova@gmail.com

 Fig. 1

Y_rasp

Y_process

X_cardmoney

YES

NO

YES

X_raspd
YES

NO Y_sendmon

Y_getcard

X_cancel

YES
NO

Y_getcard
Y_error

X_smet

YES

NO YES

YES

NO Y_error

Y_limit

X_pin

Y_takecard

YES

X_sum

The ATM is ready, START

PIN code input

 I = 1

ВВеВерен

ПИН

No Transfer, Not

Enough Funds

 Correct

PIN code

 Valid Account

Wrong code
I=I+1

I=2

Invalid card.

The card is taken

Eject the

card

NO

Transfer amount selection К

К>X_sum

Exceeded limit

Valid amount Correction of К

No transfer

allowed

NO

Counting the

cash

Receipt?

X=X_card

NO

WAITING

Receipt give out

Eject the card

On Fig. 2 is shown the VHDL code. It consists

of 98 rows.
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity logic is

 port(

 clk, reset: in std_logic;

 x_card, x_pin, x_smet,x_cancel, x_raspd,

x_cardmoney: in std_logic;

 x_sum: in unsigned(8 downto 0);

 y_error, y_takecard, y_limit,y_process,

y_sendmon,y_rasp, y_getcard: out std_logic

);

end logic;

architecture Behavioral of logic is

signal k : unsigned(8 downto 0);

type statetype is (idle,start, sec, tree, break);

 signal state_reg: statetype;

 signal pin: std_logic;

begin

process(clk,reset)

variable i: integer :=1;

begin

 if reset='1' then

 state_reg <= idle;

 i:=1;

 k <= "110010000";

 pin <='1';

 elsif rising_edge(clk) then

 case state_reg is

 when idle =>

 y_error <='0';

 y_takecard <='0';

 y_process <='0';

 y_limit <= '0';

 y_getcard<='0';

 y_rasp<='0';

 y_sendmon <='0';

 if (x_card='1') then

 state_reg <= start;

 end if;

 when start =>

 if (x_pin = pin) then

 state_reg <= sec;

 y_error <='0';

 elsif (i <3) then

 i:=i+1;

 y_error <='1';

 else

 y_takecard <='1';

 state_reg <= idle;

 end if;

 when sec =>

 if (x_smet='1') then

 if (k > x_sum or k= x_sum) then

 if (x_cardmoney= '1') then

 y_process <='1';

 state_reg <=tree;

 end if;

 else

 y_limit <= '1';

 if (x_cancel = '1') then

 state_reg <= break;

 end if;

 end if;

 else y_error<='1';

 y_getcard<='1';

 state_reg <=idle;

 end if;

 when tree =>

 if (x_raspd = '1') then

 y_rasp<='1';

 state_reg <= break;

 y_sendmon <='1';

 else

 state_reg <= break;

 y_sendmon <='1';

 end if;

 when break =>

 y_getcard <='1';

 state_reg <= idle;

 end case;

 end if;

 end process;

end Behavioral;

Fig. 2.

On Fig. 3 is shown the testbench. It’s obvious

that the algorithm is realized, when the

corresponding output signals occur, indicating

for their assumptive random events.

Fig. 3

In the testbench the physical delays haven’t a

reflex. In this paper we assume these delays

haven’t an impact on the execution of the

sequence of actions. This special case is

examined by the authors in another paper.

The creation and verification of the code for

control of the standard automated transfer

machine shows, that including more conditions

and making its work more complicated is

possible and on principle is the same. In this

way we can say that the virtually created

electronics for control are standard and unified.

The control system is implemented on a

programmable devices as CPLD and FPGA . By

doing this a big part of the electronics became

integrated in the device and this significantly

eases the design of the control system.

3. Praxis with automated generation

of HDL code

The other possibility for code generation

by automated synthesis with implementation on

programmable devices is shown too.

On Fig. 4 is shown a logical scheme that

realizes the Boolean function:

))((

))((

32103210

310320

XXXXXXXX

XXXXXXY

Electronic circuit like this can be

examined as a realization of the block-diagram

of another algorithm. For this scheme as a

specific distinction from the algorithm on Fig. 1,

that in this case the operations are with signals.

By this simple scheme is demonstrated that

always is possible to expand the block-scheme

of the control algorithm and make it more

complicated.

Fig. 4

On Fig. 5 is shown the VHDL code

automatically generated via MATLAB/Simulink

HDL coder, and on Fig.6 is shown the testbench

for estimation of the code correctness. This

paper doesn’t make a comparison between the

effectiveness of the synthesis by manually

writing the VHDL code (it’s necessary to be

aware of code semantics and typing rules) and

the automatic code generation via

MATLAB/Simulink HDL coder (in this case

it’s necessary to know this big software product

and to have some experience). Both ways are

followed by testbench verification as the

resource consumption is almost the same.

Of course, the processing and synthesis of

control by block-scheme algorithms are

forthcoming and not only for discrete-event

systems.

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.numeric_std.ALL;

ENTITY opit1_2_1 IS

 PORT(X0 : IN std_logic;

 X1 : IN std_logic;

 X2 : IN std_logic;

 X3 : IN std_logic;

 Y : OUT std_logic

);

END opit1_2_1;

ARCHITECTURE rtl OF opit1_2_1 IS

 -- Signals

 SIGNAL X0_1 : std_logic;

 SIGNAL Logical_Operator1_out1 : std_logic;

 SIGNAL X1_1 : std_logic;

 SIGNAL Logical_Operator1_out1_1 : std_logic;

 SIGNAL X2_1 : std_logic;

 SIGNAL X0_2 : std_logic;

 SIGNAL X3_1 : std_logic;

 SIGNAL Logical_Operator1_out1_2 : std_logic;

 SIGNAL Logical_Operator_out1 : std_logic;

BEGIN

 X0_1 <= NOT X0;

 Logical_Operator1_out1 <= X3 OR (X0_1 OR X2);

 X1_1 <= NOT X1;

 Logical_Operator1_out1_1 <= X3 OR (X0_1 OR

X1_1);

 X2_1 <= NOT X2;

 X0_2 <= X3 OR (X2_1 OR (X0 OR X1));

 X3_1 <= NOT X3;

 Logical_Operator1_out1_2 <= X3_1 OR (X2_1 OR

(X0_1 OR X1));

 Logical_Operator_out1 <= Logical_Operator1_out1_2

AND (X0_2 AND (Logical_Operator1_out1 AND

Logical_Operator1_out1_1));

 Y <= Logical_Operator_out1;

END rtl;
Fig. 5

Fig.6

4. Conclusions and future work

The results show that for the synthesis of

electronic control for different applications the

needed code can be written down or generated.

In both ways with a testbench the logical base

shown in the block diagrams of the algorithm

can be verified. These results give the

opportunity for using this approach in the

educational and research practice.

The research results presented in this

paper are funded by Technical University –

Sofia research project No. 112pd055-8.

REFERENCES

[1] Chu, Pong P., “RTL Hardware Design

using VHDL”, John Wiley, 2006, ISBN 978-0-

471-72092-8

[2] Kuon, Ian et al., “FPGA architecture”,

Now Publishers Inc, 2008, ISBN 978-

1601981264

[3] Samilagic, Zoran S., “Digital systems

design and prototyping using field

programmable logic”, Springer, 2000, ISBN

978-0792379201

[4] Roth, Charles H. et al, “Digital systems

design using VHDL”, CL-Engineering, 2007,

ISBN 978-0534384623

[5] Brown, Stephen et al. “Fundamentals

of Digital Logic with VHDL Design”, McGraw-

Hill, 2008, ISBN 978-0077221430

 [6] Hwang, E., “Digital Logic and

Microprocessor Design with VHDL”, CL-

Engineering, 2005, ISBN 978-0534465933

[7] Lee, S., “Advanced Digital Logic

Design Using VHDL, State Machines, and

Synthesis for FPGA’s”, CL-Engineering, 2005,

ISBN 978-0534466022

[8] Chartrand, L., “Digital Fundamentals:

Experiments and Concepts with CPLDs”, 2003,

ISBN 978-1401842468

[9] Dueck, R., “Digital Design with CPLD

Applications and VHDL”, 2004, ISBN 978-

1401840303

[10] Filipova, Kr., Petrakieva, S., Filipov,

F., Costov, I., “Hardware Realization of the

Control Algorithm in Hydrosystems with

FPGA”, Proc. International Conference

“Computer Science’08”, Каwala , pp115-120

[11] Mladenov, V., Filipova, Kr.,

Petrakieva, S., Dimov, B., Uhlmann, F.,

“Analysis of Signal Competition in

Asynchronous Ultra High-Speed Digital

Circuits”, Przeglad Elektrotechniczny

(Electrical Review), Issue 11, 2007, ISSN 0033-

2097, Poland, pp. 197-200

[12] Stoyadinova, T., Buzov, Il.,

Mladenov, V., Filipova, Kr., Ortlepp, T.,

Panayotov, I., “Development of VHDL-models

for transient simulation of complex

asynchronous RSFQ circuits” Paper ID: 209 ,

IWK 51 , Ilmenau, 2009

